
Sample Midterm Solutions

(2) The given method determines the integral from a to b by considering
the value of the function at five points.

In order for it to be fifth order, it should give the exact solutions for
polynomials of degree at most 4. We will consider polynomials of the form
(x−(a+2h))k on the interval (a, b) = (a, a+4h) to make the computations as
simple as possible. Its integral is (x− (a + 2h))k+1/(k + 1)|a+4h

a = ((2h)k+1−
(−2h)k+1)/(k + 1).∫ b

a 1dx = 4h.
I4(1) = 2h

45
(7 + 32 + 12 + 32 + 7) = 2h

45
(90) = 4h.∫ b

a (x− (a + 2h))dx = (2h)2/2− (−2h)2/2 = 0.
I4(x− a) = 2h

45
(7 · 2h− 32 · h− 12 · 0 + 32 · h + 7 · 2h) = 0.∫ b

a (x− a− 2h)2dx = (2h)3/3− (−2h)3/3 = 16
3
h3

I4((x− (a + 2h))2) = 2h
45

(7 · 4h2 + 32h2 + 0 + 32 · h2 + 7 · 16h2) = 2h3

45
(28 +

32 + 32 + 28) = 2·120
45

h3 = 16
3
h3∫ b

a (x− a)3dx = (2h)4/4− (−2h)4/4 = 0
I4((x− (a + 2h))3) = 2h

45
(−7 · 8h3 − 32 · h3 + 0 + +32h3 + 7 · 8h3) = 0.∫ b

a (x− (a + 2h))4dx = (2h)5/5− (−2h)5/5 = 64
5
h5

I5((x− (a + 2h))4) = 2h
45

(7 · 16h4 + 32h4 + 0 + 32h4 + 7 · 16h4) = 2h4

45
(112 +

32 + 32 + 112) = 2·288
45

= 64
5
h5.∫ b

a (x− (a + 2h)))5dx = 0
I5((x− (a + 2h))5) is also zero; the first two terms cancel the last two as

above.
So the above method gives the exact solution on any polynomial of the

form (x − (a + 2h))k, 0 ≤ k ≤ 5. Any polynomial of degree 5 or lower may
be written as a linear combination of such polynomials, so the formula has
degree of precision at least 5.

To see that it is not accurate to degree 6, we consider the polynomial
(x− (a + 2h)6). Its correct integral from a to b is 2(2h7)/7. But the formula
gives an integer multiple of h7/45, proceeding in the same way as above. This
cannot be the correct answer since 7 does not divide 45.

(b) For the composite formula, we divide the interval [a, b] into 4m subin-
tervals, each of width h = b−a

4m
. We then apply Boole’s Rule to each set of

four intervals, obtaining the formula I(f) = 2h
45

∑m−1
k=0 (7f(a + 4kh) + 32f(a +

4kh + h) + 12f(a + 4kh + 2h) + 32f(a + 4kh + 3h) + 7f(a + 4kh + 4h)).
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(3) f(x) = sin(x)/x. We approximate by natural spline at x = −1, 0, 1.
f(−1) = sin(−1)/(−1) = sin(1), f(1) = sin(1)/1 = sin(1). To find f(0) we
take the limit limx→0sin(x)/x = cos(0)/1 = 1 by L’Hopital’s rule. So our
points are f(−1) = f(1) = sin(1), f(0) = 1.

Now we find the natural spline P . We have eight variables: on [−1, 0]
we have P (x) = a(x + 1)3 + b(x + 1)2 + c(x + 1) + d, while on [0, 1] we have
P (x) = qx3 + rx2 + sx + t.

Since the spline must match the value of f at the given points, we have
P (−1) = d = sin(1), P (0) = a+b+c+d = t = 1, P (1) = q+r+s+t = sin(1).

P ′(x) is 3a(x + 1)2 + 2b(x + 1) + c on [−1, 0] and 3qx2 + 2rx + s on [0, 1].
For the first derivative to be continuous at 0, we must have 3a + 2b + c = s.

P ′′(x) is 6a(x + 1) + 2b on [−1, 0] and 6qx + 2r on [0, 1]. For the second
derivative to be continuous at 0, we must have 6a + 2b = 2r.

Finally, the natural spline condition is that the second derivative should
be zero at the endpoints. This gives 2b = 0, 6q + 2r = 0.

Putting all this together we have
d = sin(1), t = 1, b = 0
a + c = 1− sin(1)
q + r + s = sin(1)− 1, so a + c + q + r + s = 0.
3a + c = s
6a = 2r, a = r/3
6q + 2r = 0, so q = −r/3.
Then s = r + c, r/3 + c − r/3 + r + r + c = 0 = 2c + 2r, and c = −r,

implying s = 0.
We then have r/3− r = −2r/3 = 1− sin(1), for r = −3

2
(1− sin(1)). So

we can write down P as follows:
P (x) = −1

2
(1− sin(1))(x + 1)3 + 3

2
(1− sin(1))(x + 1) + sin(1) on [−1, 0]

and
P (x) = 1

2
(1− sin(1))x3 − 3

2
(1− sin(1))x2 + 1 on [0, 1].

(4) L = limh→0f(h) and L− f(h) = c6h
6 + c9h

9 + ...
We consider L−f(h/2). This is c6(h/2)6+c9(h/2)9

. .. = c6h
6/64+c9h

9/512.
To cancel the lowest order term, we compute (L− f(h))− 64(L− f(h/2)) =
c9h

9 − (c9/8)h9.
Then −63L − f(h) + 64f(h/2) = (7/8)c9h

9. Solving for L we find L =
(64f(h/2) − f(h) − (7/8)c9h

9)/63, so L − (64
63

f(h/2) − 1
63

f(h)) = − 1
72

c9h
9.

This is order h9 instead of h6, and so is more accurate than the original
estimate.

(5) We have f(0) = 0, f(0.1) = 0.01, f(0.2) = 0.04.
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A second-order method must give the exact solution on quadratic polyno-
mials. Therefore the second-order approximation to the derivative of f using
these three points must be equal to the derivative of the quadratic passing
through these points.

We compute this quadratic with Lagrange polynomials: P (x) = 0L0 +

0.01L1 + 0.04L2 = 0.01 x(x−0.2)
(0.1−0)(0.1−0.2)

+ 0.04 x(x−0.1)
(0.2−0)(0.2−0.1)

.

This is P = −0.01x2−0.2x
0.01

+ 0.04x2−0.1x
0.02

, which is equal to −(x2 − 0.2x) +
2(x2 − 0.1x) = x2. So our second-order approximation to f ′(x) at x = 0 is
the derivative of x2 at 0, which is 0.
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