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Pinching in Riemannian geometry

Given a Riemannian manifold (M, g), to each point m 2 M and
each 2-plane ⇡ ⇢ TmM, we assign a number, the sectional
curvature K (⇡).

A spherical space form has a metric ground with constant
sectional curvatures K (⇡) = 1. If we slightly deform ground , the
sectional curvatures will be close to 1.

Question: how much can we deform the sectional curvatures
and still know that it’s diffeomorphic to a spherical space form?

Note that CPn, n � 2, has a Riemannian metric with sectional
curvatures covering

⇥1
4 , 1

⇤
.



Quarter pinching

Quarter pinching conjecture: Let (M, g) be a compact
Riemannian manifold. Choose c 2 (

1
4 , 1]. Suppose that the

sectional curvatures lie between c and 1. Then (M, g) is
diffeomorphic to a spherical space form.

Brendle and Schoen proved a version of this that only requires
pointwise pinching.

Theorem: (Brendle-Schoen) Let (M, g) be a compact

Riemannian manifold with positive sectional curvature. Choose

c 2 (
1
4 , 1]. Suppose that for each m 2 M and any two 2-planes

⇡1,⇡2 ⇢ TmM, we have K (⇡1) � c K (⇡2). Then M is

diffeomorphic to a spherical space form.

(Think of K (⇡2) as the largest sectional curvature at m.)



Ricci curvature

Given an n-dimensional Riemannian manifold (M, g), the Ricci
tensor is a symmetric covariant 2-tensor field Ric with the
following property.

Suppose that v 2 TmM is a unit vector. Then Ric(v, v) is (n � 1)
times the average of the sectional curvatures K (⇡) among all
2-planes containing v.

Suppose that (M, g) has nonnegative Ricci tensor. At each
m 2 M, using the metric to turn the Ricci tensor into a
self-adjoint operator on TmM, one can diagonalize it to get
eigenvalues

0  r1  . . .  rn.



Ricci pinching

Suppose that (M, g) is an n-dimensional Riemannian manifold
with nonnegative Ricci curvature. At each m 2 M, using the
metric to turn the Ricci curvature into a self-adjoint operator on
TmM, one can diagonalize it to get eigenvalues

0  r1  . . .  rn.

Definition
Given c > 0, the Ricci curvature is c-pinched if for all m 2 M,
we have

r1 � crn.



The conjecture

0  r1  . . .  rn.

Definition
Given c > 0, the Ricci curvature is c-pinched if for all m 2 M,
we have

r1 � crn.

The conjecture (apparently due to Hamilton).

Conjecture: Let (M, g) be a complete Riemannian 3-manifold

with nonnegative c-pinched Ricci curvature for some c > 0.

Then (M, g) is flat or M is compact.

Now proved from the combined efforts of the speaker,
Deruelle-Schulze-Simon and Lee-Topping.



The theorem

Theorem: Let (M, g) be a complete Riemannian 3-manifold

with nonnegative c-pinched Ricci curvature for some c > 0.

Then (M, g) is flat or M is compact.

In particular, if (M, g) has positive c-pinched Ricci curvature
then M is compact.

Compare with Myers’ theorem: If Ric � (n � 1)k2g then
diam(M, g)  ⇡

k
.

So the conjecture is a scale-invariant version of Myers’ theorem
for 3-manifolds.

Note: in three dimensions Ricci determines Riem, but Ric � 0
does not imply K � 0.



Motivation

A motivation for the conjecture:

Theorem: (Hamilton 1994) Let Mn be a smooth strictly convex

complete hypersurface bounding a region in Rn+1. Suppose

that its second fundamental form is c-pinched. Then M is

compact.

Hamilton’s proof is short and uses the quasiconformality of the
Gauss map.

A mean curvature flow proof (assuming bounded second
fundamental form) was given by Bourni, Langford and Lynch
(2023).

Is there an elementary proof of the Ricci pinching conjecture?
The present proof uses Ricci flow.



History of results

Let (M, g) be a complete Riemannian 3-manifold with

nonnegative c-pinched Ricci curvature for some c > 0. Then

(M, g) is flat or M is compact.

Chen-Zhu (2000): True if (M, g) has bounded curvature and
nonnegative sectional curvature.

J.L. (2023): True if (M, g) has bounded curvature and sectional
curvatures bounded below by � C

r2 .

Deruelle-Schulze-Simon: True if (M, g) has bounded curvature.

Lee-Topping: True in general.

Huisken-Koerber: Alternative to DSS step.

Why did it take so long? With nonnegative sectional curvature
there are special tools that don’t generalize. Need new
methods.
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Intuition

Let (M, g) be a complete Riemannian 3-manifold with

nonnegative c-pinched Ricci curvature for some c > 0. Then

(M, g) is flat or M is compact.

Suppose that (M, g) isn’t flat and is strictly conical outside of a
compact set K .

On M � K , we have Ric(@r , @r ) = 0, so Ric = 0 on M � K , so g

is flat on M � K .

The link L of the cone has constant curvature 1 and must be
connected (Cheeger-Gromoll).

So it is S2 or RP2, but RP2 doesn’t bound, so L = S2. From
Bishop-Gromov, (M, g) = R3, contradiction.



Why Ricci flow?

Why does Ricci flow help?

Let’s say that the c-Ricci pinched 3-manifold (M, g) is
noncompact and nonflat.Suppose that we can run a Ricci flow
for all time, with initial metric (M, g).

Since Ricci flow is smoothing, we can hope that for large time
the small scale structure is ironed out, so that we are close to
the strictly conical case.

One main issue is to show that the tangent cone at infinity is
three dimensional.



Why Ricci flow?

We can even hope that a large time limit is asymptotically self

similar, i.e. is an expanding soliton.

Here an expanding soliton is a special type of Ricci flow
solution that evolves by expansion and diffeomorphisms.

Enough is known about such a self similar solution to show that
under the c-Ricci pinching assumption, it must be flat R3.

Then we can try to say that the initial metric (M, g) has tangent
cone at infinity given by R3 and hence is flat, a contradiction.

The actual proof proceeds somewhat differently.



Ricci flow I

Using basic Ricci flow results, when the curvature is bounded,
we can reduce to the case of positive Ricci curvature. The Ricci
flow will preserve the positivity and c-pinching of the Ricci
curvature (Hamilton 1982).

Theorem: (J.L.) Let (M, g0) be a complete noncompact

Riemannian 3-manifold having bounded curvature and positive

c-pinched Ricci curvature.

The ensuing Ricci flow solution (M, g(·)) exists for all t � 0 and

satisfies

kRm(g(t))k1  const.

t
.



Ricci flow II

Theorem: (J.L.) Let (M, g(·)) be a Ricci flow on a noncompact

Riemannian 3-manifold that exists for all t � 0, with complete

time slices.

Suppose that Ric > 0 and

kRm(g(t))k1  const.

t
.

Then (M, g(·)) is noncollapsing for large time. That is,

vol(Bg(t)(m0,
p

t)) � const. t
3
2 .

This result does not need c-pinching. Examples of such flows
come from asymptotically conical expanding Ricci solitons,
which exist in abundance (Deruelle).



Ricci flow III

Corollary: Let (M, g) be a complete noncompact Riemannian

3-manifold having bounded curvature and positive c-pinched

Ricci curvature.

Then (M, g) has cubic volume growth, i.e.

lim inf
r!1

r
�3

vol(B(m0, r)) > 0.

Also, we can take blowdown limits of the ensuing Ricci flow.



Proof when K � 0

Suppose that (M, g) has nonnegative sectional curvature and is
c-Ricci pinched. For s � 1, put gs(u) = s�1g(su). Let
g1(u) = limj!1 gsj

(u) be a pointed blowdown limit.

It will be a Ricci flow solution coming out of a cone, namely the

tangent cone at infinity T1M = limj!1(M,m0, s
� 1

2
j

d).

By Simon-Schulze, g1(·) is an expanding gradient soliton.

Lemma: A three dimensional expanding gradient soliton with

nonnegative c-pinched Ricci curvature must be flat R3.



Proof when K � 0

Now the tangent cone at infinity of (M1, g1(u)) is also equal to
T1M, so the latter must be R3.

Theorem: (Colding) If a complete Riemannian n-manifold

(M, g) has Ric � 0, and a tangent cone at infinity isometric to

Rn, then (M, g) is isometric to Rn.

Thus (M, g) is flat, which contradicts our assumption that
Ric > 0.



Possibilities and Questions I

How to remove the assumption that K � 0?

If we could show that the blowdown Ricci flow g1(u) is an
expanding gradient soliton then we would be done.

Question: Let (M, g(·)) be a Ricci flow on a noncompact
Riemannian manifold that exists for all t � 0, with complete
time slices. Suppose that
I Ric > 0,
I kRm(g(t))k1  const.

t
, and

I vol(Bg(t)(m0,
p

t)) � const. t
n

2 .
Is a blowdown limit necessarily an expanding soliton?

May want to restrict to three dimensions. In higher dimensions,
there are examples of different expanding solitons coming out
of the same cone.



Possibilities and Questions II

We know that the tangent cone at infinity T1M of the initial
metric is three dimensional and has nonnegative Ricci
curvature in a generalized sense.

Then its link L has Ricci curvature bounded below by 1, in the
generalized sense (Ketterer).

Since L is a surface, this means that L has Alexandrov
curvature bounded below by 1 (Lytchak-Stadler). Hence T1M

has nonnegative Alexandrov curvature.

Nonnegative sectional curvature is preserved under 3D Ricci
flow starting from a smooth Riemannian manifold.

Question: Does a 3D Ricci flow solution evolving out of a
nonnegatively curved Alexandrov space have nonnegative
sectional curvature?

If so then we can apply the K � 0 result and we are done.



Possibilities and Questions III

We know that the tangent cone at infinity T1M of the initial
metric is three dimensional and has nonnegative Ricci
curvature in a generalized sense. It may not be smooth.

If there were a measurable Ricci tensor on T1M, that behaves
well under GH limits, then we could conclude that the cone
T1M has c-pinched Ricci curvature and hence must be flat.

Question: Is there a measurable Ricci tensor for noncollapsed
Ricci limit spaces, so that Gromov-Hausdorff convergence of
spaces implies weak convergence of the Ricci tensors?

There is such a notion when Ricci curvature is replaced by
curvature operator (Lebedeva-Petrunin). Using this, one can
prove Hamilton’s conjecture when K (m) � � const.

d(m,m0)2 (J.L.).



Deruelle-Schulze-Simon I

We have the unknown Ricci flow g1(u) coming out of a metric
cone T1M = cone(L) with nonnegative Alexandrov curvature.

The link L, a surface with Alexandrov curvature bounded below
by 1, is a GH limit of smooth surfaces ⌃i with sectional
curvature bounded below by 1.

From Deruelle and Schulze-Simon, for each i , there is an
expanding soliton coming out of cone(⌃i).

We can then take a limit of these, to obtain an expanding
soliton solution gexp(u) coming out of cone(L).



Deruelle-Schulze-Simon II

We now have two Ricci flow solutions coming out of the metric
cone T1M: the blowdown solution g1(u) and the expanding
soliton solution gexp(u). If we knew that they’re the same, we’d
be done.

Theorem: (DSS) Except at its vertex, the tangent cone at

infinity T1M has only regular points. That is, for each

p 2 T1M � {vertex}, the tangent cone at p is R3.

This comes from the c-Ricci pinching of the flow and a local
splitting result of Hochard.



Deruelle-Schulze-Simon III

Localizing in a region away from the vertex, DSS show that
since the two Ricci flow solutions have the same initial
condition, they must be close for short time.

Theorem: (DSS) The solutions eg1(u) and egexp(u) of the

Ricci-de Turck equation for the region satisfy

|eg1(u)� egexp(u)|  e
� const.

u .

This is a special case of a result that holds in any dimension.



Deruelle-Schulze-Simon IV

Since g1(u) is Ricci c-pinched, it follows that gexp(u) must be
almost Ricci c-pinched in the following sense.

Put gsol = gexp(1). It satisfies the expanding gradient soliton
equation

Ricsol +Hess(f ) +
1
2

gsol = 0,

where f is the soliton potential. The potential goes like f ⇠ � r2

4 .

Theorem: (DSS) The soliton metric is almost Ricci pinched in

the sense that

Ricsol � const.Rsol � e
const. f

gsol .

This uses the closeness between g1(u) and gexp(u), along
with the self-similar nature of gexp(u).



Deruelle-Schulze-Simon IV

The expanding soliton satisfies

Ricsol � const.Rsol � e
const. f

gsol . (1)

Proposition: (DSS) A three dimensional expanding gradient

soliton that satisfies (1) must be flat R3.

Thus T1M is flat R3 and we conclude as before that
(M, g) = R3. However, we are assuming that (M, g) has
positive Ricci curvature. Contradiction.

This proves the c-Ricci pinching conjecture when (M, g) has
bounded curvature.



Lee-Topping I

Theorem: (Lee-Topping) Let (M, g) be a complete noncompact

Riemannian 3-manifold with nonnegative c-pinched Ricci

curvature for some c > 0. Then there is a Ricci flow solution

g(t), defined for t � 0, with g(0) = g so that

1. The time slices are complete with nonnegative c-pinched

Ricci curvature, and

2. |Rm |  const.
t

.

Note that (M, g) may have unbounded curvature.

Corollary: Under the hypotheses of the theorem, (M, g) is flat.

Proof: By DSS, for each t > 0, the time-t slice (M, g(t)) is flat.
Hence (M, g) is flat.



Lee-Topping II

The localized result:

Theorem: (Lee-Topping) Given ✏ 2
⇥
0, 1

12
⇤
, there are constants

T (✏), a(✏) > 0 with the following property. Let (M, g) be a

complete noncompact Riemannian 3-manifold with

Ric � ✏Rg � 0. Then for any m 2 M, there is a Ricci flow

solution g(t) on Bg(m, 1)⇥ [0,T ], with g(0) = g, so that

1. |Rm |  a

t
, and

2. Ric � ✏Rg � g.

To prove the global result you start with (M, g), rescale down to�
M, L�2g

�
, apply the local result, and parabolically rescale back

up. This gives the estimates on Bg(m, L)⇥ [0, L2T ], with (2)
becoming Ric � ✏Rg � L�2g. Then you can take a convergent
sequence of Ricci flow solutions with respect to a sequence
Lj ! 1.



Huisken-Koerber I

Theorem: (Huisken-Koerber) Let (M, g) be a complete

connected noncompact Riemannian 3-manifold with

nonnegative c-pinched Ricci curvature. If (M, g) has cubic

volume growth then it is isometric to R3.

How to use this to prove the conjecture: Suppose that (M, g) is
noncompact with nonnegative c-pinched Ricci curvature.

1. Using Lee-Topping, it’s enough to assume that (M, g) has
bounded curvature and show that it’s flat.

2. If it’s not flat, we can assume that it has positive Ricci
curvature and hence cubic volume growth (J.L.)

3. From Huisken-Koerber, it’s isometric to R3, contradiction.



Huisken-Koerber II

Inverse mean curvature flow: a flow of a hypersurface ⌃ in a
Riemannian manifold.

dx

dt
=

⌫

H
,

where
I x is a point on ⌃,
I ⌫ is an outward pointing unit normal, and
I H is the mean curvature of ⌃ at x .

Example: If M = Rn and the initial hypersurface ⌃0 is a sphere
of radius r0 then ⌃t is a sphere of radius r0e

t

n�1 .



Huisken-Koerber III

dx

dt
=

⌫

H
(2)

Theorem (Huisken-Ilmanen 2001, Moser 2007, Mari-Rigoli-Setti
2022): Suppose that

I M is a complete noncompact Riemannian manifold,

I M has nonnegative Ricci curvature and Euclidean volume

growth, and

I ⌃0 is a compact connected hypersurface.

Then there is a weak solution {⌃t}t�0 to (2), starting from ⌃0.

The ⌃t ’s are compact and connected. If dim(M) = 3 then

d

dt

Z

⌃t

H
2
dA = �2

Z

⌃t

⇣
Ric(⌫, ⌫) + |A0|2

⌘
dA,

where A0 is the traceless second fundamental form.



Huisken-Koerber IV

Suppose that dim(M) = 3, M has nonnegative Ricci curvature
and Ric � ✏Rg.
From Gauss-Bonnet, if genus(⌃) > 0 then

2
Z

⌃

⇣
Ric(⌫, ⌫) + |A0|2

⌘
dA �

Z

⌃
H

2
dA,

and if genus(⌃) = 0 then

2
Z

⌃
Ric(⌫, ⌫)dA � ✏

✓
16⇡ �

Z

⌃
H

2
dA

◆
.

Proposition (Mondino 2010): Suppose that R(p) > 0. For small

r , the r -sphere Sr (p) has
R

Sr (p)
H2dA < 16⇡.



Huisken-Koerber V

Theorem: (Huisken-Koerber) Let (M, g) be a complete

connected noncompact Riemannian 3-manifold with

nonnegative c-pinched Ricci curvature. If (M, g) has cubic

volume growth then it is isometric to R3.

Proof: Suppose that M is not flat. Choose p with R(p) > 0.
Choose a small r so that

R
Sr (p)

H2dA < 16⇡. Run the IMCF
starting from Sr (p). From the previous geometric inequalities,
one deduces that limt!1

R
⌃t

H2dA = 0.

Theorem: (Agostiniani-Fogagnonlo-Mazzieri 2020, X. Wang)
Since M has nonnegative Ricci curvature and cubic volume

growth, there is a (sharp) positive lower bound on
R
⌃ H2dA

among all compact hypersurfaces ⌃.

This gives a contradiction. Hence M must be flat. Since it has
cubic volume growth, it is isometric to R3.



What about higher dimensions?

In dimension greater than two, there’s a result about pinching of
the curvature operator Riem : ⇤

2M ! ⇤
2M.

Theorem: (Ni-Wu 2007) Let (Mn, g) be a complete Riemannian

manifold with n � 3. Suppose that Riem � ✏R Id � 0 for some

✏ > 0. Then M is compact or flat.

This assumes Riem � 0. What about just Ric � 0? One could
consider the pinching condition Ric � ✏Rg � 0.

From the viewpoint of Ricci flow, it’s more natural to look at
�1 + �2, the sum of the lowest two eigenvalues of Riem.

In three dimensions, �1 + �2 � 0 is equivalent to Ric � 0. In any
dimension, the condition �1 + �2 � 0 is preserved by Ricci flow.

In any dimension, one could consider the pinching condition
�1 + �2 � ✏R � 0.
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Ricci flow I

Theorem: Let (M, g0) be a complete noncompact Riemannian

3-manifold having bounded curvature and c-pinched positive

Ricci curvature.

The ensuing Ricci flow solution (M, g(·)) exists for all t � 0 and

satisfies

kRm(g(t))k1  const.

t
.

Put � =

⇣
c

2+c

⌘2
2 (0, 1

9 ] and

f = R
��2

���Ric�
1
3

Rg

���
2
.

One finds that ✓
@

@t
�4

◆
f

1
�  � 2

3
f

2
� .



Ricci flow I

From the weak maximum principle,

sup

m2M

f
1
� (m, t)  3

2t
,

so
R

�2
���Ric�

1
3

Rg

���
2


✓
3

2tR

◆�

. (3)

Suppose that there is a singularity at time T < 1. There is a
sequence {ti}1i=1 of times increasing to T , and points {mi}1i=1 in
M so that limi!1 |Rm(xi , ti)| = 1 and
|Rm(mi , ti)| � 1

2 sup(m,t)2M⇥[0,ti ] |Rm(m, t)|.



Ricci flow I

Put Qi = |Rm(mi , ti)| and gi(x , u) = Qig(x , ti + Q
�1
i

u). Then gi

is a Ricci flow solution with curvature norm equal to one at
(mi , 0 ), and curvature norm uniformly bounded above by two
for u 2 [�Qiti , 0].



Ricci flow I

Suppose first that for some i0 > 0 and all i , we have
Qi injg(ti )(mi)

2 � i0. After passing to a subsequence, there is a
pointed Cheeger-Hamilton limit

lim
i!1

(M, gi(·),mi) = (M1, g1(·),m1),

where g1(u) is defined for u 2 (�1, 0].

The property of having nonnegative Ricci curvature passes to
the limit. By construction, g1 has curvature norm one at
(m1, 0). Hence g1 has positive scalar curvature at (m1, 0). By
the strong maximum principle, it follows that g1 has positive
scalar curvature everywhere.



Ricci flow I

Given m0 2 M1, the point (m0, 0) is the limit of a sequence of
points {(m0

i
, 0)}1

i=1 with limi!1 Rgi
(m0

i
, 0) = Rg1(m0, 0) > 0. As

limi!1 Qi = 1, after undoing the rescaling it follows that
limi!1 Rg(m

0
i
, ti) = 1. As limi!1 ti = T , we also have

limi!1 tiRg(m
0
i
, ti) = 1.

Equation (3) implies that the metric g1(0) satisfies
Ric�1

3Rg1(0) = 0. As g1(0) has positive scalar curvature at
(m1, 0), it follows that M1 is a spherical space form. Then M is
compact, which is a contradiction.



Ricci flow I

Even if there is no uniform lower bound on Qi injg(ti )(mi)
2, after

passing to a subsequence we can take a limit to get a Ricci flow
on an étale groupoid.

By the same argument, the metric g1(0) on the unit space of
the groupoid has constant positive sectional curvature. Then by
a Bonnet-Myers argument, the orbit space of the groupoid is
compact. It follows that M is compact, which is a contradiction.



Ricci flow I

We claim now that there is some C < 1 so that for all t > 0, we
have kRm(g(t))k1  C

t
.

Suppose not. After doing a type-II point picking, there are
points (mi , ti) so that limi!1 ti |Rm(mi , ti)| = 1 and
|Rm |  2|Rm(mi , ti)| on M ⇥ [ai , bi ], with
limi!1 |Rm(mi , ti)|(ti � ai) = limi!1 |Rm(mi , ti)|(bi � ti) = 1.

Put Qi = |Rm(mi , ti)| and gi(x , u) = Qig(x , ti + Q
�1
i

u).



Ricci flow I

Suppose first that for some i0 > 0 and all i , we have
Qi injg(ti )(mi)

2 � i0. After passing to a subsequence, we get a
limiting Ricci flow solution
limi!1 (M, gi(·),mi) = (M1, g1(·),m1) defined for times
u 2 R. Here M1 is a 3-manifold and |Rm(m1, 0)| = 1.

As before, for each m0 2 M1, the point (m0, 0) is the limit of a
sequence of points (m0

i
, 0) with limi!1 tiRg(m

0
i
, ti) = 1, where

the latter statement now comes from the type-II rescaling.



Ricci flow I

From (3), we get Ric�1
3Rg1 = 0. Then (M1, g1) has constant

positive curvature time slices, which implies that M1 is
compact. Then M is also compact, which is a contradiction.

If lim inf i!1 Qi injg(ti )(mi)
2
= 0, we can still take a limit in the

sense of étale groupoids. As before, we conclude that M is
compact, which is a contradiction.



Distance distortion estimates

Let dt : M ⇥ M ! R be the distance function on M with respect
to the Riemannian metric g(t). In particular, d0 be the distance
function with respect to g0.

Lemma: There is some C0 < 1 so that whenever

0  t1  t2 < 1, we have

dt1 � C
0
⇣p

t2 �
p

t1

⌘
 dt2  dt1 . (4)

Fix m0 2 M. Given s > 0, put gs(u) = s�1g(su). Its distance
function at time u is bds,u = s

� 1
2 dsu. From (4), we have

1p
s

d0 � C
0p

u  bds,u  1p
s

d0. (5)

Also, k Rm(gs(u)) k C

u
.



Ricci flow II

Theorem: Let (M, g(·)) be a Ricci flow on a noncompact

Riemannian 3-manifold that exists for all t � 0, with complete

time slices.

Suppose that Ric > 0 and

kRm(g(t))k1  const.

t
.

Then (M, g(·)) is noncollapsing for large time. That is,

vol(Bg(t)(m0,
p

t)) � const. t
3
2 .



Ricci flow II

Given a sequence {si}1i=1 tending to infinity, after passing to a
subsequence we can assume that there is a pointed
Gromov-Hausdorff limit of the time-one slices of rescaled Ricci
flows: limi!1(M, bds,1,m0) = (X1, dX1 , x1).

Since M is noncompact, X1 is also noncompact. In particular,
dim(X1) > 0.

We want to show that there is some sequence with a three
dimensional pointed Gromov-Hausdorff limit. If not then we will
eventually get a contradiction to the fact that M is diffeomorphic
to R3 (Schoen-Yau).



Ricci flow II

Suppose that there is no sequence {si}1i=1 so that (M, bdsi ,1,m0)

has a three dimensional limit. Then for large s, the time-one
slice (M, bds,1,m0) of the rescaled Ricci flow is increasing
Gromov-Hausdorff close to a pointed noncompact Alexandrov
space (X1, x1) that is one dimensional or two dimensional.

The possibilities are that
I X1 is a line.
I X1 is a ray.
I X1 is an Alexandrov surface.



Ricci flow II
From the theory of bounded curvature collapse
(Cheeger-Fukaya-Gromov):

If X1 is a line then a large region of (M, bds,1) around m0 is a
fiber bundle over an interval, with T 2-fiber.

x
0

x
1

m
0 M

X

If X1 is a ray then depending on the distance from x1 to the tip
of the ray, a large region of (M, bds,1) around m0 is a fiber bundle
over an interval, with T 2-fiber, or is part of a solid torus that
(singular) fibers over an interval.



Ricci flow II

If X1 is an Alexandrov surface then a large region of (M, bds,1)

around m0 is the total space of a Seifert bundle.

In any case, there is a short loop � through m0 that does not
contract to a point in the unit ball Bbds,1

(m0, 1).



Ricci flow II

Because M is diffeomorphic to R3, there is some � � 0 so that
� contracts to a point in the ball Bbds,1

(m0,�) of radius �.

If we now start to increase s, distances decrease.

There will be some critical bs so that � contracts in the unit ball
Bbds,1

(m0, 1) if and only if s > bs.



Ricci flow II

At the critical value bs, the ball Bbdbs,1
(m0, 1) must be

Gromov-Hausdorff close to a ray whose tip has distance
approximately one from x1. The loop � through m0 is even
shorter than before.



Ricci flow II

Punchline: a very short loop through m0 cannot contract in such
a solid torus that is very close to an interval, under a uniform
sectional curvature bound, unless it already contracts near m0.

This is a contradiction.



Ricci flow II

Corollary: Let (M, g) be a complete noncompact Riemannian

3-manifold having bounded curvature and positive c-pinched

Ricci curvature.

Then (M, g) has cubic volume growth, i.e.

lim inf
r!1

r
�3

vol(B(m0, r)) > 0.

This follows from the fact that the blowdown limit is three
dimensional, along with the distance distortion estimates.


