Prof. Ming Gu, 861 Evans, tel: 2-3145
Office Hours: MWF 1:00-2:000PM
Email: mgu@math.berkeley.edu
http://www.math.berkeley.edu/~mgu/MA128A2008S

# Math128A: Numerical Analysis Programming Assignment \#1, Due Feb. 29, 2008 

Consider the function $f(x)=(x-1)^{9}$.

1. Use the matlab function randn to generate $n+1$ random nodes $x_{0}<x_{1}<\cdots<x_{n}$ where $n=9$.
2. Use the interpolation formula (3.1) in the text, the Neville's method, and divided differences to interpolate $f(x)$ at $n$ random points. This leads to three mathematically identical but numerically different approximations to $f(x)$. Furthermore, since $f(x)$ has degree 9 , all four of them are mathematically identical.
3. For each of the four polynomials, use the bisection method, Newton's method, and the Muller's method to compute a root. Compare the accuracy in these roots. Note that for Newton's method, you will need to derive formulas for the derivative calculations.
