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Setup:

• X, X? are small open sets in Rd, Rd?
.

• Tf(x) =
∫
Mx

f dσx where Mx is a submanifold

of X?, and σx is a measure on Mx. Both vary

C∞ as x varies. Not a foliation.

• Also assume that formal adjoint of T is an

operator of same general type (a transversality

condition).

Problem: Relate mapping properties of T , in

standard function spaces, to geometry of {Mx}.

Standard function spaces: Sobolev, Lp, and

mixed-norm spaces Lq(Lr). This talk is about

Lp only.
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This is a quite broad class of operators. Only

special cases have been analyzed; and in this

talk I’ll argue that even the most basic cases

haven’t been fully analyzed.

We all know examples:

• Radon transform.

• x-ray transform.

• Convolution with surface measure on a sub-

manifold of Rd, e.g. paraboloid or sphere, or

curve

(t, t2, t3, · · · , td).

• Kakeya/Besicovitch/Nikodym maximal func-

tions.
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What does “underlying geometry” mean?

Alternative description: Incidence manifold

I ⊂ X × X?. Natural projections π, π? from

I to X, X?. Hypothesis: Both projections are

submersions. I = {(x, y) : y ∈ Mx}

Consider V,V? = all vector fields tangent to

the level sets of π?, π respectively. V,V? are

separately integrable, but V + V? need not be.

Under the submersion hypothesis, both T, T ∗

preserve Lp for all 1 ≤ p ≤ ∞. T is said to

be Lp-improving if there exists q > p such that

T : Lp → Lq. (This property is independent of

p ∈ (1,∞).)

The natural symmetry group here is

Diff(Rd)×Diff(Rd?
).
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Nagel-Stein-Wainger-Christ proved:

T is Lp-improving ⇔ V +V ? satisfies the bracket

condition.

(Part of their analysis is a sort of real analogue

of the theory of Segre sets.) But the method

produces a poor bound for q in terms of p in

almost all cases. Obtaining the optimal range

of exponents is a far subtler problem.
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Two examples particularly relevant to this talk:

• Convolution with surface measure on paraboloid

in Rd:

Tf(x) =
∫
Rd−1

f(x′ − t, xd − |t|2) dt.

Maps L(d+1)/d → Ld+1.

• Convolution with arc measure on a curve:

Tf(x) =
∫
R1

f(x1−t, x2−t2, x3−t3, · · · , xd−td) dt.

Maps Lp → Lq for

p =
d + 1

2
and q =

d + 1

2
·

d

d− 1
.

[Oberlin d = 3,4]; [Christ (1997) d > 4]

For the first example there’s a proof which relies on

the basic L2 7→ H(d−1)/2 estimate for Fourier integral

operators. For the second, the optimal gain within the

scale of Sobolev spaces is insufficient and no proof along

“Fourier/FIO” lines is known for d ≥ 4.
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Inequality

‖Tf‖q . ‖f‖p

is essentially equivalent (by real interpolation)

to

T (E, E?) . |E|1/p|E?|1/q′ ∀ sets E, E?

where

T (E, E?) =
∫
E

T (χE?) = 〈χE, T (χE?)〉.

Another way to put it:

|(E × E?) ∩ I| . |E|1/p|E?|1/q′.

|(E × E?) ∩ I| is the (continuum) number of

incidences between points in E and points in

E?.
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This is really a problem in (continuum) com-

binatorics.

Recall Szemerédi-Trotter theorem: N lines and

N points in R2 have at most CN4/3 incidences.

Here X = set of all points, X? = set of all

lines, and I = set of all pairs (p, `) such that

p ∈ `.

The S-T Theorem says

|(P × L) ∩ I| . |P |2/3|L|2/3.

The combinatorial point of view rose to prominence in

harmonic analysis through the work first of Bourgain,

then of Wolff, and has since been developed further in

fundamental works of Schlag, Katz, Tao, and others.
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Quasi-extremals

Consider the operator T of convolution with
surface measure on paraboloid in Rd. This is
one of the most fundamental examples in the
subject. It enjoys a wealth of symmetry; via
the action of Diff(Rd) × Diff(Rd) it is equiva-
lent to a certain left-invariant operator on the
Heisenberg group of dimension 2d− 1.

The basic inequality is

T (E, E?) ≤ C0|E|d/(d+1)|E?|d/(d+1).

Definition: A pair of sets (E, E?) is an ε-quasi-
extremal if

T (E, E?) ≥ εC0|E|d/(d+1)|E?|d/(d+1).

To describe all ε-quasi-extremals is to refine
the Lp 7→ Lq inequality. My hope is that an
argument sufficiently fine to prove this must be
robust, and hence potentially useful for more
general cases.
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Definition. For any

point z̄ = (x̄, x̄?) ∈ I,
ρ > 0,

orthonormal basis e = {e1, · · · , ed−1} for Rd−1,

and any r, r? ∈ (R+)d−1 satisfying

rjr
?
j = ρ ∀1 ≤ j ≤ d− 1

B(z̄, e, r, r?) denotes the set of all z = (x, x?) ∈
I satisfying all of

|〈x′ − x̄′, ej〉| < rj ∀ j,

|〈x′? − x̄′?, ej〉| < r?
j ∀ j,

|xd − x̄d − |x′ − x̄′|2| < ρ,

|(x?)d − (x̄?)d + |x′? − x̄′?|2| < ρ.

(B, B?) = (πB, π?B)

• These sets are tubular neighborhoods in Rd of graphs

of an explicit quadratic polynomial over convex subsets

of Rd−1.

• They are paired up in a specific way.
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Write T (E, E?) = 〈T (χE?), χE〉.

Theorem. Let d ≥ 2. There exist C, A < ∞
such that: ∀ ε > 0 and ∀ ε-quasi-extremal pairs

E, E? ⊂ Rd, there exists a ball B ⊂ I, as defined

above, such that the associated pair (B, B?) =

(π(B), π?(B)) satisfies

T (E ∩B, E? ∩B?) ≥ C−1εAT (B, B?)

and

|B| ≤ C|E| and |B?| ≤ C|E?|.

It follows that |E ∩B| ≥ C−1εA|E|
and |E? ∩B?| ≥ C−1εA|E?|.
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The existence of such a high-dimensional fam-

ily of extremals is due to two effects acting

in concert.

• High degree of symmetry.

• Degeneracy. There exist pairs of manifolds

(Y, Y ?) of dimensions (k, d− 1− k) such that

Y × Y ? ⊂ I.

(Think of the Heisenberg group with the usual

vector fields Xj, Yj (1 ≤ j ≤ d − 1) and cen-

tral vector field T . Then for any set S ⊂
{1,2, · · · , d − 1}, [Xj, Yk] = 0 whenever j ∈ S

and k /∈ S.)

The natural generalization is a contact structure of di-

mension 2d− 1, equipped with two transverse foliations

by (d − 1)-dimensional leaves. Then such pairs (Y, Y ?)

will typically not exist, and the family of quasi-extremals

should be much smaller.
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Consider the general situation I ⊂ X × X?,

satisfying the bracket/Lp-improving condition.

Define

Λ(e, e?) = sup
|E|=e,|E?|=e?

T (E, E?).

We say subalgebraic almost-extremals exist if

∀ δ > 0, ∀ e, e? ∈ (0,1], there exist sets E, E? of

measures e, e? such that

T (E, E?) ≥ cδe
δeδ

?Λ(e, e?)

and

E, E? are subalgebraic sets of degrees ≤ N ,

where N is permitted to depend on δ but not

on e, e?. (Likewise uniformly bounded complex-

ity.)

The qualifier “almost” refers here to the sac-

rificed factor eδeδ
?.
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Two conjectures.

• Subalgebraic almost-extremals exist, for all

T satisfying the Lp-improving/bracket hypoth-

esis. described above.

• Any ε-quasi-extremal pair has a large subal-

gebraic subpair.

This means: If T (E, E?) ≥ εΛ(|E|, |E?|) then

there exist subalgebraic sets E, E?, of uniformly

bounded degrees and complexities, whose mea-

sures are comparable to the measures of E, E?

respectively, such that

T (E ∩ E, E? ∩ E?) ≥ cεA(|E| · |E?|)δT (E, E?).

Today’s theorem is rather narrow, but illus-

trates the quite general conjectures. The ar-

gument I’ll outline does succeed in isolating all

quasi-extremals.
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Young’s convolution inequality∣∣∣∣ ∫∫
R2

f(x)g(y)h(x− y) dx dy

∣∣∣∣ ≤ C‖f‖p‖g‖q‖h‖r,

where p−1 + q−1 + r−1 = 2, illustrates the dis-

tinction between the above two conjectures.

Let δ > 0 be small. Taking f, g, h to be inter-

vals, centered at the origin, of some common

length δ produces subalgebraic quasi-extremals.

But taking each function to be a δ-neighborhood

of {n ∈ Z : |n| ≤ N} for arbitrarily large N ,

then rescaling so that the total measure is δ,

produces equally optimal quasi-extremals, uni-

formly in N, δ so long as δ ≤ 1
4.

The complexity of these sets tends to infinity

with N .
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The point here is not the precise formulation

of the conjecture, but rather its general spirit.

Any statement roughly along these lines would

be welcome.

For other problems like oscillatory integrals,

one would like quasi-extremals to correspond

to appropriate subalgebraic sets in phase space;

but one should begin with simpler operators in-

volving nonnegative quantities, as above.
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Christ [1997] introduced the following essen-

tially combinatorial method: Define the

average numbers of incidences

α = T (E, E?)/|E| α? = T (E, E?)/|E?|.

Given a lower bound on the number of inci-

dences T (E, E?), seek lower bounds on |E|, |E?|.

There exists x0 ∈ E with at least an average

number of incidences; thus σ(Mx0 ∩ E?) ≥ α.

Thus we’ve located a family of points in E?,

of some dimension k, with a lower bound on

the k-dimensional measure.

Now iterate. If we’re lucky, for most points in

x? ∈ Mx0 ∩ E?, the same reasoning produces a

family of points in E ∩M?
x?

. This gives rise to

a subset of E of formal dimension k + k?.

Next iteration produces a subset of E? of for-

mal dimension k + k? + k, and so on.
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This construction produces a set Ω ⊂ RD hav-

ing certain structure and in particular, a lower

bound on |Ω| in terms of α, α?, and a map

Φ : Ω → E, defined in terms of I. Here D de-

pends on the number of iterations and on the

dimensions k, k? of the manifolds Mx, M?
y .

Example:

φ(t1, t2, · · · , td) =

(t1− t2 + t3− · · · , t21− t22 + t23− · · · , · · · , td1− td2 + td3− · · · )

arises for convolution with arc measure on (t, t2, · · · , td).

In the equidimensional case D = d,

|E| ≥ |Φ(Ω)| ≥ c
∫
Ω
|J |

where J is the Jacobian determinant of Φ.

The geometry is now encoded by the degree

to which J vanishes. The bracket condition

means that it vanishes to finite order, so we’re

essentially in the realm of algebraic degener-

acy.

18



Alas

• Argument sketched on preceding slide doesn’t

give the correct bound for (t, t2, t3, · · · ).
• For most combinations of dimensions (ambi-

ent and submanifolds), this procedure doesn’t

lead to an equidimensional mapping.

Christ [1997] completed the analysis for that

case by iterating 2d− 2 times, rather than the

natural number d, and implementing an ad hoc

argument relying on explicit properties of Van-

dermonde determinants.

A very simple but suggestive fact: Given a

polynomial J, and given δ > 0, consider the

minimum value of
∫
S |J |, taken over all sets S

of measure δ.

For this subproblem,

optimal sets S are obviously subalgebraic.
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Tao and Wright [2003] turned this method into

a general theory for the case when Mx and

M?
x? are all one-dimensional, by (i) reinterpret-

ing the construction, and (ii) introducing a key

conceptual idea.

Their theorem essentially says that all quasi-

extremals have large intersection with two- pa-

rameter Carnot-Caratheodory balls B(z, δ, δ?)

in I.

(α, α?) can be interpreted as the bi-radius (δ, δ?)

of such a ball.

The process of constructing successively higher-

dimensional subsets of E, E? is interpreted as

flowing alternately along vector fields V, V ? in

I tangent to the foliations defined by π, π?.

However, this is no ordinary flow . . . It jumps .
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What is the analogue of Carnot-Caratheodory

balls, when the flow is with respect to a multi-

dimensional time?

For 1D time, these balls are the maximal region

which can be visited by a traveler who has a

given amount of time.

In the general case, they seem to correspond

roughly to a minimal region visited by a reluc-

tant traveler who would rather stay home, but

who must expend a fixed amount of fuel and

has only the option of choosing the slowest,

most fuel-inefficient roads.

Today’s theorem demonstrates that such “balls”

(which are merely conjectural in the general

geometric setup) are not uniquely specified by

their center and the “bi-time” (α, α?) — in

contrast to the 1D case.
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Proof of Theorem on Quasi-Extremals

Step 1 Given E, E?, there exist x0 ∈ Rd−1 and

Ω1 ⊂ Rd−1, Ω2 ⊂ Rd−1 × Rd−1

such that

• |Ω1| ∼ α,

•Ω2 is fibered over Ω1

(which means: (s, t) ∈ Ω2 ⇒ s ∈ Ω1),

•All fibers have measures ∼ α?.

•Φ(Ω2) ⊂ E

where Φ(s, t) = x0 − (s, |s|2) + (t, |t|2).
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Step 2 — Inflation

Consider • Ω† = {(s, t1, · · · , td−1) : (s, tj) ∈ Ω2 ∀j}.
• Ψ(s, t1, · · · , td−1) =

(
Φ(s, t1),Φ(s, t2), · · · ,Φ(s, td−1)

)
.

Then Ψ(Ω†) ⊂ Ed−1.

This is an equidimensional situation, so

|E|d−1 &
∫
Ω†

|J |

where J is the Jacobian determinant of Ψ;

|J | = |det(t1 − s, t2 − s, · · · , td−1 − s)|.

It’s easy to show that∫
Ω†

|J | & ααd
?,

which directly gives the optimal power-law bound

|T (E, E?)| . |E|d/d+1|E?|d/d+1.

Moreover, one can show that either

(i) For most s, the fiber over s in Ω2 intersects some

(balanced) convex set (centered at s) of measure ≤
Cε−Cα?, or

(ii) The power-law bound can be so significantly im-

proved that (E, E?) is not an ε-quasi-extremal pair.
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Step 3 Any subset of Euclidean space can be

well approximated by a convex set (!).

Lemma For any dimension n ≥ 1 and any

small η > 0, there exist δ, c > 0 with the fol-

lowing property.

For any set S ⊂ Rn satisfying 0 < |S| < ∞,

there exists a bounded convex set C ⊂ Rn so

that

|C| ≥ cη|S|

and for any convex set C′ ⊂ C,

|C′| ≤ δ|C| ⇒ |S ∩ (C \ C′)| ≥ c(|S|/|C|)η|S|.

• Heuristically, S∩C is a generic, diffuse subset

of C.
• The factor (|S|/|C|)η represents a slight loss

when |C| � |S|.
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A key part of the idea of Tao and Wright was

to bring in a variant of this lemma in dimension

one.

Erdogan-C sharpened the 1D case as above.

25



Step 4

By interchanging the roles of E, E? and feeding

this information back in, we conclude that:

For any ε-quasi-extremal pair, the parameter

set Ω1 can be taken to be a generic subset of

some convex set C, in the sense of Step 3,

satisfying

|C| . ε−Cα.
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Step 5 — Slicing

For each affine line L ⊂ Rd−1, consider ΦL(s, t) =

Φ(s, t) only for s ∈ L ∩Ω1, and (s, t) ∈ Ω2.

Trivially the range of ΦL is contained in E.

The domain now has dimension d, so this is an

equidimensional situation. This gives a lower

bound for |E|, by integrating the Jacobian of

ΦL.
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Averaging this bound over all L (taking C into

account) gives

|E| ≥ |Φ(Ω2)| & |det(A)|−1
∫
Ω2

|A(t− s)| ds dt

where A is a symmetric linear transformation

chosen so that C is comparable to the ellipsoid

A(unit ball).

The variable s is already constrained to a con-

vex set; this integral is large unless t − s is

constrained to a corresponding (dual) convex

set.

Working out the consequences gives the theo-

rem.
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