Practice Midterm Solutions

Problem 2:
$f(x)=2 x^{3}-6 x+1 . f(0)=0+0+1=1, f(1)=2-6+1=-3$, so by the Intermediate Value Theorem f has a root in the interval $[0,1]$.

Bisection method:
$f(1 / 2)=\frac{2}{8}-\frac{6}{2}+1=-\frac{7}{4} . f(1 / 2)<0<f(0)$. Therefore f has a root in [$0,1 / 2]$.
$2 x^{3}-6 x+1=0$ if and only if $x=2 x^{3}-5 x+1$. We look for a fixed point of $g(x)=2 x^{3}-5 x+1$. Let $p_{0}=1 / 2$. then $g\left(p_{0}\right)=\frac{2}{8}-\frac{5}{2}+1=-\frac{5}{4}$. So our next approximation to the fixed point is $p_{1}=-\frac{5}{4}$.

Problem 3:
We want to find a second-degree polynomial P with $P\left(x_{0}\right)=f_{0}, P\left(x_{1}\right)=$ f_{1}, and $P^{\prime}\left(x_{2}\right)=f_{2}^{\prime}$, where $x_{0}<x_{1}<x_{2}$.

Following the hint, we write $P(x)=\alpha+\beta\left(x-x_{0}\right)+\gamma\left(x-x_{0}\right)\left(x-x_{1}\right)$.
Then $P\left(x_{0}\right)=f_{0}=\alpha+0+0$, so $\alpha=f_{0}$.
We then have $P\left(x_{1}\right)=f_{1}=f_{0}+\beta\left(x_{1}-x_{0}\right)+0$, so $\beta=\left(f_{1}-f_{0}\right) /\left(x_{1}-x_{0}\right)$.
$P_{2}^{\prime}(x)=\beta+\gamma\left(\left(x-x_{1}\right)+\left(x-x_{0}\right)\right)\left(f_{1}-f_{0}\right) /\left(x_{1}-x_{0}\right)+\gamma\left(2 x-x_{0}-x_{1}\right)$.
Therefore $P^{\prime}\left(x_{2}\right)=f_{2}^{\prime}=\left(f_{1}-f_{0}\right) /\left(x_{1}-x_{0}\right)+\gamma\left(2 x_{2}-x_{0}-x_{1}\right)$. This gives $\gamma=\left(f_{2}^{\prime}-\frac{f_{1}-f_{0}}{x_{1}-x_{0}}\right) /\left(2 x_{2}-x_{0}-x_{1}\right)$.

For these values of α, β, γ all three equations are satisfied, so $P(x)=$ $\alpha+\beta\left(x-x_{0}\right)+\gamma\left(x-x_{0}\right)\left(x-x_{1}\right)$ is the desired polynomial.

Problem 4:

We look for the unique positive root of the equation $f(x)=x^{3}-a=0$.
(a) If x_{i} is the i th approximation to the root, then Newton's method gives $x_{i+1}=x_{i}-f\left(p_{i}\right) / f^{\prime}\left(p_{i}\right)$. This is $x_{i}-\frac{x^{3}-a}{3 x^{2}}$.
(b) $a=2, x_{0}=1$.
$f(1)=-1, f^{\prime}(1)=3$.
$x_{1}=1-\frac{-1}{3}=4 / 3$.
$f(4 / 3)=\frac{64}{27}-2=\frac{64-54}{27}=\frac{10}{27}$.
$f^{\prime}(4 / 3)=3 \cdot \frac{16}{9}=\frac{16}{3}$.
$x_{2}=4 / 3-\frac{10 / 27}{16 / 3}=\frac{576}{432}-\frac{30}{432}=\frac{546}{432}=\frac{91}{72}$.
(c) A convergent iteration p_{i} is of order n if p_{i} converges and $\lim _{i \rightarrow \infty}\left|\frac{p_{i+1}-p_{i}}{\left(p_{i}-p_{i-1}\right)^{n}}\right|$ exists.
$f^{\prime}\left(2^{1 / 3}\right)=3 \cdot 2^{2 / 3} \neq 0$, so the root $p=2^{1 / 3}$ is a simple root. Newton's method converges to second order at any simple root, so it does so in this case.

Problem 5:
If p^{*} is some approximation to a quantity p, then the absolute error is $\left|p-p^{*}\right|$ and the relative error is $\left|p-p^{*}\right| /|p|$.

An estimate p^{*} has n significant digits if the relative error is less than or equal to $5 \cdot 10^{-n}$.

