
THE RAY-SINGER TORSION

JOHN LOTT

Abstract. In 1971, Ray and Singer proposed an analytic equivalent of a classical topo-
logical invariant, the R-torsion. This Ray-Singer torsion has had many ramifications in
mathematics and physics. I will describe the background, the Ray-Singer papers and some
subsequent work.
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1. Introduction

As a bridge between two worlds, it’s always interesting to find analytic equivalents
for topological invariants. An outstanding example is the Hodge theorem, relating the
real cohomology of a smooth compact manifold to the harmonic differential forms, after
equipping the manifold with a Riemannian metric.
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In a 1971 paper [28], Daniel Ray and Isadore Singer of MIT proposed an analytic equiv-
alent of a classical topological invariant called the R-torsion. In so doing, they introduced
a remarkable notion of a regularized determinant of a Laplace-type operator. The Ray-
Singer work turned out to have contact with many areas of mathematics and physics, in
ways that would have been hard for Ray and Singer to predict. In a second paper in 1973,
they extended their methods to the holomorphic setting [29].

After the Ray-Singer papers appeared, it was probably not clear how the Ray-Singer
torsion fit into the wider framework of geometry and topology. This was clarified in later
decades by looking at families of manifolds, rather than individual manifolds.

In Section 2, I’ll review some of the work that lead up to the Ray-Singer papers. Section 3
describes the content of the Ray-Singer papers. Section 4 has selected further developments.
To give a coherent narrative, I haven’t tried to be comprehensive. To restrict the length
of this article, most of the work described is from the 20th century.

There are excellent expositions of the Ray-Singer work, such as Werner Müller’s article
in the Notices [24]. I thank Jeff Cheeger and Dan Freed for their comments on an earlier
version of this article.

2. Topological precedents

There were both topological and analytical results that inspired the Ray-Singer work.
Although I was a thesis student of Singer, I never asked him about the motivations for the
Ray-Singer papers, so some of what follows are my surmises.

Section 2.1 has a description of lens spaces. Section 2.2 has the definition of R-torsion
and Section 2.3 gives some of its properties. Some applications of the R-torsion are given
in Section 2.4, namely the homeomorphism classification of lens spaces and the disproof
of the Hauptvermutung for simplicial complexes. Section 2.5 mentions the role of Arnold
Shapiro.

A reference for the material in this section is [19].

2.1. Lens spaces. A basic problem in topology is to understand the homeomorphism
types of manifolds. This is already challenging in three dimensions. There’s a class of three
dimensional manifolds called lens spaces which, although easy to define, have interesting
topological properties.

Let p > q be relatively prime positive integers. Writing S3 = {(z1, z2) ∈ C2 : |z1|2 +
|z2|2 = 1}, there’s a free Zp-action on S3 whose generator sends (z1, z2) to

(
e

2πi
p z1, e

2πiq
p z2

)
.

The lens space L(p, q) is the quotient of S3 by this Zp-action. The word “lens” comes from
a way of picturing a fundamental domain for the action [33, Example 1.4.6]. There are
analogous higher dimensional lens spaces in which Zp acts on an odd dimensional sphere.
When is L(p, q) homeomorphic to L(p′, q′)? Considering fundamental groups, p must be

equal to p′. One gets some further information from homotopy theory. However, it turns
out that L(7, 1) is homotopy equivalent to L(7, 2), so standard algebraic topology won’t
help to decide whether they are homeomorphic.
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2.2. R-torsion. The R-torsion was developed by Kurt Reidemeister [30], Wolfgang Franz
[14] and Georges de Rham [31] to understand when lens spaces are combinatorially equiv-
alent. Franz did his Habilitation degree under the supervision of Reidemeister.1 Reide-
meister’s work was about three dimensional manifolds and had the aim of classifying the
lens spaces up to combinatorial equivalence. De Rham and Franz extended Reidemeister’s
work to higher dimension. Franz dealt with arbitrary finite simplicial complexes.

To establish some notation, let V be a finite dimensional real vector space. If v =
(v1, . . . vn) and w = (w1, . . . wn) are two bases of V then we write [w/v] for | detT |, where
T is the change-of-basis matrix from v to w, i.e. wi =

∑
j Tijvj.

Now let C be a finite chain complex

(2.1) CN
∂−→ CN−1

∂−→ . . . C1
∂−→ C0

of finite dimensional real vector spaces. As usual, we write Zq ⊂ Cq and Bq ⊂ Cq for the
kernel and image of ∂, respectively, and put Hq = Zq/Bq, so that we have short exact
sequences

(2.2) 0 −→ Zq −→ Cq
∂−→ Bq−1 −→ 0

and

(2.3) 0 −→ Bq −→ Zq −→ Hq −→ 0.

Suppose that cq is a preferred basis for Cq and hq is a preferred basis for Hq. Choose an
auxiliary basis bq for Bq.

Choose elements b̃q−1 ⊂ Cq so that ∂b̃q−1 = bq−1 and choose elements h̃q ⊂ Zq that

project to hq. Then (bq, h̃q, b̃q−1) is a basis for Cq. Since [(bq, h̃q, b̃q−1)/cq] only depends
on bq, hq, bq−1 and cq, we write it as [(bq,hq,bq−1)/cq].

Definition 2.4. The torsion of C is the positive real number τ(C) given by

(2.5) log τ(C) =
N∑
q=0

(−1)q log[(bq,hq,bq−1)/cq].

It’s not hard to see that τ(C) is independent of the choices of the bq bases. And it
just depends on the cq and hq bases through their induced volume forms on Cq and Hq,
respectively.

If K is a connected finite simplicial complex then its real chain groups have preferred
bases and we can talk about the torsion of the chain complex, provided that we are given
a preferred basis of the real homology groups. In order to compare two different simplicial
complexes using numerical invariants, it turns out to be useful to have acyclic complexes,
i.e. ones with vanishing homology, so that no choice of basis is needed. This can often

1Reidemeister was removed from his professorship at the University of Königsberg in 1933, as retaliation
for his anti-Nazi statements. He learned of his dismissal by reading about it in the local newspaper [1]. He
got a position at the University of Marburg in 1934, where he remained until 1955. During the war Franz
worked in the Wehrmacht’s codebreaking group. He held a position at the Goethe University Frankfurt
between 1946 and 1974.
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be achieved by local systems on K. For us, a local system can be thought of as a flat
Euclidean vector bundle on K or, more algebraically, as arising from a homomorphism

ρ : π1(K, k0) → O(n). Letting K̃ denote the universal cover of K, the twisted chain groups

are given by Cq(K, ρ) = Cq(K̃)⊗Rπ1(K,k0) Rn, where an element
∑

g agg of Rπ1(K, k0) acts

on v ∈ Rn by (
∑

g agg) · v =
∑

g ag ρ(g)v.

Choosing a fundamental domain of K in K̃, the natural basis of Cq(K) and the standard
basis of Rn combine to give a preferred basis of Cq(K, ρ).

Definition 2.6. Given the finite simplicial complex K and a representation ρ so that
C(K, ρ) has vanishing homology, the R-torsion is given by τK(ρ) = τ(C(K, ρ)).

One can show that τK(ρ) is independent of the choice of fundamental domain in K̃.

2.3. Properties of the R-torsion. The main point of the construction of τK(ρ) is that it
is invariant under subdivison. In particular, if two triangulated manifolds can be subdivided
to become combinatorially equivalent then they have the same values for the R-torsion. It
follows that theR-torsion is a PL (piecewise linear) invariant of PL manifolds. In particular,
it is a diffeomorphism invariant of smooth manifolds. (Some of the early literature doesn’t
distinguish clearly between PL homeomorphism and topological homeomorphism.)

Now τK is not a homotopy invariant ofK. However, it is invariant under a more restricted
notion of homotopy equivalence, called simple homotopy equivalence [12].

As to whether two homeomorphic complexes have the same torsion, this will be true if the
complexes are necessarily simple homotopy equivalent. Such was proven for PL manifolds
by Kirby and Siebenmann [16] and more generally for CW complexes by Chapman [9].
Chapman’s proof involved a foray into “manifolds” locally modelled on Hilbert cubes.

In some ways, the R-torsion is a cousin of the Euler characteristic. For example, the Euler
characteristic of an odd dimensional closed (= compact boundaryless) manifold vanishes,
while the R-torsion of an even dimensional (oriented) closed manifold vanishes. There
is a product formula: If K and K ′ are finite complexes, and ρ : π1(K

′, k′
0) → O(n) is a

homomorphism, let ρ̂ be the composite homomorphism π1(K×K ′, (k0, k
′
0)) → π1(K

′, k′
0) →

O(n). Assuming that C(K ′, ρ) is acyclic, one finds that

(2.7) TK×K′(ρ̂) = χ(K)TK′(ρ).

The relation between R-torsion and Euler characteristic will be clarified in Section 5.4.

2.4. Applications of the R-torsion. Returning to lens spaces, we can triangulate L(7, 1)
and L(7, 2). Running through the homomorphisms from Z7 to O(2), one finds that the pos-
sible numerical values of the R-torsion differ for L(7, 1) and L(7, 2). Hence they cannot be
homeomorphic. (Without using [9] or [16], the R-torsion computations imply that L(7, 1)
and L(7, 2) are not PL homeomorphic, and in three dimensions topological manifolds have
unique PL structures [21].)

More generally, one sees that L(p, q) is homeomorphic to L(p, q′) if q′ ≡ ±q mod p
(coming from the involution z2 → z2) or ±qq′ ≡ 1 mod p (coming from the additional
involution (z1, z2) → (z2, z1)). The R-torsion shows that this is the only way that L(p, q)
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can be homeomorphic to L(p, q′). In contrast, L(p, q) is homotopy equivalent to L(p, q′) if
and only if ±qq′ is a quadratic residue mod p.

There are similar statements for higher dimensional lens spaces. More generally, consider
spherical space forms, meaning quotientsM = Sr/Γ where Γ is a finite subgroup of O(r+1)
that acts freely on Sr. De Rham showed that spherical space forms of a given dimension
can be classified up to isometry by their fundamental groups and R-torsions [32]. As a
consequence, two spherical space forms are homeomorphic if and only if they are isometric.

A classical application of the R-torsion was to disprove the Hauptvermutung (or “main
conjecture”) for simplical complexes. The motivation went back to the beginnings of ho-
mology theory. The homology groups of a finite simplicial complex were first defined
combinatorially using simplicial homology. While simplicial homology had many nice fea-
tures, it was not at all clear whether homeomorphic simplicial complexes had isomorphic
simplicial homology. One approach to this was to try to prove the Hauptvermutung, say-
ing that homeomorphic simplicial complexes have combinatorially equivalent subdivisions.
Using the subdivision invariance of simplicial homology, one would then conclude that
simplicial homology is homeomorphism invariant.

The homeomorphism invariance of simplicial homology was proven instead using the
simplicial approximation theorem, but the validity of the Hauptvermutung stayed open
until 1961 when John Milnor gave a counterexample [18]. Let σr denote the r-simplex. For
j ∈ {1, 2}, let Lj be a triangulation of L(7, j). Consider the product Lj × σr and let Xj

denote the result of coning off its boundary Lj × ∂σr. If r ≥ 3 then X1 is homeomorphic
to X2. The reason is that from an argument of Barry Mazur, L1 ×Rr is homeomorphic to
L2 × Rr, and Xj is homeomorphic to the one point compactification of Lj × Rr. On the
combinatorial side, X1 andX2 are simply connected, so one can’t use the R-torsion directly.
Milnor instead used a variant of the R-torsion. Let Yj be the one point compactification of
the universal cover of Lj×Rr, with yj,0 being the added point. It inherits a cellular structure
on which Z7 acts, freely off of yj,0, with quotient Xj. Using a representation ρ : Z7 → O(2),
the torsion of the relative chain complex C∗(Yj, yj,0)⊗RZ7 R2 and its subdivision invariance,
Milnor showed that X1 and X2 do not have combinatorially equivalent subdivisions.

2.5. Arnold Shapiro. In the first Ray-Singer paper, one sees, “We raise the question
as to how to describe this manifold invariant in analytic terms. Arnold Shapiro once
suggested that there might be a formula for the torsion in terms of the Laplacian ∆ acting
on differential forms.”

Arnold Shapiro was a topologist who was born in 1921 and died in 1962, nine years
before the first Ray-Singer paper appeared. Shapiro was a professor at Brandeis and was
apparently the first person to come up with an explicit way to turn the sphere inside out.
He is known for his paper with Atiyah and Bott on Clifford modules and K-theory, which
appeared two years after his death. Referring to the period 1955-1957, Raoul Bott wrote,
“During that time, and largely at Princeton, I met Serre, Thom, Hirzebruch, Atiyah,
Singer, Milnor, Borel, Harish-Chandra, James, Adams,... I could go on and on. But these
people, together with Kodaira and Spencer, and my more or less ‘personal remedial tutor’,
Arnold Shapiro, were the ones I had the most mathematical contact with.”
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Regarding Shapiro’s suggestion, there is a way to write the R-torsion in terms of combina-
torial Laplacians. In reference to the chain complex (2.1), the preferred basis of Cq defines
an inner product on Cq for which the basis elements are orthonormal. Let ∂∗ : Cq → Cq+1

be the adjoint operator to ∂. Define the combinatorial Laplacian △(c)
q : Cq → Cq by

△(c) = − (∂∗∂ + ∂∂∗), a nonpositive self-adjoint operator. If the chain complex C is

acyclic then each △(c)
q is invertible and [28, Proposition 1.7] states that

(2.8) log τ(C) =
1

2

N∑
q=0

(−1)q+1q log det(−△(c)
q ).

3. Analytical precedents

This section describes some of the analytical work leading up to the Ray-Singer papers.
In Section 3.1, I recall the relation between the Riemann zeta function and heat conduction
on a circle. Section 3.2 describes the work of Minakshisundaram and Pleijel on defining the
zeta function of the Laplacian on a compact Riemannian manifold. Section 3.3 is about
the subsequent work by McKean and Singer. A reference for the material in this section
is [2, Chapter 2].

Following Shapiro’s suggestion to write the R-torsion in terms of differential form Lapla-
cians, and in view of (2.8), Ray and Singer faced the task of making sense of the determinant
of a self-adjoint operator on a Hilbert space. The relevant operators had discrete spectrum
but the product of the eigenvalues was not convergent. Instead it was typically a product
such as 1 · 2 · 3 · . . ..

There is a well known way to take the sum of such numbers, giving the semiserious
formula 1 + 2 + 3 + . . . = − 1

12
. The meaning of this formula is in terms of the Riemann

zeta function

(3.1) ζ(s) = 1 +
1

2s
+

1

3s
+

1

4s
+ . . . .

Formally, 1 + 2 + 3 + . . . = ζ(−1). On the other hand, we know that the zeta function
can be meromorphically continued from ℜ(s) > 1 to the complex plane and its value at
s = −1 is rigorously − 1

12
.

Ray and Singer showed how to give a meaning to determinants of Laplacians on mani-
folds, using analytic continuation.

3.1. Riemann zeta function and heat conduction. Let us first recall the relationship
between the Riemann zeta function and heat conduction on a circle.

Let S1(L) denote a circle of length L. The heat equation on the circle, with initial
condition u0, is

(3.2)
∂u

∂t
=

∂2u

∂x2
, u(0, x) = u0(x).

Here u0 is a function on S1(L) or, equivalently, an L-periodic function on R. The time-t
solution can be written as ut(x) =

∫
S1(L)

K(t, x, y) u0(y) dy where K(t, x, y) is the heat
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kernel or, in operator terms, as ut = et∂
2
xu0. Just as the trace of a matrix can be written

as a sum of diagonal entries, we can write

(3.3) Tr
(
et∂

2
x

)
=

∫
S1(L)

K(t, x, x) dx.

The eigenvalues of ∂2
x are zero, with multiplicity one, and

{
−
(
2πj
L

)2}∞

j=1
, each with

multiplicity two. Hence

(3.4) Tr
(
et∂

2
x

)
= 1 + 2

∞∑
j=1

e−t( 2πj
L )

2

.

Using the formula λ−s = 1
Γ(s)

∫∞
0

ts−1e−λtdt for positive s and λ, we find that

(3.5) 2

(
L

2π

)2s

ζ(2s) =
1

Γ(s)

∫ ∞

0

ts−1
(
Tr
(
et∂

2
x

)
− 1
)
dt

provided that ℜ(s) > 1
2
.

We could describe the meromorphic continuation of (3.5) using what is known about
the Riemann zeta function but to give a direct description, we choose ϵ > 0 and write the
right-hand side as a sum of two terms, the first coming from the t-integration between 0

and ϵ, and the second coming from the t-integration between ϵ and ∞. Since Tr
(
et∂

2
x

)
− 1

decays exponentially fast in t, the second term is analytic in s. To handle the first term,
there is an explicit formula

(3.6) K(t, x, y) =
1√
4πt

∑
k∈Z

e−
|x−y−kL|2

4t

for x, y ∈ [0, L), coming from the heat kernel 1√
4πt

e−
|x−y|2

4t on R and thinking of x as

receiving heat from sources {y + kL}k∈Z in R. Then the first term is

1

Γ(s)

∫ ϵ

0

ts−1
(
Tr
(
et∂

2
x

)
− 1
)
dt =

1

Γ(s)

∫ ϵ

0

ts−1

(∫
S1(L)

K(t, x, x) dx− 1

)
dt =(3.7)

1

Γ(s)

∫ ϵ

0

ts−1

(
1√
4πt

L
∑
k∈Z

e−
L2k2

4t − 1

)
dt.

The only possible singularities come from the k = 0 term, i.e. 1
Γ(s)

∫ ϵ

0
ts−1 L√

4πt
dt, which

for large s equals L√
4π

ϵs−
1
2

Γ(s)
1

s− 1
2

. Hence the only singularity is a simple pole at s = 1
2
with

residue L
2π
.

There is a similar story when the circle is replaced with a flat torus of dimension N . The
Riemann zeta function is replaced by the Epstein zeta function. The analogous expression
to (3.5) acquires a simple pole at N

2
with a residue equal to 1

(4π)
N
2 Γ(N

2
)
times the volume of

the torus.



8 JOHN LOTT

3.2. Minakshisundaram-Pleijel. Going from circles to manifolds, Subbaramiah Mi-
nakshisundaram, from India, and Åke Pleijel, from Sweden, defined the zeta function
of the Laplacian on a compact Riemannian manifold [20]. The collaboration happened
when they were visiting the Institute for Advanced Study during the 1947-1948 academic
year. They had each worked on related problems for domains in the plane but neither of
them had used Riemannian manifolds before.

If △ denotes the (nonpositive) Laplace operator then heat conduction on a closed Rie-
mannian manifold M satisfies the equation

(3.8)
∂u

∂t
= △u, u(0, x) = u0(x).

The solution can be written ut(x) =
∫
M
K(t, x, y)u0(y) dvol(y), where K(t, x, y) is the heat

kernel, or in operator terms as u(t) = et△u0. The method of Minakshisundaram-Pleijel
was to first write an approximate solution to K(t, x, y) in normal coordinates around a
point y ∈ M . Their approximate solution or “parametrix” was of the form

(3.9) H(t, x, y) = (4πt)−
N
2 e−

r2

4t (U0 + U1t+ . . .+ Unt
n) .

Here N = dim(M), r is the distance from x to y, each Uj is a function of x and y, and n
is a parameter. The Uj’s were computed recursively by requiring that H satisfy the PDE
(3.8) to leading order. This gave a formula for Uj in terms of Uj−1; the starting point was
U0 = 1.

Minakshisundaram and Pleijel were able to estimate the error when approximating K by
H. (More precisely, they passed to Green’s functions.) They then considered the expression

(3.10) ζx,y(s) =
1

Γ(s)

∫ ∞

0

ts−1 (K(t, x, y)− 1) dt.

If {λj}∞j=1 are the nonzero eigenvalues of △ then the corresponding zeta function is defined
to be

(3.11) ζ△(s) =
∑
j

(−λj)
−s =

∫
M

ζx,x(s) dvol(x).

The main result of Minakshisundaram and Pleijel was the following.

Theorem 3.12. [20] If x ̸= y then ζx,y(s) extends to an analytic function of s. If x = y
then ζx,x(s) extends to a meromorphic function of s. If N is odd then ζx,x(s) has simple
poles at N

2
− j for j = 0, 1, 2, . . ., while if N is even then ζx,x(s) has simple poles at

N
2
, N

2
− 1, . . . , 1. If N is odd then ζx,x(s) vanishes at nonpositive integers.

There is a similar statement for ζ△(s).

The statements about the locations of the poles of ζx,x(s) and the values at nonpositive
integers can be seen by plugging the parametrix (3.9) into (3.10) and integrating from 0
to ϵ. If N is even then the values of ζx,x(s) at nonpositive integers can be computed this
way. In particular, they are expressions in the Riemannian metric and its derivatives, up
to a certain order, at x.
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3.3. McKean-Singer. A 1967 paper by Henry McKean and Singer extended the Minakshisundaram-
Pleijel work in several ways [17]. First, the coefficients U1(x, x) and U2(x, x) in (3.9) were

computed. They found that U1(x, x) =
R(x)
6

, where R is the scalar curvature, and U2(x, x)
is the sum of a quadratic expression in the curvature tensor and a multiple of △R.

Second, McKean and Singer considered Laplacians on manifolds with boundary, with
Dirichlet or Neumann boundary conditions. They constructed a parametrix and showed
that there is again an asymptotic expansion

(3.13) Tr
(
et△
)
=

∫
M

K(t, x, x) dvol(x) ∼ (4πt)−
N
2 (c0 + c1t

1
2 + c2t+ . . .)

for small t, but now with half-integer powers.
Third, and what is most relevant for the Ray-Singer papers, they discussed such as-

ymptotic expansions when the function Laplacian is replaced by the Hodge Laplacian on
differential forms. Their motivation for this discussion came from the possibility of proving
the Chern-Gauss-Bonnet theorem using heat equation methods, a possibility that was later
realized.

4. The Ray-Singer papers

The Ray-Singer papers were joint works between Daniel Ray and Isadore Singer. Ray
was a faculty member at MIT from 1957 to 1979. His specialties were stochastic processes
and spectral problems. I had Ray as a teacher for undergraduate analysis.

Section 4.1 describes the first Ray-Singer paper and Section 4.2 describes the second
Ray-Singer paper.

4.1. The first Ray-Singer paper. Recall equation (2.8), giving the R-torsion in terms
of combinatorial Laplacians, and Shapiro’s suggestion that there may be a formula for the
torsion in terms of the Laplacian acting on differential forms.

Whereas the determinants in (2.8) are of finite dimensional operators, it is not clear what
the determinant of an (infinite dimensional) differential form Laplacian should mean. It
was for this purpose that Ray and Singer introduced zeta function regularized determinants.
To motivate this notion, consider the calculus formula

(4.1) log λ = − d

ds

∣∣∣
s=0

e−s log(λ) = − d

ds

∣∣∣
s=0

λ−s

for λ positive. Extending this to matrices, if M is a positive definite square matrix then
using the spectral theorem, Tr (M−s) is an analytic function of s and

(4.2) log det(M) = − d

ds

∣∣∣
s=0

Tr
(
M−s

)
.

The idea of Ray and Singer was to use (4.2) to define the determinant of suitable infinite
dimensional operators.

To specify the relevant operators, let W be a connected closed orientable Riemannian
manifold and let E be a flat orthogonal vector bundle on W or, equivalently, a homomor-
phism ρ : π1(W,w0) → O(n). Let Ωq(W,E) denote the smooth q-forms on W with value
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in E. The Riemannian metric on W , along with the standard inner product on Rn, gives
an L2-inner product on Ωq(W,E). The exterior derivative d : Ω∗(W,E) → Ω∗+1(W,E) has
a formal adjoint δ : Ω∗(W,E) → Ω∗−1(W,E). The differential form Laplacian is defined to
be △ = −(δd+ dδ). Let △q denote the restriction of △ to Ωq(W,E).
Let us initially suppose that △q is negative definite for all q. By the Hodge theorem,

this is equivalent to saying that Hq(W,E) = 0 for all q. Putting ζq,ρ(s) = Tr ((−△q)
−s),

we can define det(△q) by

(4.3) log det(△q) = − d

ds

∣∣∣
s=0

ζq,ρ(s).

The key point is that ζq,ρ(s) is analytic near s = 0, so the definition makes sense. If we
think of descending from s large, where ζq,ρ(s) makes conventional sense, then we encounter
poles in ζq,ρ(s) at s =

N
2
, N

2
− 1, etc. So log det(△q) can only be computed after traversing

all of these poles.

Definition 4.4. Suppose that the flat vector bundle E is acyclic, i.e. that H∗(W,E) = 0.
The analytic torsion is the positive real number TW (ρ) such that

(4.5) log TW (ρ) =
1

2

N∑
q=0

(−1)qqζ ′q,ρ(0).

Note the similarity with (2.8). Using Hodge duality, one finds that TW (ρ) = 1 if W is
even dimensional. The main result of the Ray-Singer paper, that TW (ρ) is a diffeomorphism
invariant of W , follows from the next theorem.

Theorem 4.6. [28] TW (ρ) is independent of the Riemannian metric on W .

Proof. We may assume that W is odd dimensional. Suppose that g0 and g1 are two
Riemannian metrics on W . Putting g(u) = ug1 + (1 − u)g0 and computing the analytic
torsion with respect to g(u), it suffices to show that d

du
log TW (ρ) = 0.

In terms of the Hodge duality operator ⋆, one can write δ = ± ⋆−1 ◦d ◦ ⋆. Putting
α = ⋆−1 d⋆

du
, one has dδ

du
= [δ, α]. Then d△

du
= −[δ, α]d− d[δ, α].

Now d
du

Tr(−△q)
−s = sTr

(
d△q

du
(−△q)

−s−1
)
; this is justified when ℜ(s) is large enough

and then extends by analytic continuation. After some rearrangement, one finds

(4.7)
d

du
log TW (ρ) =

1

2

d

ds

∣∣∣∣∣
s=0

N∑
q=0

(−1)q+1sTr
(
α(−△q)

−s
)
.

The key term is the (−△q)
−s appearing on the right-hand side of (4.7). Theorem 3.12, or

more precisely its extension to differential forms, implies that the expression

(4.8) Tr
(
α(−△q)

−s
)
=

∫
M

tr (α(x) ζx,x(s)) dvol(x)

vanishes at s = 0. Then the additional factor of s in (4.7) gives d
du

log TW (ρ) = 0. □
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Ray and Singer gave evidence that the analytic torsion equals the R-torsion. For exam-
ple, they showed that the analog of (2.7) holds for the analytic torsion.

In some ways, it is convenient to remove the acyclicity assumption that H∗(W,E) = 0.
If H∗(W,E) is nonzero then Ray and Singer defined TW (ρ) as in (4.5), where the zero
eigenvalues of △q are removed when constructing ζq,ρ(s). That is,

(4.9) ζq,ρ(s) =
1

Γ(s)

∫ ∞

0

ts−1Tr
(
et△q − PKer(△q)

)
dt,

where PKer(△q) denotes orthogonal projection onto the (finite dimensional) kernel of △q.
On the R-torsion side, the Hodge isomorphism gives an L2-inner product on Hq(W,E),
and hence an orthonormal basis. Fixing this inner product, Ray and Singer showed that
the R-torsion τK(ρ) is unchanged upon a subdivision of a triangulation K of W . If the
Riemannian metric varies, they computed the variations of TW (ρ) and τK(ρ). The varia-
tions were generally nonzero but just involved the change of volume form on H∗(W,E). In
particular, they derived that TW (ρ)/τK(ρ) is metric independent, even in the nonacyclic
case.

Much of the Ray-Singer paper dealt with the technically more challenging case when W
is allowed to have boundary. Without entering into the details, suffice it to say that most
of their results for the closed case extend to the case of nonempty boundary.

4.2. The second Ray-Singer paper. In a sequel, Ray and Singer defined an analytic
torsion in the holomorphic setting [29]. In this case there was no classical counterpart.

The analogy was that a smooth manifold goes to a complex manifold, a Riemannian
metric goes to a Hermitian metric and the Hodge Laplacian goes to the ∂-Laplacian.

Suppose now that W is a compact connected complex manifold of complex dimension
N . Let ρ : π1(W,w0) → U(n) be a homomorphism, with corresponding flat holomorphic
vector bundle L on W . For each p, there is a complex

(4.10) . . .
∂−→ Ωp,q(W,L)

∂−→ Ωp,q+1(W,L)
∂−→ . . .

and corresponding Laplacian △p = −
(
∂
∗
∂ + ∂∂

∗
)
. Let △p,q denote the restriction of

△p to Ωp,q(W,L). Put ζp,q,ρ(s) = Tr
(
(−△′

p,q)
−s
)
, where the ′ on △′

p,q indicates that zero
eigenvalues are neglected.

Definition 4.11. Given p, the ∂-torsion Tp(W, ρ) is the positive real number such that

(4.12) log Tp(W, ρ) =
1

2

N∑
q=0

(−1)qqζ ′p,q,ρ(0).

Regarding the dependence of Tp(W, ρ) on the Hermitian metric, the proof of Theorem
4.6 goes through except for the last step. Because the real dimension of W is even,
Tr (α(−△q)

−s) need not vanish at s = 0. However, Ray and Singer deduced the following
statement.
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Theorem 4.13. [29] Let ρ1 and ρ2 be two homomorphisms from π1(W,w0) to U(n),
with corresponding flat vector bundles L1 and L2, respectively. Given p, suppose that
Hp,q(W,Lj) = 0 for all q ∈ [0, N ] and for j ∈ {1, 2}. Then Tp(W, ρ1)/Tp(W, ρ2) is indepen-
dent of the Hermitian metric on W .

The reason that the theorem holds is that if h(u) is a one-parameter family of Hermitian
metrics on W then the argument for Theorem 4.6 shows that d

du
log Tp(W, ρj) is an integral

over W whose integrand just depends on the local geometry. In taking the difference
d
du

(log Tp(W, ρ1)− log Tp(W, ρ2)) the integrand cancels out. If N = 1 then one can remove
the assumption that Hp,q(W,Lj) = 0.
Hence under the assumptions of Theorem 4.13, the ratio Tp(W, ρ1)/Tp(W, ρ2) is an in-

variant of the complex manifold W . Ray and Singer computed it explicitly for Riemann
surfaces. In the case of genus one, i.e. tori, the answer was in terms of theta functions.
In the case of genus greater than one, they used the Selberg trace formula to express the
answer in terms of Selberg zeta functions.

5. Further developments

After the first Ray-Singer paper, an outstanding problem was to show that the analytic
torsion equals the R-torsion. Section 5.1 describes the proofs of this by Cheeger and Müller,
along with the subsequent proof by Bismut and Zhang.

A further understanding of the Ray-Singer torsion came from looking at families. Section
5.2 explains how Quillen used the ∂-torsion of the second Ray-Singer paper in the setting
of a family of ∂-operators on a complex vector bundle over a Riemann surface. Section
5.3 has the extension to higher dimension, due to Bismut-Gillet-Soulé, along with their
construction of a holomorphic torsion form. Section 5.4 describes the analytic torsion form
of a smooth fiber bundle, due to Bismut and me.

5.1. Cheeger-Müller theorem. In their first paper, Ray and Singer showed that the
R-torsion τK(ρ) and the analytic torsion TW (ρ) have formal similarities. Furthermore, Ray
showed by explicit computation that they coincide for lens spaces [27]. This naturally lead
to the problem of showing that TW (ρ) = τK(ρ) when K is a triangulation of W . There are
various proofs of this, each being technically involved.

In order to show that TW (ρ) and τK(ρ) are the same, a first approach might be to use
the similarity between (2.8) and (4.11), take finer and finer triangulations of W , and hope
that (2.8) approaches (4.11). This approach cannot work directly since (4.11) requires an
analytic continuation beyond singularities in the s-plane, whereas one does not see any
such singularities in (2.8).

Rather than trying to show directly that TW (ρ)/τK(ρ) = 1 Ray and Singer proposed to
first take two representations ρ1, ρ2 : π1(W,w0) → O(n) and show that the difference

(5.1) log

(
TW (ρ1)

τK(ρ1)

)
− log

(
TW (ρ2)

τK(ρ2)

)
= log

(
TW (ρ1)

TW (ρ2)

)
− log

(
τK(ρ1)

τK(ρ2)

)
vanishes. Since the residues of the (simple) poles of the zeta function are the integrals
of local expressions on W , the difference ζq,ρ1(s) − ζq,ρ2(s) is analytic in s. Because of
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this, log(TW (ρ1)/TW (ρ2)) should have better approximation properties than log TW (ρ1) or
log TW (ρ2) individually.

Ray and Singer’s idea was to put a Morse function f on W , look at its sublevel sets Wu =
f−1(−∞, u], compute the various torsions on Wu (with appropriate boundary conditions)
and analyze how the expression in (5.1) depends on u. Away from the critical values of
f , it should be constant in u. One would then want to analyze how it changes when one
passes through a critical value. In this approach it is important to remove the acyclicity
condition.

The equality of TW (ρ) and τK(ρ) was proven independently by Jeff Cheeger [10] and
Werner Müller [22]. As in the Ray-Singer idea, the proofs involved analyzing how TW (ρ)/τK(ρ)
varies under topological change. How this was implemented differed from what Ray and
Singer had in mind.

One common idea to the Cheeger and Müller papers was to use the fact that the torsions
are defined independent of orientation, and the torsion of W ∪W is twice the torsion of W .
As W ∪W is the boundary of [0, 1] ×W , there is a sequence of surgeries that transform
W ∪W to SN . If one can keep track of how the torsions change under surgery then one
can reduce to checking the equality on SN .

Müller’s first step was to use approximations of the differential form Laplacian by the
combinatorial Laplacian to show that (5.1) vanishes. Hence TW (ρ)/τK(ρ) was independent
of the representation and it sufficed to work with the trivial representation ρ. Next, suppose
that one has a presurgery manifold W1 and a postsurgery manifold W2. The surgery
amounts to removing a copy of Sk ×DN−k and adding a copy of Dk+1 ×SN−k−1. One can
assume that the Riemannian metric is standard on those pieces. Let W3 be the double
Sk × SN−k of Sk ×DN−k, and let W4 be the double Sk+1 × SN−k−1 of Dk+1 × SN−k−1. In
the combination ζW1

q,ρ (s)− ζW2
q,ρ (s)− 1

2
ζW3
q,ρ (s) +

1
2
ζW4
q,ρ (s) the singularities cancelled out, and

so one obtained an analytic function of s. Müller showed that this combination can be
approximated by the analogous expression in combinatorial Laplacians, obtaining in the
end that TW1(ρ)/τK1(ρ) = TW2(ρ)/τK2(ρ). This finally reduced to checking the ratio for
W = SN , where it followed from Ray’s calculations.

Cheeger’s approach to the surgery was to keep careful track of the eigenvalues under a
conical degeneration. Let W1(u) denote the result of removing Sk × DN−k(u) from W1,
where DN−k(u) denotes a disk of radius u. Cheeger imposed absolute boundary conditions
on W1(u) and made a refined analysis of how the heat kernel for the differential form
Laplacian behaved as u → 0. A model space for this analysis was the product Sk ×AN−k

u,1 ,

where AN−k
u,1 denotes the annulus in RN−k with outer radius one and inner radius u. With

the symmetric analysis for W2, he was able to show that TW1(ρ)/τK1(ρ) = TW2(ρ)/τK2(ρ),
provided that 1 ≤ k ≤ n− 2. Finally, replacing W by W × S6, he was able to prove that
TW (ρ)/τK(ρ) = 1. Besides proving the equality of the torsions, Cheeger’s methods lead to
his later work on the spectral geometry of singular Riemannian spaces [11].

Jean-Michel Bismut and Weiping Zhang gave an alternative proof of the Cheeger-Müller
theorem using a Morse function f on W [7]. The idea was to do a Witten deformation,
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meaning that one replaces d by e−Tf ◦ d ◦ eTf and δ by eTf ◦ δ ◦ e−Tf . As in the proof of
Theorem 4.6, the ensuing analytic torsion is independent of T .
As T → ∞, most of the eigenvalues of △ go to minus infinity. The ones that stay

bounded have eigenfunctions that give the (finite dimensional) Witten complex computing
H∗(W,E). By means of this limit, using generic Morse functions f (i.e. ∇f satisfies the
Smale transversality conditions) Bismut and Zhang were able to prove that TW (ρ) = τK(ρ)
without performing surgery on W .

Finally, an approach using a gluing formula for the analytic torsion was given by Simeon
Vishik [34].

5.2. Determinant line bundle. In 1985, Daniel Quillen published a four page paper
that gave a new understanding of the ∂-torsion [26]. Quillen’s paper had one reference,
the second Ray-Singer paper.

As a first step, Quillen applied the definition of the ∂-torsion not just for a flat unitary
bundle, but rather for a general holomorphic bundle equipped with a Hermitian inner
product. Since the analytic torsion of the first Ray-Singer paper was defined using a d-flat
vector bundle, it is natural in the holomorphic setting to replace this by a ∂-flat vector
bundle, i.e. a holomorphic vector bundle E. We write the corresponding ∂-torsion as
TW (E), taking p = 0.
Quillen considered a compact Riemann surface W and a smooth complex vector bun-

dle E on W . A holomorphic structure on E corresponds to a choice of ∂-operator ∂ :
Ω0,0(W,E) → Ω0,1(W,E); the local holomorphic sections s of E correspond to the local
solutions of ∂s = 0.

Rather than looking at a single holomorphic structure on E, Quillen looked at the family
A of all such structures. It has a natural complex structure. In this setting, there is a
holomorphic line bundleDet on A called the determinant line bundle. Given a holomorphic
structure a ∈ A on E, the fiber of Det over a is

(5.2) Deta =
(
ΛmaxH0(W,E)

)∗ ⊗ ΛmaxH1(W,E),

where Λmax denotes the highest exterior power.
Suppose that we want to put an inner product on Det. Given a Riemannian metric on

W and a Hermitian inner product on E, for each a ∈ A the Hodge isomorphism gives an L2

inner product ⟨·, ·⟩L2,a on Deta. Unfortunately, this inner product need not be continuous
in a. The issue is that while Deta is smooth in a, the individual factors H0(W,E) and
H1(W,E) can abruptly jump in dimension.

Quillen’s insight was that this lack of continuity can be corrected using the ∂-torsion.
The Quillen metric on Deta is defined by ⟨·, ·⟩Q,a = TW (E)2⟨·, ·⟩L2,a. It gives rise to a
smooth inner product on Det.

An inner product on a holomorphic line bundle induces a preferred connection on the
line bundle. One can then talk about the curvature of the connection. In the case of
the determinant line bundle, computing the curvature essentially amounts to computing
∂∂ log TW (E), a 2-form on A. Quillen found a formula for the curvature involving the
integral of a local expression on W , in contrast to the nonlocal nature of TW (E),
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If H0(W,E) and H1(W,E) both happen to vanish then the determinant line Deta can be
identified with C, with a canonical element 1 ∈ Deta. In this setting, the Quillen norm of
1 is TW (E). Although it may look as if we haven’t achieved anything new, the framework
of determinant line bundles is useful as one can sometimes use holomorphic methods to
compute TW (E) [8].

5.3. Holomorphic torsion form. Quillen’s work was extended to higher dimensions by
Jean-Michel Bismut, Henri Gillet and Christophe Soulé [5]. Furthermore, they found that
the Ray-Singer torsion TW (E) entered into a differential form version of the Riemann-
Roch-Grothendieck (RRG) theorem.

The setup of [5] was a family of complex structures on a compact manifold Z, parametrized
by a complex manifold B. That is, one has a holomorphic fiber bundle π : M → B whose
fibers are diffeomorphic to Z. They also assumed that the fibers carry Kähler metrics that
form a Kähler fibration, in the sense that the Kähler forms on the fibers are the restrictions
of a closed (1, 1)-form on M .

Let E be a holomorphic vector bundle on M , equipped with a Hermitian inner product
hE. There is an induced Chern connection on E. Put Zb = π−1(b). The determinant line
bundle Det is a holomorphic line bundle on B whose fiber over b ∈ B is

Detb =
(
ΛmaxH0

(
Zb, E

∣∣
Zb

))∗
⊗ ΛmaxH1

(
Zb, E

∣∣
Zb

)
⊗(5.3) (

ΛmaxH2
(
Zb, E

∣∣
Zb

))∗
⊗ ΛmaxH3

(
Zb, E

∣∣
Zb

)
⊗ . . .

If ⟨·, ·⟩L2,b denotes the L2-inner product on Detb then the Quillen metric ⟨·, ·⟩Q on Det is

defined by ⟨·, ·⟩Q,b = T
(
Zb, E

∣∣
Zb

)2
⟨·, ·⟩L2,b.

Put TZ = Ker(dπ), a holomorphic vector bundle on M . The Kähler fibration gives a
connection on TZ.

Theorem 5.4. [5] The curvature 2-form associated to the Quillen metric is 2πi times the
2-form component of

∫
Z
Td(TZ, gTZ) ∧ ch(E, hE).

Here
∫
Z
is integration over the fiber, Td is the Todd form and ch is the Chern character

form. The normalization is such that Td and ch represent rational cohomology classes.
The validity of the theorem was previously known on the level of cohomology. The point
is that an explicit 2-form representative arises geometrically as the curvature of Det, when
the latter is equipped with the Quillen metric.

On the level of cohomology, the expression
∫
Z
Td(TZ)∪ch(E) is the right-hand side of the

RRG theorem. To state the theorem, let us make the additional assumption that for each q,

the dimension of Hq
(
Zb, E

∣∣
Zb

)
is constant in b. Then the vector spaces

{
Hq
(
Zb, E

∣∣
Zb

)}
b∈B

fit together to form a holomorphic vector bundle Hq on B. In this setting the RRG theorem
says that

(5.5)

dimC(Z)∑
q=0

(−1)q ch(Hq) =

∫
Z

Td(TZ) ∪ ch(E),
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in Heven(B;R).
The vector bundle Hq acquires an L2-inner product hHq

and corresponding connection.
One can ask whether (5.5) becomes an equality of differential forms. This is not the case,
but the discrepancy can be described using the holomorphic torsion form.

Theorem 5.6. [5] There is a canonical form T ∈ Ωeven(B), depending on the above geo-
metric data, so that

(5.7)
√
−1∂∂T =

∫
Z

Td
(
TZ,∇TZ

)
∧ ch(E, hE)−

dimC(Z)∑
q=0

(−1)q ch
(
Hq, hHq)

in Ωeven(B). The degree-zero component T[0] ∈ C∞(B) of T is related to the ∂-torsion by

T[0](b) =
1
π
log T

(
Zb, E

∣∣
Zb

)
.

Because of Theorem 5.6, the form T can be called the holomorphic torsion form. It can
be considered to be a transgression of the RRG theorem, on the level of differential forms.

As a remark, the formalism of determinant line bundles and Quillen metrics extends to
smooth families of Dirac-type operators [2, Chapters 9.7 and 10.6], [3, 4]. The definition
of the Quillen metric again involves a product of regularized determinants, although in
general it cannot be identified with the Ray-Singer torsion.

5.4. Analytic torsion form. As described in the previous section, the ∂-torsion is the
0-form component of a torsion form that represents a transgression of the RRG formula.
To come full circle, one can ask if there’s a similar interpretation of the original Ray-Singer
torsion. It turns out that there is, as was shown by Bismut and me.

In order to see this interpretation, it was necessary to extend the definition of the Ray-
Singer torsion TW (ρ) beyond the case of flat orthogonal or unitary vector bundles. Let E
be a flat complex vector bundle on W . Suppose that E is equipped with a Hermitian inner
product hE, not necessarily covariantly constant. Then one can still use the formula (4.5)
to define the Ray-Singer torsion TW (E).
Considering the role that volume forms play in the R-torsion, a natural extension of the

Ray-Singer work was to assume that E has unimodular holonomy, i.e. taking values in
{A ∈ GL(n,C) : | detA| = 1}. In this case Müller proved the extension of the Cheeger-
Müller theorem [23]. This had later application to the growth of torsion in the cohomology
of locally symmetric spaces, as described in [24].

Going beyond this, Bismut and Zhang considered arbitrary flat complex vector bundles
E [7]. The topological meaning of TW (E) was not so clear in this case but Bismut and
Zhang proved “anomaly” formulas showing how TW (E) depends on gW and hE.

Using the analogy that ∂-flat vector bundles, i.e. holomorphic bundles, are like d-flat
vector bundles, i.e. flat vector bundles, the first question was whether there is a analog
of the RRG theorem for flat vector bundles. It turns out that there is. To state it, let us
define certain characteristic classes of flat vector bundles.
Let W be a smooth manifold and let E be a flat complex vector bundle on W . Let hE

be a Hermitian inner product on E (not necesarily covariantly constant). With respect to
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a local covariantly constant basis of E, we can think of hE locally as a Hermitian matrix
valued function on B. Put ω(E, hE) = (hE)−1dhE, a globally defined End(E)-valued 1-form
on B.
If k is a positive odd integer, put

(5.8) ck(E, hE) = (2πi)−
k−1
2 2−k tr

(
(ω(E, hE))k

)
.

Then ck(E, hE) is closed and its de Rham cohomology class ck(E) is independent of hE.
To give some idea of what ck(E) measures, it vanishes if E has unitary holonomy. And
c1(E) vanishes if the holonomy is unimodular.

Now let π : M → B be a fiber bundle with closed fibers Zb = π−1(b). Let E be a flat
complex vector bundle on M and let Hq be the flat complex vector bundle on B whose

fiber over b ∈ B is Hq

(
Zb, E

∣∣∣
Zb

)
. Let TZ = Ker(dπ) be the vertical tangent bundle, a

vector bundle on M , and let o(TZ) be its orientation bundle, a flat R-bundle on M . Let

e(TZ) ∈ Hdim(Z)(M ; o(TZ)) be the Euler class of TZ. The following is an analog of the
RRG theorem, for flat vector bundles.

Theorem 5.9. [6] For any positive odd number k,

(5.10)

dim(Z)∑
q=0

(−1)qck(H
q) =

∫
Z

e(TZ) ∪ ck(E)

in Hk(B;R).

To explain where the torsion comes in, equip the fiber bundle with a horizontal distri-
bution THM and a vertical Riemannian metric gTZ . Also equip E with a Hermitian inner
product. Then the vector bundle Hq acquires an L2-inner product hHq

. The next result
states the existence of “higher” analytic torsion forms that realize (5.10) on the level of
differential forms.

Theorem 5.11. [6] For any positive odd number k, there is an explicit (k− 1)-form Tk−1,
depending on the geometric data, so that

(5.12) dTk−1 =

∫
Z

e
(
TZ,∇TZ

)
∧ ck(E, hE)−

dim(Z)∑
q=0

(−1)qck
(
Hq, hHq)

in Ωk(B;R). When k = 1, the function T0 ∈ C∞(B) is such that T0(b) is the negative of

the logarithm of the Ray-Singer torsion TZb
(E
∣∣∣
Zb

).

When k = 1, equation (5.12) recovers the anomaly formula of Bismut and Zhang.
If dim(Z) is odd and Hq = 0 for all q then (5.12) implies that Tk−1 is closed, and hence has

a de Rham representative [Tk−1] ∈ Hk−1(B,R). It turns out that [Tk−1] is independent of
the choices of THM , gTZ and hE, i.e. just depends on the smooth fiber bundle π : M → B
and the flat complex vector bundle E → M . On the other hand, there are “higher” versions
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of the R-torsion, which are also invariants of smooth fiber bundles [13, 15]. The question
then arises if there is a higher Cheeger-Müller theorem. The latest on this is [25].
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