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1. Introduction

In this paper we investigate the mapping properties in Lebesgue-type
spaces of certain generalized Radon transforms defined by integration over
curves.

Let X and Y be open subsets of Rd, d ≥ 2, and let Z be a smooth
submanifold of X×Y ⊂ R2d of dimension d+1. Assume that the projections
π1 : Z → X and π2 : Z → Y are submersions at each point of Z. For each
y ∈ Y , let

γy = {x ∈ X : (x, y) ∈ Z} = π1π
−1
2 (y).

In this case, γy are smooth curves in X which vary smoothly with y ∈ Y .
For every y ∈ Y , choose a smooth, non-negative measure σy on γy which
varies smoothly with y in the natural sense. A generalized Radon transform
T (see e.g. [2, 10, 12]) is defined as an operator taking functions on X to
functions on Y via

Tf(y) =
∫

γy

fdσy.

The adjoint of this operator has a similar form:

T ∗g(x) =
∫

γ∗x

gdσ∗x,

where
γ∗x = {y : (x, y) ∈ Z} = π2π

−1
1 ({x}) ⊂ Y

and σ∗x is a nonnegative measure on γ∗x with a smooth density which varies
smoothly with x.

Tao and Wright [13] have formulated and proved a nearly optimal char-
acterization of the local (Lp, Lq) mapping properties of these operators. We
extend their result to the mixed-norm setting and obtain essentially opti-
mal local mixed-norm inequalities for these operators, under one additional
dimensional restriction. Previously this result was obtained for a model op-
erator in [14, 6, 4]. See [1, 4, 6, 13, 14] for various examples and prior work,
and [2] for a partially alternative development of the unmixed norm theory.
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Mixed norms on Y . Throughout the entire discussion, X,Y will denote
sufficiently small neighborhoods of x0, y0 for some fixed point (x0, y0) ∈ Z.
Let Π : Y → R be a submersion such that the fibers Π−1(t) are transverse to
the curves γ∗x. This means that the restriction of Π to γ∗x is a diffeomorphism
for each x ∈ X. Choose coordinates so that Π(y0) = 0. Let λt be Lebesgue
measure on the d− 1-dimensional surface Π−1(t). To a function f : Y 7→ R
we associate the mixed norms

‖f‖LqLr(Y ) = ‖f‖q,r :=

∫
R

[∫
Π−1(t)

|f(s)|rdλt(s)

]q/r

dt

1/q

.

The integral with respect to t is taken over a small neighborhood of the
origin in R; we may assume that this neighborhood is contained in [−1, 1].
Here, and throughout this paper, t is restricted to lie in a one-dimensional
manifold. This is not a natural restriction, but our analysis yields reasonably
satisfactory results only in this special case.

This situation is quite general, and is satisfied for generic choices of the
jets, up to a certain order depending only on d, of X,Y,Π at (x0, y0). Begin
with any manifold Z of dimension d + 1, and a point z0 ∈ Z. In a neigh-
borhood of z0 construct two real vector fields VX , VY which are linearly
independent at z0, and which generate a Lie algebra that spans the tangent
space to Z at z0. Such vector fields exist in any dimension, and hence for
any d there exists N such that any pair (VX , VY ) with generic jet up to
order N at z0 will satisfy this condition. Choose two codimension one man-
ifolds X,Y ⊂ Z in a neighborhood of z0, such that the integral curves of
VX , VY passing through z0 are transverse to X,Y , respectively, at z0. There
are natural submersions πX , πY from Z to X,Y , defined by flowing from
z ∈ Z to X,Y along the integral curves of VX , VY , respectively. The only
requirement on Π : Y → R is then that VX(πY ◦ Π)(z0) 6= 0. Equivalently,
DΠ(z0) is required not to annihilate the push-forward under πY of VX(z0).
This is a single linear condition on DΠ(z0), so any generic map Π satisfies
the hypothesis. In particular, one can consider such mixed norms for each
of the concrete examples discussed in [13].

A fundamental example which motivates our investigation has X = Rd,
Y equal to the manifold of all lines in Rd, and Z = {(x, L) ∈ X×Y : x ∈ L}.
To any line L is associated Π(L), the unique line parallel to L containing
the origin. Π maps Y to the manifold G of all one-dimensional subspaces of
Rd. The x-ray transform maps f : Rd → C to Tf : Y → C, with Tf(L)
equal to the integral of f over L. Y can naturally be parametrized as the
set of all (θ, x) ∈ G×Rd−1 such that x ⊥ θ; L = x+ θ is a line parallel to
θ. Thus one has mixed norms Lq

θL
r
x for Y . Let B be a ball of finite radius in

Rd. A strong form of conjectured bounds for the Kakeya maximal function
would say that T is bounded from Lq(B) to Lq

θL
r
x(G×Rd−1), for all r <∞

and q > d. The inequality holds for d = 2, and is unknown for d ≥ 3. This
example fails to satisfy our hypotheses in two respects for d ≥ 3: Firstly, Y



MIXED NORM ESTIMATES 3

has dimension 2d − 2 > d. This means that the operator formally adjoint
to T involves integration over submanifolds of dimension d − 1 > 1, rather
than over curves. Secondly, G has dimension strictly greater than one. In our
view, this example amply motivates a general investigation of mixed-norm
inequalities for generalized Radon transforms, even though such a general
framework neglects special features of the motivating problem.

We say that T is of strong mixed type (p, q, r) if T maps Lp(X) to
LqLr(Y ) boundedly. We are mainly interested in local estimates. We as-
sume throughout the discussion that T is Lp-improving, which means that
for each p ∈ (1,∞), there exists q > p such that T maps Lp(X) to Lq(Y ).
See [5] and [12] for characterizations of this property.

Our theorem is a characterization of the exponents (p, q, r) for which T
is bounded. Before proceeding, let us record some simple facts about these
exponents.
(i) Because of the transversality hypothesis described above, T is of strong
mixed type (p,∞, p) for all p ∈ [1,∞].
(ii) Since we are working in a bounded region, whenever T is of strong
mixed type (p, q, r), it is also of strong mixed type (p1, q1, r1) whenever
p1 ≥ p, q1 ≤ q, and r1 ≤ r.
(iii) Because of (i) and (ii), T is of strong mixed type (p, q, r) whenever
p ≥ r.
Two-parameter Carnot-Carathéodory Balls. Tao and Wright [13] re-
lated the set of all exponents (p, q) for which the operator T maps Lp(X)
to Lq(Y ) to the geometry of Z. To describe this relation, choose smooth
nowhere-vanishing linearly independent real vector fields V1, V2 on Z whose
integral curves are the fibers of π1, π2 respectively. Equivalently, at each
point z ∈ Z, Vj spans the nullspace of Dπj , for j = 1, 2. The Lp-improving
property is equivalent to V1, V2 satisfying the bracket condition, i.e., V1 and
V2 together with their iterated commutators span the tangent space to Z at
each point in Z [5].

Definition 1. Let z0 ∈ Z and 0 < δ1, δ2 � 1. The two-parameter Carnot-
Carathéodory ball B(z0, δ1, δ2) consists of all the points z ∈ Z such that there
exists an absolutely continuous function ϕ : [0, 1] → Z satisfying
(i) ϕ(0) = z0, ϕ(1) = z
(ii) for almost every t ∈ [0, 1]

ϕ′(t) = a1(t)V1(ϕ(t)) + a2(t)V2(ϕ(t))

with |a1(t)| < δ1, |a2(t)| < δ2.

The metric properties of Carnot-Carathéodory balls were studied exten-
sively in [11]. The discussion there is phrased in terms of the one-parameter
family of balls naturally associated to a family of vector fields satisfying the
bracket condition. These balls depend on a center point, a radius r, and a
family {Wj} of vector fields. They can equivalently be viewed as depending
on a center point and the family {rWj} of vector fields, with the radius
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redefined to be identically one. In these terms, the proofs in [11] go through
more generally, for balls of radius one assigned to families of vector fields
{Uα

j : 1 ≤ j ≤ J} satisfying the bracket condition for each parameter α,
with appropriate uniformity as α varies. In particular, for the vector fields
{δ1V1, δ2V2}, provided that 0 < δ1, δ2 ≤ c0 for sufficiently small c0, the con-
clusions of [11] hold uniformly in δ1, δ2 under a supplementary hypothesis
of weak comparability, which is discussed below. See [13, 2].

It will be convenient in our proof to parametrize the curves γ∗x by t so that
Π(γ∗x(t)) ≡ t. With this parametrization, the measure σx on γ∗x is equivalent
to dt, uniformly in x. We rescale V1 if necessary so that for each z ∈ Z and
sufficiently small s ∈ R

(1) Ππ2(esV1z) = Ππ2(z) + s.

Definition 2. Let 0 < θ ≤ 1, and let A be a positive constant. We say
that 0 < δ1, δ2 � 1 are (θ,A)-weakly comparable, and write δ1 ∼θ,A δ2, if
δ1 ≤ Aδθ

2 and δ2 ≤ Aδθ
1.

The following lemma collects basic facts about the balls B(z, δ1, δ2).

Lemma 1. Let K be a compact subset of Z. Assume that δ1 ∼(θ,A) δ2 are
sufficiently small, and let z ∈ K. Then B = B(z, δ1, δ2) satisfies
(i) |B| ∼ |B(z, 2δ1, 2δ2)|,
(ii) |B| ∼ |π1(B)|δ1 ∼ |π2(B)|δ2
(iii) |Π(π2(B))| ∼ δ1,

(iv) ‖χπ2(B)‖q′,r′ ∼ |B|1−
1
r δ

1
r
− 1

q

1 δ
1
r
−1

2 ,
(v)

|B|

|π1(B)|
1
p ‖χπ2(B)‖q′,r′

∼ |B|
1
r
− 1

p δ
1
p
+ 1

q
− 1

r

1 δ
1− 1

r
2 .

Here 1 ≤ p, q, r ≤ ∞, and q′, r′ are the exponents conjugate to q, r, respec-
tively.

The notation A ∼ C means that the ratio A/C is bounded above and below
by quantities depending on Z, θ, A, and the compact set K, but not on
δ1, δ2. In the absence of weak comparability, the doubling property (i) fails
in general for two-parameter Carnot-Carathéodory balls associated to C∞

vector fields satisfying the bracket condition [2].
For a sketch of the proof of the lemma see §4 below.

Statement of results. Recall that T is said to be of restricted weak type
(p, q) if for all Lebesgue measurable sets E ⊂ X and F ⊂ Y

(2) 〈TχE , χF 〉 . |E|1/p|F |1/q′ ,

where q′ denotes the exponent conjugate to q. In our setup

(3) 〈TχE , χF 〉 ≈ |π−1
1 (E) ∩ π−1

2 (F )|,
where | · | denotes Lebesgue measure on Z. We test the inequality (2) on the
Carnot-Carathéodory balls B(z, δ1, δ2) under the restriction that δ1 ∼(θ,A)
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δ2. Let E = π1(B(z, δ1, δ2)), F = π2(B(z, δ1, δ2)). Using (3), Lemma 1 and
restricting attention to the nontrivial case where q > p, the inequality (2)
reads

(4) |B(z, δ1, δ2)| & δc1
1 δ

c2
2 ,

where

(5) c1 =
p−1

p−1 − q−1
, c2 =

1− q−1

p−1 − q−1
.

Define

Cθ,A(T ) := {(c1, c2) : inf
(
|B(z, δ1, δ2)|

δc1
1 δ

c2
2

)
> 0},

where the infimum is taken over all z ∈ Z and over all pairs δ1, δ2 that
satisfy δ1 ∼(θ,A) δ2. Define

C(T ) := ∩0<θ≤1 ∩A≥1 Cθ,A(T ).

According to (4), (2) can not hold for (p, q) if the corresponding (c1, c2)
does not belong to C(T ). Tao and Wright [13] proved that1 for all (c1, c2) in
the interior of C(T ), (2) holds for the exponents (p, q) defined by (4).

In this note we extend this result to mixed norms. We say that T is of
restricted weak mixed type (p, q, r) if for all E ⊂ X and F ⊂ Y ,

〈TχE , χF 〉 . |E|1/p‖χF ‖q′,r′ .

By interpolation, the strong mixed type estimates can be obtained from
these inequalities, except for exponents corresponding to boundary points
of C(T ).

The two-parameter Carnot-Carathéodory balls defined above also dictate
the allowed exponent triples (p, q, r) for mixed norm inequalities, under cer-
tain additional restrictions on the exponents p, q, r:

Definition 3. Let Pθ,A(T ) be the set of all exponents (p, q, r) satisfying
(i) 1 ≤ p ≤ q ≤ r ≤ ∞,
(ii)

(6) sup
z,δ1,δ2

|B(z, δ1, δ2)|
|π1(B(z, δ1, δ2))|1/p‖χπ2(B(z,δ1,δ2))‖q′,r′

<∞,

where q′, r′ are the conjugates of q, r respectively, and the supremum is taken
over all z ∈ Z and δ1 ∼θ,A δ2.

Using Lemma 1 we can rewrite the second condition in the definition of
Pθ,A(T ) as in (4) with

(7) c1 =
p−1 + q−1 − r−1

p−1 − r−1
, c2 =

1− r−1

p−1 − r−1
.

1Tao and Wright defined the set C(T ) differently. An analysis of the two-parameter
balls along the lines of [11] establishes the equivalence of these two definitions.



6 MICHAEL CHRIST AND M. BURAK ERDOĞAN

Define

P (T ) := ∩0<θ≤1 ∩A≥1 Pθ,A(T ) = {(p, q, r) : r ≥ q ≥ p, (c1, c2) ∈ C(T )}.

We assume always that r > p, since otherwise the desired inequality holds
automatically so long as π1, π2 are submersions, as discussed above.

It is natural to conjecture that if 1 ≤ p ≤ q ≤ r ≤ ∞, then T is of re-
stricted weak mixed type (p, q, r) if and only if (p, q, r) ∈ P (T ); we prove this
conjecture except at the endpoints. In an appendix we explain the presence
of the additional restriction p ≤ q ≤ r.

Theorem 1. Let T be a generalized Radon transform of the class described
above, and let 1 ≤ p ≤ q ≤ r ≤ ∞. If (p, q, r) is in the interior of P (T ), then
T maps Lp(X) to LqLr(Y ) boundedly. Moreover, if (p, q, r) 6∈ P (T ), then T
does not map Lp(X) to LqLr(Y ) boundedly.

2. A brief account of [13].

Given E ⊂ X and , F ⊂ Y , let

(8) α1 =
〈TχE , χF 〉

|E|
, α2 =

〈TχE , χF 〉
|F |

.

(2) follows from an estimate of the form

|Ω| := |π−1
1 (E) ∩ π−1

2 (F )| ≈ 〈TχE , χF 〉 & αc1
1 α

c2
2 ,

where c1, c2 are as in (5). Moreover, a loss of an arbitrarily small power
of α1α2 is of no consequence since (c1, c2) belongs to the interior of C(T ).
Throughout the remainder of the discussion we will denote

(9) Ω := π−1
1 (E) ∩ π−1

2 (F ).

Let ε > 0 be a small exponent to be specified near the end of the proof,
and let Cε be a large constant. All constants in the ensuing discussion depend
on X,Y, Z, c1, c2 and the quantities given as subscripts.

Definition 4. Let S ⊂ [−1, 1] be a measurable set of positive Lebesgue
measure. We say that S is central with width w > 0 if
(i) S ⊂ [−Cεw,Cεw] and
(ii) |I ∩ S| ≤ Cε(|I|/w)ε|S| for all intervals I.

Let Ω be a Lebesgue measurable subset of Z, having positive measure.
We will assume throughout the discussion that πj(Ω) has positive measure,
for both j = 1, 2. Define

αj =
|Ω|

|πj(Ω)|
for j = 1, 2(10)

α := min(α1, α2).(11)

Fix any ρ > 0; ρ will eventually be chosen to be arbitrarily small at the
conclusion of the proof.
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Definition 5. Let Ω ⊂ Z and let α1, α2 be as defined in (10). Let j be
an integer. A j-subsheaf Ω′ of Ω, of width wj, is a subset of Ω of measure
≥ C−1

ρ αρ|Ω| such that for all x ∈ Ω′, the set

{|t| � 1 : etVj (x) ∈ Ω′}

is a central set of width wj and measure ≥ CN,εα
CNε+C/Nαj. Here Vj = V1

of j is odd, and Vj = V2 if j is even.

In [13] it is proved (see Corollary 8.3) that for any ρ ∈ (0, 1] there exists
Cρ < ∞ such that for any measurable set Ω ⊂ Z there exists a nested
sequence of subsets of Ω

Ω0 ⊂ Ω1 ⊂ ... ⊂ Ωd+1 ⊂ Ω

such that: For each j, Ωj is a j-sheaf of Ω with width wj ,

C−1
ρ αρδj ≤ wj ≤ δj ,

where δj is a 2-periodic sequence (that is, δj+2 = δj for all 0 ≤ j ≤ d − 1)
with the properties

C−1
ρ αραj ≤ δj ≤ 1,

and
δ1 ≤ Cρδ

ρ
2 , δ2 ≤ Cρδ

ρ
1 .

In particular, δ1, δ2 are weakly comparable, even though α1, α2 need not be;
this ultimately explains why only balls with weakly comparable radii δ1, δ2
need be taken into account in the hypothesis of our theorem.

Using this construction, it is proved [13] that there exists some ball
B(z, δ1, δ2) such that

(12) |B(z, δ1, δ2) ∩ Ω| ≥ cα%

(
α1

δ1

)b(d+2)/2c (
α2

δ2

)b(d+1)/2c
|B(z, δ1, δ2)|,

where % > 0 can be made arbitrarily small by choosing ρ sufficiently small,
and where c > 0 depends on % but not on Ω, αj , δj . This implies that for
arbitrarily small % > 0

(13) |Ω| & C%α
%δc1

1 δ
c2
2

(
α1

δ1

)b(d+2)/2c (
α2

δ2

)b(d+1)/2c
,

for all (c1, c2) in the interior of C(T ). This finishes the proof in the non
mixed-norm case since2 c1, c2 ≥ d ≥ b(d+ 2)/2c, b(d+ 1)/2c. The roles of X
and Y are interchangeable. Therefore there is the alternative bound

(14) |Ω| & C%α
%δc1

1 δ
c2
2

(
α1

δ1

)b(d+1)/2c (
α2

δ2

)b(d+2)/2c
,

for all (c1, c2) in the interior of C(T ).

2The bounds c1, c2 ≥ d are a simple consequence of an equivalent definition of C(T )
given in [13].
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3. Proof of Theorem 1.

The second conclusion of the theorem is immediate. If (p, q, r) 6∈ P (T ),
then (p, q, r) 6∈ Pθ,A(T ) for some θ,A. Therefore T can not be of mixed type
(p, q, r).

For the first conclusion, it suffices to prove that for all (p, q, r) in the
interior of P (T ) and for all η > 0, β > 0, and F ⊂ Y ,

(15) 〈TχE , χF 〉 ≤ Cp,q,r,ηβ
−η|E|1/p‖χF ‖q′,r′ ,

where E := {x ∈ X : β < T ∗χF (x) ≤ 2β}.
Let Ω := π−1

1 (E) ∩ π−1
2 (F ). Note that

(16) |Ω| ≈ 〈TχE , χF 〉 = 〈χE , T
∗χF 〉 ≈ β|E|.

For each x ∈ E, let F(x) := {t ∈ R : γ∗x(t) ∈ F} ⊂ Π(F ) ⊂ [−1, 1]. Note
that |F(x)| ≈ β.

Let η > 0 be a small constant to be specified at the end of the proof. Fix
a small constant cη > 0. Let I(x) ⊂ [−1, 1] be a dyadic interval of minimal
length so that

(17) |I(x) ∩ F(x)| ≥ cη|I(x)|η|F(x)|;

we choose cη to guarantee that either I = [−1, 0] or I = [0, 1] satisfies (17).
No interval of length < (cη|F(x)|)1/(1−η) can satisfy (17), so there must exist
at least one dyadic interval of minimal length among all those satisfying the
inequality.

This implies that for any dyadic subinterval J ⊂ I(x),

(18) |J ∩ F(x)| ≤ |J |η

|I|η
|I(x) ∩ F(x)|.

Let
Em,k = {x ∈ E : |I(x)| ≈ 2mβ, |I(x) ∩ F(x)| ≈ 2k}.

Note that βη/(1−η) . 2m . β−1 and β1/(1−η) . 2k . β.
By the pigeonhole principle there exists a pair m, k such that Ẽ = Em,k

satisfies

(19) 〈TχE , χF 〉 ≤ Cηβ
−η〈TχẼ , χF 〉.

Choose one such pair, with which we work exclusively henceforth.
Partition R into intervals In, each of length C2mβ where C is a sufficiently

large fixed constant. Set

En = {x ∈ Ẽ : I(x) ∩ In 6= ∅},

Fn = F ∩Π−1(In−1 ∪ In ∪ In+1).

Note that

(20) 〈TχẼ , χF 〉 .
∑

n

〈TχEn , χFn〉.
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Let Ωn := π−1
1 (En) ∩ π−1

2 (Fn). Then

(21) 2k|En| . |Ωn| ≤ β|En|

by Fubini’s theorem. For on one hand, |π−1
1 (x)| ≤ β for all x ∈ E. On the

other hand, 2k ∼ |I(x) ∩ F(x)| and for x ∈ En, I(x) ∩ F(x) ⊂ (In−1 ∪ In ∪
In+1) ∩ F(x) ⊂ π−1

2 (Fn). Using (18) with I = In−1 ∪ In ∪ In+1, for each
x ∈ En and any dyadic interval J , we obtain

(22) |J ∩ F(x)| . |J |η(2mβ)−η2k.

Let αn,i = |Ωn|/|πi(Ωn)|, i = 1, 2. Then

(23) 2k . αn,1 . β,

by (21). Let αn = min(αn,1, αn,2).
The following lemma follows from a simple application of Hölder’s in-

equality; see [4].

Lemma 2. Let F ⊂ Y . For r ≥ q,

‖χF ‖q′r′ ≥ |F |1/r′ |Π(F )|1/q′−1/r′ .

We aim to prove that 〈TχEn , χFn〉 . |En|1/p‖χFn‖q′,r′ . Via the preceding
lemma, this would follow from

(24) |Ωn| ≈ 〈TχEn , χFn〉 & αγ1
n,1α

γ2
n,2|Π(Fn)|γ3 ,

where

(25) γ1 =
p−1

p−1 − r−1
, γ2 =

1− r−1

p−1 − r−1
, γ3 =

q−1 − r−1

p−1 − r−1
.

Whereas the exponent 1
q′ −

1
r′ in Lemma 2 was nonpositive, here all the

exponents γj are nonnegative.
The construction of Tao and Wright [13] produces a nested sequence of

subsets Ωn
0 ⊂ Ωn

1 ⊂ ... ⊂ Ωn
d+1 ⊂ Ωn satisfying: For each j, Ωn

j is a j-sheaf
of Ωn with width wj ,

C−1
ρ αρ

nδj ≤ wj ≤ Cρδj ,

where δj is a 2-periodic sequence with the property

(26) C−1
ρ αρ

nαn,j ≤ δj ≤ 1,

and |Ωn
j | ≥ cρα

ρ
n|Ωn|. Moreover, δ1, δ2 are weakly comparable.

Now, we prove that the construction above guarantees a lower bound for
δ1. Indeed, let j be odd. Using (22), we have

(27) |Ωn
j | ≤ |En| sup

J,x
|J ∩ Fn(x)| ≤ |En|wη

j (2mβ)−η2k,

where the supremum is taken over all intervals J of length wj and all points
x ∈ En. Using (27), (21) and the fact that Ωn

j is a j-sheaf of Ωn, we get

(28) cρα
ρ
n2k|En| . Cρα

ρ
n|Ωn| ≤ |Ωn

j | ≤ |En|wη
j (2mβ)−η2k.
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This implies that for odd j,

(29) δ1 & wj & 2mβC1/η
ρ αρ/η

n & |Π(Fn)|C1/η
ρ αρ/η

n .

Using the fundamental information (14), we obtain

|Ωn| & α%
nα

Cρ/η
n δc1

1 δ
c2
2

(
αn,1

δ1

)b(d+1)/2c (
αn,2

δ2

)b(d+2)/2c
,

for any (c1, c2) belonging to the interior of C(T ). Note that for d ≥ 2 and for
such (c1, c2), we have 0 ≤ γ3 < 1 ≤ c1 − b(d + 1)/2c and c2 > b(d + 2)/2c.
Using this, (26) and (29), we obtain

|Ωn| & α%
nα

Cρ/η
n δγ3

1 α
c1−γ3
n,1 αc2

n,2 & α%
nα

Cρ/η
n |Π(Fn)|γ3αc1−γ3

n,1 αc2
n,2,

for all (c1, c2) in the interior of C(T ).
Given exponents (p, q, r) ∈ P (T ), define γ1, γ2, γ3 by (25). Choose ρ > 0,

depending on η, and (c1, c2) in the interior of C(T ), so that

Cρ

η
+ c1 − γ3 + % ≤ γ1,

Cρ

η
+ c2 + % ≤ γ2.

Therefore, since γ3 ≥ 0 (which is a consequence of the assumptions that
r > p and r ≥ q),

|Ωn| & αγ1
n,1α

γ2
n,2|Π(Fn)|γ3 ,

and hence
〈TχEn , χFn〉 . |En|1/p‖χFn‖q′,r′ .

Using this and then Hölder’s inequality in (20) (here we use the assumption
q ≥ p), we have

〈TχE , χF 〉 . β−η
∑

n

〈TχEn , χFn〉

. β−η
∑

n

|En|1/p‖χFn‖q′,r′

. β−η

[∑
n

|En|

]1/p [∑
n

‖χFn‖
q′

q′,r′

]1/q′

≤ β−η|E|1/p‖χF ‖q′,r′ .

In the last inequality we have used the bounded overlap property of the
collections {En} and {Fn}. Since η > 0 can be chosen to be arbitrarily
small, this finishes the proof of Theorem 1.

4. Proof of Lemma 1

We refer the reader to [2] for the proof of (i) and (ii).
Let B be the ball B(z0, δ1, δ2). Note that {esV1z0 : |s| < δ1} ⊂ B and

by (1), |Ππ2({esV1z0 : |s| < δ1})| ≈ δ1. Now, we prove that |Ππ2(B)| . δ1.
Let z ∈ B and let ϕ be a curve connecting z0 to z as in Definition 1. Let
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ψ = Π ◦ π2 ◦ ϕ. Since V2 is contained in the kernel of Dπ2, |a1(t)| < δ1 and
|V1| . 1, we have

|ψ′(t)| . δ1.

Therefore |Ππ2(B)| . δ1. This proves (iii).
We have actually shown that the 1-dimensional measure ofB(z0, 2δ1, 2δ2)∩

π−1
1 (x) is ≈ δ1 for every x ∈ π1(B). This also proves (ii) for j = 1. In fact it

implies that if A is a subset of a k-dimensional smooth submanifold of X,
then δ1 times the k-dimensional measure of A is comparable to the k + 1-
dimensional measure of π−1

1 (A)∩B. The corresponding statement holds for
j = 2, as well.

To prove (iv), define f(t, δ1, δ2) = |π−1
2 Π−1(t) ∩ B(z0, δ1, δ2)|, where | · |

signifies the d-dimensional measure of a subset of Z. To simplify notation we
suppose that Π(π2(z0)) = 0; this can be achieved by a change of coordinates.
Note that if A ⊂ B(z0, δ1, δ2) then for s < δ1, esV1A ⊂ B(z0, 2δ1, 2δ2).
Choose t0 ∈ [−δ1, δ1] so that f(t0, δ1, δ2) = max|t|≤δ1 f(t, δ1, δ2). Then

|B(z0, 2δ1, 2δ2)| &
∫
|s|≤δ1

|esV1f(t0)|ds & δ1f(t0).

Now |B(z0, δ1, δ2)| & |B(z0, 2δ1, 2δ2)|; the proof given by Nagel, Stein, and
Wainger [11] of the volume doubling property carries over to two-parameter
balls with (θ,A)–weakly comparable radii, with a bound depending on θ
and on A but not on δ1, δ2, z0. We conclude that f(t) . |B(z0, δ1, δ2)|/δ1
whenever |t| ≤ δ1.

Similar reasoning shows that if |t|, |t′| ≤ δ1 then f(t′, δ1, δ2) ≤ Cf(t, 3δ1, 3δ2).
Since Π(π2(B(z0, δ1, δ2)) ⊂ [−δ1, δ1], there exists some t′ ∈ [−δ1, δ1] for
which f(t′, δ1, δ2) & |B(z0, δ1, δ2)|/δ1. By combining these two observations,
we conclude the reverse inequality f(t, 3δ1, 3δ2) & |B(z0, δ1, δ2)|/δ1 whenever
|t| ≤ δ1.

The lower bound for ‖χπ2(B)‖q′,r′ in (iv) follows from this together with
the observation that f(t) ≈ |π2(f(t))|δ2. The upper bound follows in the
same way from the upper bound f(t) . |B(z0, δ1, δ2)|/δ1.

Finally, conclusion (v) follows from (ii) and (iv). �

5. On the hypothesis p ≤ q ≤ r

One reason why the restriction r ≥ q ≥ p in Theorem 1 is natural is as
follows.

Proposition 3. Suppose that |B(z, δ1, δ2)| is comparable to |B(z′, δ1, δ2)|,
uniformly for all z, z′ and all weakly comparable δ1, δ2. Then all valid mixed
norm inequalities for T are implied by the conjectured inequalities. That is:
(i) If T is of restricted weak mixed type (p, q, r) with r > p > q, then
(p, p, r) ∈ P (T ).
(ii) If T is of restricted weak mixed type (p, q, r) with q > r > p, then (p, q, r)
is an interpolant between (1,∞, 1) and some (p1, q1, r1) ∈ P (T ).
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In case (i), the restricted weak mixed type bound for (p, p, r) implies
that for (p, q, r) by Hölder’s inequality, since we are working in a bounded
region and q < p. In case (ii), the conclusion is that (p−1, q−1, r−1) belongs
to the line segment with endpoints (1, 0, 1) and (p−1

1 , q−1
1 , r−1

1 ). Since any
generalized Radon transform T is of strong type (1,∞, 1), the restricted
weak mixed type (p, q, r) inequality follows from the (p1, q1, r1) inequality
by interpolation.

Proof. (i) If (p, p, r) 6∈ P (T ) then there exist θ,A and a sequence of balls
Bn(zn, δn,1, δn,2) with δn,1 ∼(θ,A) δn,2 satisfying

|Bn|
1
r
− 1

p δ
2
p
− 1

r

n,1 δ
1− 1

r
n,2 →∞,

as n → ∞. Choose Nn ≈ δ−1
n,1 balls of size comparable to Bn with disjoint

projections under Π ◦ π2; this is possible by Lemma 1. Let Un be the union
of these balls. Note that |π1(Un)| . Nn|π1(Bn)|.

|Un|
|π1(Un)|1/p‖χπ2(Un)‖q′,r′

&
Nn|Bn|[

Nn
|Bn|
δn,1

]1/p [
|Bn|

δn,1δn,2

]1/r′

δ
1/q′

n,1 N
1/q′
n

≈
(
|Bn|

1
r
− 1

p δ
2
p
− 1

r

n,1 δ
1− 1

r
n,2

)
(Nnδn,1)

1/q−1/p

≈ |Bn|
1
r
− 1

p δ
2
p
− 1

r

n,1 δ
1− 1

r
n,2 →∞,

as n→∞. Thus, T can not be of restricted weak mixed type (p, q, r).
(ii) For s ∈ [0, 1] define p1, q1, r1 by

1
p

= 1− s+
s

p1
,

1
q

=
s

q1
,

1
r

= 1− s+
s

r1
.

A bit of algebra shows that r1 ≥ q1 ≥ p1 if and only if 1
q + 1

p′ ≤ s ≤ 1
q + 1

r′ ,
and moreover that 0 < 1

q + 1
p′ ≤

1
q + 1

r′ < 1 under our assumption that
q > r > p. Thus it is possible to choose s ∈ (0, 1) so that r1 ≥ q1 ≥ p1. Fix
such a parameter s.

If (p1, q1, r1) ∈ P (T ) then we have the conclusion of case (ii). Other-
wise there exist θ,A and a sequence of balls Bn = Bn(zn, δn,1, δn,2) with
δn,1 ∼(θ,A) δn,2 such that

|Bn|
1
r1
− 1

p1 δ
1

p1
+ 1

q1
− 1

r1
n,1 δ

1− 1
r1

n,2 →∞.

Note that for these balls
|Bn|

|π1(Bn)|1/p‖χπ2(Bn)‖q′,r′
≈ |Bn|

1
r
− 1

p δ
1
p
+ 1

q
− 1

r

n,1 δ
1− 1

r
n,2

=
(
|Bn|

1
r1
− 1

p1 δ
1

p1
+ 1

q1
− 1

r1
n,1 δ

1− 1
r1

n,2

)s

→∞.

Thus T can not be of restricted weak mixed type (p, q, r). �
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Case (ii) is valid for all operators T , without the hypothesis that balls of
equal bi-radii have uniformly comparable measures.
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