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ABSTRACT
We define a quasilocal energy of a compact manifold-with-boundary, relative to a background manifold. The construction uses spinors on
one manifold and the pullback of dual spinors from the other manifold. We prove positivity results for the quasilocal energy, in both the
Riemannian and Lorentzian settings.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0172291

I. INTRODUCTION
The mass of an asymptotically flat initial data set is a quantity computed from the asymptotic geometry. It has the physical interpretation

of measuring the gravitational energy within the space. The positive mass theorem says that under an appropriate positivity assumption on
the curvature, the mass is positive.1,2

It is an old problem to localize the measurement of gravitational energy to a compact region, i.e. to give a good notion of a quasilocal
mass. Some survey articles are Refs. 3 and 4. In most of this paper we will refer more precisely to a quasilocal energy rather than a quasilocal
mass.

In view of Witten’s proof of the positive energy theorem for spin manifolds,2 an attractive approach to define a quasilocal energy is to
use spinors. This idea has been considered by various people, notably Dougan–Mason5 and Zhang.6,7 There are two basic issues with such
an approach. First, the quasilocal energy is always defined relative to some background space. For example, in the positive energy theorem,
the background space is Euclidean space. It is not clear how to incorporate the background space into the definition of the quasilocal energy.
The second issue is what boundary conditions to impose on the spinor fields. Witten’s proof used spinor fields that asymptotically approach
a constant spinor with respect to the model flat space. It is not evident what the analog should be for a compact manifold-with-boundary.

We show that both of these issues can be handled by the technique of pulling back (dual) spinors from the background space. This
technique has some history in the mathematical literature and has been applied to prove sharp comparison results about scalar curvature by
Llarull,8,9 Goette-Semmelmann,10 the author,11 and Wang–Xie–Yu.12 One advantage of the spinorial approach to the quasilocal energy is that
the nonnegativity of the energy, under some curvature conditions, falls out immediately.

In Sec. II we define a quasilocal energy in the Riemannian setting. Given compact connected n-dimensional Riemannian manifolds-
with-boundary (N,∂N) and (M,∂M), suppose that f : (N,∂N)→ (M,∂M) is a spin map that is an isometry on ∂N. We think of M as the
background space and N as the manifold whose quasilocal energy we want to define, relative to M. There is a corresponding Clifford module E
on N. For simplicity, suppose that n is even dimensional and that N and M are spin, in which case E is the twisted spinor bundle SN ⊗ f ∗ S ∗

M .
Let DN be the corresponding Dirac-type operator on C∞(N; E).

On ∂N, we have the identifications

E∣
∂N
≅ (SN ⊗ (∂ f )∗ S ∗

M )∣∂N
≅ (SN ⊗ S ∗

N )∣∂N
≅ Λ∗ T ∗ N∣

∂N
≅ Λ∗ T ∗ ∂N ⊕Λ∗ T ∗ ∂N, (1.1)

where the last isomorphism is a separation into tangential forms and forms with a normal component. Let π+ : Λ∗ T ∗ N∣
∂N
→ Λ∗ T ∗ ∂N be

projection onto the tangential component. There is a natural “Dirichlet” boundary condition for sections ψ of E given by π+(ψ∣∂N) = 0; let
D denote the ensuing self-adjoint operator. For simplicity, in this introduction we mostly consider the case when Ker(D) = 0.

To set up a boundary value problem, there is a canonical choice of section of Λ∗ T ∗ ∂N, namely the constant function 1. Let en be the
inward-pointing unit normal on ∂N.

J. Math. Phys. 64, 122502 (2023); doi: 10.1063/5.0172291 64, 122502-1

Published under an exclusive license by AIP Publishing

 27 D
ecem

ber 2023 04:54:17

https://pubs.aip.org/aip/jmp
https://doi.org/10.1063/5.0172291
https://www.pubs.aip.org/action/showCitFormats?type=show&doi=10.1063/5.0172291
https://crossmark.crossref.org/dialog/?doi=10.1063/5.0172291&domain=pdf&date_stamp=2023-December-26
https://doi.org/10.1063/5.0172291
https://orcid.org/0000-0002-5107-8719
mailto:lott@berkeley.edu
https://doi.org/10.1063/5.0172291


Journal of
Mathematical Physics ARTICLE pubs.aip.org/aip/jmp

Definition 1. If C is a nonempty union of connected components of ∂N, let ψ ∈ C∞(N; E) be the (unique) solution to DNψ = 0 with
π+(ψ∣∂N) = 1C, the characteristic function of C. The quasilocal energy associated to the boundary subset C is

EC = −∫
∂N
⟨ψ,∇N

enψ⟩ dvol∂N. (1.2)

Here are some basic properties of the quasilocal energy. Let RN and RM denote the scalar curvatures of N and M, respectively. Define
∣Λ2df ∣, the distortion of f on two-forms, to be the pointwise norm supv∧w≠0

∣df (v)∧df (w)∣
∣v∧w∣ .

We recall that the boundary map ∂f is an isometry on ∂N.

Theorem 1.

1. If f is an isometric diffeomorphism then E∂N = 0.
2. If M has nonnegative curvature operator and RN ≥ ∣Λ2df ∣( f ∗ RM) then EC ≥ 0.

Part 1 of Theorem 1 is consistent with the interpretation of E as being a relative energy between N and M. Part 2 of Theorem 1 is an
immediate consequence of a Bochner-type formula. In particular, if M is flat and RN ≥ 0 then EC ≥ 0.

Although (1.2) is an integral over the boundary of N, the solution ψ to the boundary value problem depends a priori on the interior
geometry of N and the map f . When M is a domain in Rn, the quasilocal energy only depends on f through its boundary restriction ∂f .

We give a formula for EC indicating that in the weak field limit, i.e. when N is a perturbation of M, the quasilocal energy is approximately
equal to the Brown–York energy.13 We expect, but do not prove, that if one takes an appropriate exhaustion of an asymptotically flat manifold
by compact domains then their quasilocal energies will approach a normalization constant times the ADM mass. We compute E∂N when N
is conformally related to M and find that it is exactly the Brown–York energy. We find a similar statement when N is rotationally symmetric.

In Sec. III we consider a Lorentzian quasilocal energy. That is, we have Lorentzian (n + 1)-dimensional manifolds N and M, along with
compact connected spatial hypersurfaces-with-boundary N ⊂ N and M ⊂M. Again, we use a comparison map f : (N,∂N)→ (M,∂M) that is
an isometry on ∂N and look at the Dirac-type operator DN acting on sections of the twisted spinor bundle SN ⊗ f ∗ S ∗

M . There is a new feature
that, in general, DN need not be formally self-adjoint on the interior of N. We first look at the case when M is a totally geodesic hypersurface
in M. Then there is no problem with self-adjointness and results from Sec. II extend. The curvature condition in part 2 of Theorem 1 gets
replaced by 2(T00 −

√
−∑n

α=1 T0αT0α) ≥ ∣Λ2df ∣( f ∗ RM), where TAB = RN
AB − 1

2 RN gN
AB is the Einstein tensor of N.

We next look at the case when M is the flat Minkowski space Rn,1, but the hypersurface M need not be totally geodesic. It turns out
that DN is formally self-adjoint on the interior of N if one uses an appropriate weighted L2-space. Regarding boundary conditions, there are
two natural choices. The first one does not give a self-adjoint boundary value problem but nevertheless one can use it to define a quasilocal
energy EC. The second one does give a self-adjoint boundary value problem and gives rise to a quasilocal energy Esa

C . They have the following
properties.

Theorem 2.

1. If f is an isometric diffeomorphism then E∂N = 0.
2. If N satisfies the dominant energy condition T00 ≥

√
−∑n

α=1 T0αT0α then EC ≥ 0 and Esa
C ≥ 0.

Comparing EC and Esa
C , the first one EC has the advantage, from part 1 of Theorem 2, of vanishing when C = ∂N and f is an isometric

diffeomorphism. On the other hand, Esa
C has the advantage of coming from a self-adjoint boundary value problem.

Finally, we extend the results to the case when M is a more general Lorentzian manifold than Minkowski space. It turns out that it is
enough for M to be a product spacetime R × X for some Riemannian manifold X. This can be compared with Chen et al.’s construction of a
quasilocal energy when the background space is in a static spacetime.14

Regarding earlier work about a spinorial approach to quasilocal energy, Dougan and Mason used the complex structure on an oriented
surface to make an interesting choice of boundary condition.5 Their approach is clearly restricted to n = 3. Zhang used the pure Dirac operator
to define a quasilocal energy when the background space M is a domain in R3 ⊂ R3,1.6 His boundary condition came from using constant
spinors on R3,1; compare with Proposition 12 of the present paper. He imposed geometric restrictions to ensure that the Dirac operator is
invertible; compare with Proposition 11 of the present paper. In Ref. 7 he also allowed M to be a domain in a hyperbolic submanifold of R3,1.

I thank the Fields Institute for its hospitality while part of this research was performed, and the referee for helpful comments.

II. RIEMANNIAN CASE
This section is about the quasilocal energy in the Riemannian case. We begin with even dimensional spaces. Section II A has background

information. Section II B has the definition of the quasilocal energy. In Sec. II C we prove its basic properties. Section II D computes the
quasilocal energy for conformally related manifolds. Section II E specializes to when the background space M is a domain in Rn and also
treats rotationally symmetric manifolds N. Finally, Sec. II F covers the odd dimensional case.
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A. Background
Let R denote scalar curvature and let H denote mean curvature. With our convention, ∂Bn has H = n − 1.
Let N and M be compact connected n-dimensional Riemannian manifolds with nonempty boundary. Let f : (N,∂N)→ (M,∂M) be a

smooth spin map, i.e. TN ⊕ f ∗ TM admits a spin structure. Equivalently, f ∗w2(M) = w2(N). Let ∂f : ∂N → ∂M denote the restriction to
the boundary. We assume that for each component Z of ∂N, the restriction ∂ f ∣Z is an isometric diffeomorphism from Z to f (Z).

For simplicity, we assume that N and M are spin and that ∂f is a spin diffeomorphism; the general case is similar. We assume first that
n is even. Then a spinor representation S± of Spin(n) has complex dimension 2

n
2 −1, while the Clifford algebra has a faithful representation

space S = S+ ⊕ S− of complex dimension 2
n
2 . We let S ∗ denote the complex vector space of complex-linear functionals on S, i.e. no complex

conjugation involved. Let SN denote the spinor bundle on N, and similarly for SM . Put E = SN ⊗ f ∗ S ∗
M , a Clifford module on N. (This Clifford

module exists in the general case.) We take the inner product ⟨⋅, ⋅⟩ on E to be C-linear in the second slot and C-antilinear in the first slot. As
End(SN) ≅ Λ∗ (T ∗ N), we can identify E∣∂N with Λ∗ (T ∗ N)∣

∂N
(We require this property in the general case, which amounts to a choice of

spin structure on E∣∂N .).
Let {eα}n

α=1 be a local oriented orthonormal framing on N, with dual basis {τα}n
α=1. Let ωαβγ be the connection one-forms with respect

to {eα}n
α=1. Let {̂e α̂}n

α̂=1 of M be a local oriented orthonormal framing of M. Let ω̂ α̂
β̂γ be the pullbacks under f of the connection one-forms

with respect to {̂e α̂}n
α̂=1.

To make things more symmetric, it will be convenient to do local calculations on SN ⊗ f ∗ SM rather than SN ⊗ f ∗ S ∗
M . In the Riemannian

setting, S ∗
M is unitarily equivalent to SM and so we don’t lose anything this way. Let {γα}n

α=1 be Clifford multiplication by {eα}n
α=1, satisfying

γαγβ + γβγα = 2δαβ. Let {γ̂ α̂ }n
α̂=1 be Clifford multiplication by {̂e α̂}n

α̂=1. They both have an odd grading, in the sense that in calculations we
take γα to anticommute with γ̂ α̂ .

The covariant derivative on E has the local form

∇N
σ = eσ +

1
8
ωαβσ[γα, γβ] + 1

8
ω̂ α̂̂βσ [̂γ

α̂ , γ̂ β̂ ]. (2.1)

The Dirac operator on C∞(N; E) is DN = −
√
−1∑n

σ=1 γ
σ∇N

σ .
We will take the orthonormal frame {eα} at a point in ∂N so that en is the inward-pointing unit normal vector there. Let dvolN denote

the Riemannian density on N, and similarly for dvol∂N . Given ψ1,ψ2 ∈ C∞(N; E), we have

∫
N
⟨DNψ1,ψ2⟩dvolN − ∫

N
⟨ψ1, DNψ2⟩dvolN = −

√
−1∫

∂N
⟨ψ1, γnψ2⟩dvol∂N. (2.2)

The Lichnerowicz formula implies

(DN)2 = (∇N)∗∇N + RN

4
− 1

4
[γσ , γτ](1

8
R̂ α̂̂βστ [̂γ

α̂ , γ̂ β̂ ]). (2.3)

We now extend some computations in Ref. 15, Proof of Lemma 4.1. Suppose that DNψ = 0. In what follows, summations over Greek
letters will go from 1 to n and summations over Latin letters will go from 1 to n − 1. Equation (2.3) implies that

0 = ∫
N
∣∇Nψ∣2 dvolN + ∫

∂N
⟨ψ,∇N

enψ⟩dvol∂N +
1
4∫N

RN ∣ψ∣2 dvolN− (2.4)

1
32∫N

R̂ α̂̂βστ⟨ψ, [γσ , γτ][̂γ α̂ , γ̂ β̂ ]ψ⟩.

Now DNψ = 0 implies that on ∂N, we have

∇N
enψ = −γ

n
n−1

∑
i=1

γi∇N
i ψ (2.5)

= −γn
n−1

∑
i=1

γi(∇∂N
i ψ + 1

2
ωnjiγnγjψ + 1

2
ω̂n̂̂jiγ̂

n̂ γ̂ ĵψ)

= D∂Nψ + H∂N

2
ψ − 1

2
γnγiγ̂ n̂ γ̂ ĵ Â̂jiψ,

where

D∂N = −γn
n−1

∑
i=1

γi∇∂N
i (2.6)

is the Dirac operator on ∂N coupled to (∂ f )∗ S ∗
M , Â is the second fundamental form of M and Â ĵiD = Â(̂e ĵ, (∂ f )∗ (ei)).

Remark 1. The factor of 1
2 in (2.5) corrects the 1

4 that appears in Refs. 11 and 15.
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From Ref. 10, Sec. 1.1, if M has nonnegative curvature operator then

1
32

R̂ α̂̂βστ[γ
σ , γτ][̂γ α̂ , γ̂ β̂ ] ≤ 1

4
∣Λ2df ∣( f ∗ RM)IdE. (2.7)

[The paper10 assumes that ∣Λ2df ∣ ≤ 1 but their argument shows the result stated in (2.7); cf. Ref. 16].

Proposition 1. If M has nonnegative curvature operator and RN ≥ ∣Λ2(df )∣( f ∗ RM) then for any ψ ∈ C∞(N; E), we have
−∫∂N ⟨ψ,∇N

enψ⟩dvol∂N ≥ 0. If M has nonnegative curvature operator, RN ≥ ∣Λ2(df )∣( f ∗ RM), ψ is nonzero and −∫∂N ⟨ψ,∇N
enψ⟩dvol∂N = 0 then

RN = ∣Λ2(df )∣( f ∗ RM).

Proof. This follows from (2.4) and (2.7). ◻

B. Definition of the quasilocal energy
Let ϵ be the Z2-grading operator on SN . Put γ0 = iϵ. Let T be the involution on SN ∣∂N given by

Tη = γ0γnη. (2.8)

Identifying f ∗ S ∗
M ∣∂N

with S ∗
N ∣∂N

, there is an induced involution T on

Λ∗ T ∗ N∣
∂N
≅ End(SN)∣∂N ≅ (SN ⊗ S ∗

N )∣∂N
≅ SN ∣∂N ⊗ f ∗ S ∗

M ∣∂M
. (2.9)

We recall that an element of Λ∗ T ∗ N acts on SN by Clifford multiplication, realizing the isomorphism Λ∗ T ∗ N ≅ End(SN). Then for
ω ∈ Λ∗ T ∗ N∣

∂N
and η ∈ SN ∣∂N , we have T(ω ⋅ η) = T(ω) ⋅ T(η). In terms of the orthonormal frame, T acts on T ∗ N∣

∂N
as γ0γnγ̂ 0̂ γ̂ n̂ .

Let τn be the dual covector to en.

Lemma 1. Given ω ∈ Λ∗ T ∗ N∣
∂N

, write ω = ω+ + τn ∧ ω− for ω± ∈ Λ∗ T ∗ ∂N. Then Tω = ω+ − τn ∧ ω−.

Proof. Given an increasing multi-index I with entries between 1 and n − 1, and ψ ∈ SN ∣∂N , we have

T(γIψ) = (γ0γn)γIψ = γI(γ0γn)ψ = γIT(ψ) (2.10)

and
T(γnγIψ) = (γ0γn)γnγIψ = −γnγI(γ0γn)ψ = −γnγIT(ψ) (2.11)

Using the isomorphism Λ∗ T ∗ N∣
∂N
≅ End(SN)∣∂N , the lemma follows. ◻

Let π± denote orthogonal projection onto the ±1-eigenspace of T, acting on Λ∗ T ∗ N∣
∂N

, so Im(π+) is isomorphic to Λ∗ T ∗ ∂N.
Consider the operator DN acting on elements ψ ∈ C∞(N; E). The boundary condition π+(ψ∣∂N) = 0, which is an analog of Dirichlet

boundary conditions, defines an elliptic boundary condition for DN (Ref. 17, Sec. 7.5). One can check that with the given boundary condition,
DN is formally self-adjoint. Let D denote the ensuing self-adjoint operator, densely defined on L2(N; E) (Ref. 17, Chap. 7). It has compact
resolvent. The next proposition gives a sufficient condition for D to be invertible.

Proposition 2. Suppose that

● M has nonnegative curvature operator,
● ∂M has nonnegative second fundamental form,
● RN ≥ ∣Λ2df ∣( f ∗ RM),
● H∂N ≥ (∂f ) ∗ H∂M , and
● RN > ∣Λ2df ∣( f ∗ RM) somewhere or H∂N > (∂f ) ∗ H∂M somewhere.

Then Ker(D) = 0.

Proof. Suppose that ψ ∈ Ker(D). From (2.4) and (2.5),

0 = ∫
N
∣∇Nψ∣2 dvolN +

1
4∫N

RN ∣ψ∣2 dvolN −
1

32∫N
R̂ α̂̂βστ⟨ψ, [γσ , γτ][̂γ α̂ , γ̂ β̂ ]ψ⟩ (2.12)

+ ∫
∂N
⟨ψ, D∂Nψ⟩ dvol∂N +

1
2∫∂N

H∂N ∣ψ∣2 dvol∂N −
1
2∫∂N

⟨ψ, γnγiγ̂nγ̂ ĵ Â̂jiψ⟩ dvol∂N.
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As T anticommutes with D∂N , we have

⟨ψ, D∂Nψ⟩ = −⟨ψ, D∂N Tψ⟩ = ⟨ψ, TD∂Nψ⟩ = ⟨Tψ, D∂Nψ⟩ = −⟨ψ, D∂Nψ⟩, (2.13)

so ⟨ψ, D∂Nψ⟩ = 0. From Ref. 11, Lemma 2.1, ⟨ψ, γnγiγ̂nγ̂ ĵ Â̂jiψ⟩ ≤ (∂ f )∗ H∂M ∣ψ∣2. Then (2.7) and (2.12) imply that ∇Nψ = 0. Since ∇N is
unitary, it follows that ∣ψ∣2 is constant on the connected manifold N. Then (2.12) implies that ∣ψ∣2 = 0. ◻

Remark 2. If the Euler characteristic of M is nonzero and the degree of f is nonzero then Ker(D) ≠ 0 (Ref. 11, Sec. 2.2).

We now discuss the boundary value problem. Given σ ∈ Ω∗ (∂N) with π+(σ) = σ, we wish to find some ψ ∈ C∞(N; E) so that
DNψ = 0 and π+(ψ∣∂N) = σ. Suppose that we can do this. If η ∈ Ker(D) then from (2.2), we see that ∫ ∂N⟨σ, γnη⟩dvol∂N = 0 [Note that
η∣∂N ∈ Im(π−), so γn η∣∂N ∈ Im(π+).].

Conversely, given σ ∈ Ω∗ (∂N) with π+(σ) = σ, if ∫ ∂N⟨σ, γnη⟩dvol∂N = 0 for all η ∈ Ker(D) then there is some ψ ∈ C∞(N; E) so that
DNψ = 0 and π+(ψ∣∂N) = σ (Ref. 18, Lemma 14). The section ψ is unique up to addition by elements of Ker(D).

Let C be a nonempty union of connected components of ∂N. To define the quasilocal energy, we would like to take σ to be the character-
istic function 1C. To be sure that ψ exists, we may have to slightly modify this choice. Let Pγn Ker(D)∣∂N

be orthogonal projection fromΩ∗ (∂N)
to γn Ker(D)∣∂N . We put 1C = 1C − Pγn Ker(D)∣∂N

1C. We then take σ = 1C and construct ψ accordingly.

Definition 2. Put
CC = {ψ ∈ C∞(N; E) : DNψ = 0,π+(ψ∣∂N) = 1C}. (2.14)

The quasilocal energy associated to the boundary subset C is

EC = inf
ψ∈ CC
(−∫

∂N
⟨ψ,∇N

enψ⟩ dvol∂N). (2.15)

Note that EC could be −∞.

Lemma 2. If Ker(D) = 0 then EC > −∞. In general, if EC > −∞ then it is realized by some ψmin ∈ CC.

Proof. We know that CC is a finite dimensional affine space modelled on Ker(D). If Ker(D) = 0 then CC has a single element and
EC > −∞. If Ker(D) ≠ 0 then as −∫∂N ⟨ψ,∇N

enψ⟩ dvol∂N is a quadratic function on CC, the lemma follows. ◻

In some statements that follow we may implicitly assume that EC > −∞. We will see relevant examples where this is the case in
Propositions 4, 5, Lemma 4, and Proposition 9.

C. Properties of the quasilocal energy

Proposition 3. If f : N →M is an isometric diffeomorphism then E∂N = 0.

Proof. If f is an isometric diffeomorphism then we can take E ≅ Λ∗ T ∗ N and identify DN with d + d ∗ . Letting ∗ denote the Hodge
duality operator, if ψ ∈ C∞(N; E) then

∫
N
⟨(DN)2

ψ,ψ⟩ dvolN = ∫
N
⟨(dd ∗ + d ∗ d)ψ,ψ⟩ dvolN (2.16)

= ∫
N
(dd ∗ψ ∧ ∗ψ + d ∗ dψ ∧ ∗ψ)

= ∫
N
(dd ∗ψ ∧ ∗ψ + ∗ d ∗ dψ ∧ ∗ ( ∗ψ))

= ∫
N
(dd ∗ψ ∧ ∗ψ + dd ∗ ∗ψ ∧ ∗ ( ∗ψ))

= ∫
N
(∣d ∗ψ∣2 + ∣dψ∣2) dvolN + ∫

∂N
(d ∗ψ ∧ ∗ψ + d ∗ ∗ψ ∧ ∗ ( ∗ψ)).

Comparing with Eq. (2.4) shows

− ∫
∂N
⟨ψ,∇N

enψ⟩ dvol∂N = −∫
∂N
(d ∗ψ ∧ ∗ψ + d ∗ ∗ψ ∧ ∗ ( ∗ψ)), (2.17)

There is a solution ψ of DNψ = 0 given by ψ = 1, with π+(1) = 1. It follows that 1 is orthogonal to γn Ker(D)∣∂N , so 1∂N = 1.
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If i : ∂N → N is the boundary inclusion then an element of Ker(D) is a differential form ρ ∈ Ω∗ (N) satisfying (d + d ∗ )ρ = 0 and the
relative (Dirichlet) boundary condition i ∗ ρ = 0. Applying i ∗ , it follows that i ∗ (d ∗ ρ) = 0. Squaring d + d ∗ , it follows that (dd ∗ + d ∗ d)ρ = 0.
Hence ρ is a harmonic form α on N satisfying relative (Dirichlet) boundary conditions. In particular, dρ = d ∗ ρ = 0.

Hence elements ψ of C∂N are of the form 1 + ρ for such ρ. As dψ = d ∗ψ = 0, Eq. (2.17) gives −∫∂N ⟨ψ,∇N
enψ⟩ dvol∂N = 0, which proves

the lemma. ◻

We now give the basic positivity property of the quasilocal energy in the physically relevant case.

Proposition 4. Suppose that M has nonnegative curvature operator. If RN ≥ ∣Λ2df ∣( f ∗ RM) then EC ≥ 0. If RN ≥ ∣Λ2df ∣( f ∗ RM) and
EC = 0 then RN = ∣Λ2df ∣( f ∗ RM).

Proof. This follows from (2.4) and (2.7). ◻

Proposition 5. If M is flat and RN ≥ 0 then EC ≥ 0. If M is flat, RN ≥ 0 and EC = 0 then N is Ricci flat.

Proof. The first statement follows from Proposition 4. The second statement follows as in Ref. 11, Proof of Proposition 2.3. ◻

We now write EC more explicitly as a boundary integral. From (2.5), we have

EC = −∫
∂N
⟨ψmin, D∂Nψmin⟩ dvol∂N −

1
2∫∂N

H∂N ∣ψmin∣2 dvol∂N (2.18)

+ 1
2∫∂N

⟨ψmin, γnγiγ̂nγ̂ ĵ Â̂jiψmin⟩ dvol∂N.

We write ψmin∣∂N = 1C + τn ∧ ϕ for some ϕ ∈ Ω∗ (∂N). Let Ei denote exterior multiplication by τi and Ii denote interior multiplication by ei,
when acting on Λ∗ T ∗ ∂N + τn ∧Λ∗ T ∗ ∂N.

Proposition 6. If 1C = 1C then

EC = −
1
2∫C

H∂N dvol∂N +
1
2∫C
(∂ f )∗ H∂M dvol∂N (2.19)

− 1
2∫∂N

H∂N ∣ϕ∣2 dvol∂N + ∫
∂N

1
2

Âji⟨ϕ, (Ei − Ii)(Ej + Ij)ϕ⟩ dvol∂N.

Proof. On ∂N, we can represent γi by
√
−1(Ei − Ii), γn by

√
−1(En − In), γ̂ i by Ei + Ii and γ̂n by En + In.

Lemma 3. We have
∫
∂N
⟨ψmin, D∂Nψmin⟩ dvol∂N = 0. (2.20)

Proof. As D∂N anticommutes with T, it follows that

∫
∂N
⟨1C, D∂N 1C⟩ dvol∂N = ∫

∂N
⟨τn ∧ ϕ, D∂N(τn ∧ ϕ)⟩ dvol∂N = 0. (2.21)

Next, since∇∂N restricts to the Riemannian connection on Λ∗ T ∗ ∂N, we know that∇∂N 1C = 0, so

∫
∂N
⟨τn ∧ ϕ, D∂N 1C⟩ dvol∂N = 0 (2.22)

and
∫
∂N
⟨1C, D∂Nτn ∧ ϕ⟩ dvol∂N = ∫

∂N
⟨D∂N 1C, τn ∧ ϕ⟩ dvol∂N = 0 (2.23)

The lemma follows. ◻

Also
∫
∂N

H∂N ∣ψmin∣2 dvol∂N = ∫
C

H∂N dvol∂N + ∫
∂N

H∂N ∣ϕ∣2 dvol∂N. (2.24)

Next, one can check that
⟨ψmin, γnγiγ̂nγ̂ jψmin⟩ = δij1C + ⟨ϕ, (Ei − Ii)(Ej + Ij)ϕ⟩. (2.25)

Hence
⟨ψmin, γnγiγ̂nγ̂ jÂjiψmin⟩ = (∂ f )∗ H∂M1C + Âji⟨ϕ, (Ei − Ii)(Ej + Ij)ϕ⟩. (2.26)

This proves the proposition. ◻
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The first two terms on the right-hand side of (2.19) give the Brown–York energy. (We have taken a particular normalization of the
Brown–York energy.) In the case when N is a small perturbation of M, the function ϕ will also be small. Hence Proposition 6 shows that in
this weak field limit, to leading order the quasilocal energy EC is the Brown–York energy.

Remark 3. With reference to Proposition 6, in the asymptotically flat case the geometry on most of a large domain N will be a small
perturbation of the Euclidean metric. Furthermore, it’s known that the Brown–York energy of large spheres approaches the ADM mass
(Ref. 19 and references therein). This makes it plausible that under an appropriate exhaustion of an asymptotically flat manifold, the quasilocal
mass will approach the ADM mass. That this is true in the rotationally symmetric case follows from Proposition 9.

D. Conformal deformations
In this section we use the conformal covariance of the Dirac operator to say something about the quasilocal energy; cf. Ref. 6, Sec. 4.
Put (N′, g′) = (N, e2ϕg), where ϕ∣∂N is locally constant and ϕ∣C = 0. Let f : N →M be as before. Suppose that Ker(D) = 0. Then 1C = 1C.

The pure Dirac operator DiracN ′ is related to the pure Dirac operator DiracN by DiracN′ = e−
n+1

2 ϕDiracN e
n−1

2 ϕ (Ref. 20, Sec. II). Thinking of
SN ⊗ f ∗ S ∗

M as Hom( f ∗ SM , SN), the same argument gives DN′ = e−
n+1

2 ϕDN e
n−1

2 ϕ.
Let ψ be a minimizer for the quasilocal energy of N relative to M, with π+(ψ∣∂N) = 1C. Putting ψ′ = e−

n−1
2 ϕψ, it satisfies DN ′ψ′ = 0 with

π+ (ψ′∣∂N′
) = 1C. As Ker(D′) = 0, it follows that

E′C = −∫
∂N′
⟨ψ′,∇N′

e′n ψ
′⟩dvolg′. (2.27)

From Ref. 20, Sec. II,
∇N′

e′n = e−ϕ(∇N
en +

1
4
(eαϕ)[γn, γα]). (2.28)

Applying this to (2.27), and using the fact that ϕ∣∂N is locally constant, one finds

E′C − EC =
n − 1

2 ∫
∂N
(enϕ)∣ψ∣2 dvol∂N. (2.29)

We now specialize to the case when N =M, f = Id and C = ∂N. We no longer have Ker(D) = 0.

Lemma 4. If enϕ ≥ 0 then E′∂N′ =
n−1

2 ∫∂N (enϕ) dvol∂N . If enϕ < 0 then E′∂N′ = −∞.

Proof. Note that ϕ∣∂N = 0. Given ψ′ ∈ C∞(N′; E′) satisfying DN ′ψ′ = 0 and π+(ψ′∣∂N
) = 1′∂N , put ψ = e

n−1
2 ϕψ′. Then DNψ = 0 and

π+(ψ∣∂N) = 1∂N . The Proof of Proposition 3 implies that ψ = 1 + ρ for some harmonic form ρ satisfying relative boundary conditions. As in
the Proof of Proposition 3, we know that ∫∂N ⟨ψ,∇N

enψ⟩dvolg = 0. Since

− ∫
∂N′
⟨ψ′,∇N′

e′n ψ
′⟩dvolg′ + ∫

∂N
⟨ψ,∇N

enψ⟩dvolg =
n − 1

2 ∫
∂N
(enϕ)∣ψ∣2 dvol∂N , (2.30)

if enϕ ≥ 0 then we minimize n−1
2 ∫∂N (enϕ)∣ψ∣2 dvol∂N by taking ψ = 1. As dvolN ∈ Ker(D), if enϕ < 0 then we can make

n−1
2 ∫∂N (enϕ)∣ψ∣2 dvol∂N arbitrarily negative by taking ψ = 1 + sdvolN with s large. ◻

One can check that the mean curvatures of ∂N′ and ∂N are related by

H∂N′ = H∂N − (n − 1)enϕ. (2.31)

Hence if enϕ ≥ 0 then

E′∂N′ =
1
2∫∂N

(H∂N −H∂N′) dvol∂N =
1
2∫∂N′

(H∂N −H∂N′) dvol∂N′ , (2.32)

showing that the quasilocal energy equals the Brown–York energy.
In this conformal setting, we can also express the quasilocal energy as an interior integral. If n > 2 then

n − 1
2 ∫

∂N
(enϕ) dvol∂N =

n − 1
n − 2∫∂N

(ene
(n−2)ϕ

2 ) dvol∂N (2.33)

= −n − 1
n − 2∫N

△ e
(n−2)ϕ

2 dvolN

= 1
4∫N

e(
n
2 +1)ϕ(Rg′ − e−2ϕRg)dvolN.
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Hence if enϕ ≥ 0 then
E′∂N′ =

1
4∫N

e(
n
2 +1)ϕ(Rg′ − e−2ϕRg)dvolN (2.34)

One can check that this is also true when n = 2.
As ∣Λ2(dId)∣ = e−2ϕ, for Id : (N′, g′)→ (N, g), Eq. (2.34) is consistent with Proposition 4.
As a special case, let (M, gEucl) be a compact connected codimension-zero submanifold of R2 with nonempty boundary. If ϕ ∈ C∞(M)

vanishes on ∂M and satisfies enϕ ≥ 0 there, put g′ = e2ϕgEucl. Then the quasilocal energy of (M, g′), relative to (M, gEucl), is

E∂M =
1
4∫M

e2ϕRg′ dvolgEucl =
1
4∫M

Rg′ dvolg′. (2.35)

E. Background space in Rn

In this section we make the quasilocal energy more explicit when the background space M is a domain in Rn. We also treat the case of
rotationally symmetric N.

From Corollary 5, if M ⊂ Rn and RN ≥ 0 then EC ≥ 0.

Proposition 7. If M ⊂ Rn then two choices of f : N →M with the same boundary restriction ∂f will give the same value for EC.

Proof. This is because the construction of EC only involves f through the boundary condition on ∂f and the pullback of the connection
on S ∗

M . Since S ∗
M is a trivial bundle with trivial connection, the pullbacks of S ∗

M under two choices of f will be equivalent. ◻

Of course, EC still depends on the intrinsic geometry of ∂N, the extrinsic geometry of ∂N (resp. ∂M) in N (resp. M), and a priori the
interior geometry of N.

Proposition 8. Whenever Ker(D) = 0, the quasilocal energy can be described as follows. Within the spinor module associated to Rn,
let {ϵa}2

n
2 −1

a=1 be an orthonormal basis for Ker(γ0γn − I) and let {ϵ′a}2
n
2 −1

a=1 be an orthonormal basis for Ker(γ0γn + I). Extending ϵa and ϵ′a to
constant-valued sections of SM , let ψa ∈ C∞(N; SN) be a harmonic spinor on N with boundary value in (∂f ) ∗ ϵa ⋅ 1C + Ker(γ0γn + I) and let
ψ′a ∈ C∞(N; SN) be a harmonic spinor on N with boundary value in (∂ f )∗ ϵ′a ⋅ 1C + Ker(γ0γn − I) Then

EC = −2−n/22
n
2 −1

∑
a=1
∫
∂N
(⟨ψa,∇N

enψa⟩ + ⟨ψ′a,∇N
enψ
′
a⟩)dvol∂N. (2.36)

In particular, this is true under the hypotheses of Proposition 2.

Proof. Let ϵ∗
a ∈ S ∗

M denote inner product with ϵa, and similarly for ϵ′, ∗a . Under the isomorphism SM ⊗ S ∗
M ≅ Λ∗ T ∗ M, we claim that

∑a (ϵa ⊗ ϵ∗
a + ϵ′a ⊗ ϵ′, ∗a ) corresponds to 2n/2 ∈ Λ∗ T ∗ M. This is because if I is a nontrivial increasing multi-index with entries from {1, . . . , n}

then Tr(γI Id−γ0γn

2 ) + Tr(γI Id+γ0γn

2 ) = 0, while Tr( Id−γ0γn

2 ) + Tr( Id+γ0γn

2 ) = 2n/2.

On the other hand, if ηa ∈ Ker(γ0γn + I) then T(ηa ⊗ ϵ∗
a ) = −ηa ⊗ ϵ∗

a , and similarly for an element of the form η′a ⊗ ϵ′, ∗a with
η′a ∈ Ker(γ0γn + I). Thus

Ψ = 2−n/2∑
a
(ψa ⊗ f ∗ ϵ∗

a + ψ′a ⊗ f ∗ ϵ′, ∗a ) (2.37)

satisfies DNΨ = 0 and π+(Ψ∣∂N) = 1C. As Ker(D) = 0, it is the unique such solution. Hence

EC = −∫
∂N
⟨Ψ,∇N

enΨ⟩ dvol∂N (2.38)

= −2−n/22
n
2 −1

∑
a=1
(∫

∂N
⟨ψa,∇N

enψa⟩dvol∂N + ⟨ψ′a,∇N
enψ
′
a⟩dvol∂N).

This proves the proposition. ◻

We now consider the case when N is diffeomorphic to a disk, with a rotationally symmetric metric gN . Then (N, gN) is conformally
equivalent to a disk in Rn and by rescaling the disk, we can assume that the conformal equivalence f is an isometry on the boundary.

Proposition 9. In the rotationally symmetric case, if H∂N > 0 and the sectional curvature of ∂N is 1
k2 then

E∂N =
1
2∫∂N

(n − 1
k
−H∂N) dvol∂N. (2.39)

Proof. This follows from (2.32). ◻
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F. Odd dimensional spaces

We now assume that n is odd. The Clifford algebra has a faithful representation S of complex dimension 2
n+1

2 , which breaks up into

two isomorphic spinor representations S+ ⊕ S− of Spin(n). Explicitly, we can write Clifford generators {γα}n
α=1 on S as γα = ( 0 σα

σα 0
), where

{σα}n
α=1 satisfy the Clifford relations on C2

n−1
2 . We again let ϵ be the Z2-grading operator on S.

With this definition of the spinors S, put E = SN ⊗ f ∗ S ∗
M . We can identify E∣∂N ≅ End(SN ∣∂N) with Λ∗ (T ∗ N)∣

∂N
⊕ Λ∗ (T ∗ N)∣

∂N
.

To realize this identification explicitly, put γ0 = (0 −1

1 0
). Let I be an increasing multi-index with entries between 1 and n. Let τ0 denote a new

odd variable. Then an element ωIτI + τ0 ∧ ω′IτI acts on SN ∣∂N by sending ψ to (ωIγI + γ0ω′IγI)ψ.
Define T as in (2.8). For ω1,ω2,ω′1,ω′2 ∈ Λ∗ T ∗ ∂N, we have

((ω1 + τn ∧ ω2) + τ0 ∧ (ω′1 + τn ∧ ω′2))γ0γnψ (2.40)

= γ0γn((ω1 − τn ∧ ω2) + τ0 ∧ (−ω′1 + τn ∧ ω′2))ψ.

Hence the induced action of T on E∣∂N ≅ End(SN)∣∂N is

T(ω1 + τn ∧ ω2,ω′1 + τn ∧ ω′2) = (ω1 − τn ∧ ω2,−ω′1 + τn ∧ ω′2). (2.41)

We consider solutions to the Dirac equation DNψ = 0 on sections ψ ∈ C∞(N; E) with the boundary condition that if ψ∣∂N
= (ω1 + τn ∧ ω2,ω′1 + τn ∧ ω′2) then ω1 = 1C and ω2 = ω′1 = ω′2 = 0, where the overline denotes an orthogonal projection as before. Then the
results of the previous sections have straightforward extensions.

III. LORENTZIAN CASE
This section is about the extension of Sec. II to hypersurfaces in Lorentzian manifolds. Section III A has background material. Section III B

discusses the case when the background space M is a totally geodesic hypersurface in a Lorentzian manifold M. Section III C deals with the
case when M is a compact spatial hypersurface-with-boundary in Rn,1. Finally, in Sec. III D we describe how the results of Sec. III C extend to
when M is a compact spatial hypersurface-with-boundary in a product spacetime R × X.

A. Background information
Let N and M be (n + 1)-dimensional Lorentzian manifolds with signature (−1, 1, . . . , 1). Let N and M be compact connected

n-dimensional spacelike submanifolds of N and M, respectively, with nonempty boundary. Let f : N →M be a smooth spin map so that
for each connected component Z of ∂N, the map ∂f restricts to an isometric diffeomorphism from Z to (∂f ) (Z). By shrinking N and M
to suitable neighborhoods of N and M, respectively, we can assume that f is the restriction of a spin map f : N →M. For simplicity, we will
assume that N and M are spin and that ∂f is a spin diffeomorphism on components of ∂N. We let SN be the standard spinor bundle on N,
and similarly for SM .

We can identify SN ∣N with SN , and similarly for SM .

Remark 4. We could phrase what follows just in terms of N, M and their normal bundles, but it seems more illuminating to include the
ambient spaces N and M.

Remark 5. To clarify the relation between the spinor bundle SN considered here and that considered in Sec. II, we mention some facts
about spinors. Suppose first that n is odd. Then dim (SRn,1) = 2

n+1
2 and dim (SRn,1 ⊗ S ∗

Rn,1) = 2n+1, which equals dim (Λ∗Rn,1). We can identify
SRn,1 ⊗ S ∗

Rn,1 with Λ∗Rn,1. Using a timelike unit vector e0, the latter can be identified with Λ∗Rn⊗̂Λ∗R1. Compare with Sec. II E.
Now suppose that n is even. Then dim (SRn,1) = 2

n
2 and dim (SRn,1 ⊗ S ∗

Rn,1) = 2n. On the other hand, dim (Λ∗Rn,1) = 2n+1. It turns out
that one can identify SRn,1 ⊗ S ∗

Rn,1 , as a Spin(n, 1)-module, withΛ∗ (Rn,1)/(ω ∼ ∗ω). Using a timelike unit vector e0, the latter can be identified
with Λ∗Rn. Compare with Sec. II A.

The restriction to N of the connection on SN has the local form

∇W
σ = eσ +

1
8
ωαβσ[γα, γβ] + 1

2
ω0ασγ0γα, (3.1)
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where α and β are summed from 1 to n. Note that∇W is generally not a unitary connection, because of the last term on the right-hand side of
(3.1). However, the ensuing Dirac-type operator

DW = −
√
−1

n

∑
σ=1

γσ∇W
σ (3.2)

is formally self-adjoint. To verify this, one can use the fact that in normal coordinates around a point of N, one has

[∇W
σ , γα] = ω0ασγ0. (3.3)

The restriction of SM to M is isomorphic to SM . There are corresponding connections on S ∗
M . As in Sec. II, it will be convenient to use

the isomorphism of Spin(n, 1)-modules S ∗
M ≅ SM to transfer the connection from S ∗

M to SM . There is a subtlety in that the isomorphism is
not unitary. If σ ∈ Spin(n, 1) is a transition function for SM then the corresponding transition function for S ∗

M is σ−T . This is related to σ by
σ−T = CσC−1, where C is the charge conjugation matrix. In short, when written on SM , one finds that the connection on S ∗

M takes the local
form

∇̂W
σ̂ = êσ +

1
8
ω̂α̂̂β̂σ [̂γ

α̂ , γ̂ β̂ ] − 1
2
ω̂0̂̂α̂σ γ̂

0̂ γ̂ α̂ . (3.4)

Note the change in sign in the last term as compared with (3.1).
Let∇N be the connection on E = SN ⊗ f ∗ S ∗

M . It takes the local form

∇N
σ = eσ +

1
8
ωαβσ[γα, γβ] + 1

2
ω0ασγ0γα + 1

8
ω̂α̂̂βσ [̂γ

α̂ , γ̂ β̂ ] − 1
2
ω̂0̂̂ασ γ̂

0̂ γ̂ α̂ . (3.5)

The corresponding Dirac-type operator

DN = −
√
−1

n

∑
σ=1

γσ∇N
σ (3.6)

is formally self-adjoint except for the term
√
−1γσ ⋅ 1

2 ω̂0̂̂ασ γ̂
0̂ γ̂ α̂ .

B. Time-symmetric background space
Suppose that M is a totally geodesic subspace of M. Then ω̂0̂̂ασ = 0. We are in a situation analogous to Sec. II, except that N is now a

hypersurface-with-boundary in a Lorentzian manifold. We give the extensions of results from Sec. II.
Let C be a nonempty union of connected components of ∂N. We define the quasilocal energy EC as in Definition 2.

Lemma 5. If f : N →M is an isometric diffeomorphism, and N is totally geodesic in N, then EC = 0.

Proof. The proof is the same as that of Proposition 3. ◻

Define TAB = RN
AB − 1

2 RN gN
AB, for 0 ≤ A, B ≤ n.

Proposition 10. Suppose that M has nonnegative curvature operator. If

2
⎛
⎝

T00 −
¿
ÁÁÀ−

n

∑
α=1

T0αT0α⎞
⎠
≥ ∣Λ2df ∣( f ∗ RM) (3.7)

then EC ≥ 0.

Proof. Using the calculations in Ref. 2, the analog of (2.3) is

(DN)2 = (∇N)∗∇N + 1
2
(T00 + T0αγ0γα) − 1

4
[γσ , γτ](1

8
R̂ α̂̂βστ [̂γ

α̂ , γ̂ β̂ ]). (3.8)

If DNψ = 0, we obtain

− ∫
∂N
⟨ψ,∇E

enψ⟩ dvol = ∫
N
∣∇Nψ∣2 dvol (3.9)

+ ∫
N
⟨ψ,(1

2
(T00 + T0αγ0γα) − 1

4
[γσ , γτ](1

8
R̂ α̂̂βστ [̂γ

α̂ , γ̂ β̂ ]))ψ⟩ dvol.

Using (2.7), the proposition follows. ◻
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We now give an analog of (2.19). If DNψ = 0 then the analog of (2.5) is

∇N
enψ = D∂N

Riemψ +
H∂N

2
− 1

2
γnγiγ̂ n̂ γ̂ ĵ Â̂jiψ −

1
2
ω0iiγ0γnψ + 1

2
ω0niγ0γiψ, (3.10)

where D∂N
Riem is the intrinsic Riemannian Dirac-type operator on ∂N. Then

−∫
∂N
⟨ψ,∇E

enψ⟩ dvol = −∫
∂N
⟨ψ, D∂N

Riemψ⟩ dvol∂N −
1
2∫∂N

H∂N ∣ψ∣2 dvol∂N (3.11)

+ 1
2∫∂N

⟨ψ, γnγiγ̂nγ̂ ĵ Â̂jiψ⟩ dvol∂N

+ 1
2∫∂N

⟨ψ, γ0γnω0iiψ⟩ dvol∂N

− 1
2∫∂N

⟨ψ, γ0γiω0niψ⟩ dvol∂N.

If ψ ∈ CC then the last term in (3.11) vanishes, as T anticommutes with γ0γi,
To analyze the next-to-last term in (3.11), suppose that n is even and 1C = 1C. Writing ψmin∣∂N = 1C + τn ∧ ϕ for ϕ ∈ Ω∗ (∂N), we have

γ0γnψmin∣∂N
= −γnγ0(1C + τn ∧ ϕ). The Z2-grading operator ϵ of SN , when acting on SN ⊗ S ∗

N ≅ Λ∗ T ∗ N, is a fourth root of 1 (depending on
the congruence class of n modulo 4) times

γ1γ2 . . . γn = (−1)
n
2 (E1 − I1)(E2 − I2) . . . (En − In). (3.12)

Applying both sides to 1C gives γ01C = c1Cτ1 ∧ . . . ∧ τn for a complex constant c of unit norm, depending on n. Then γnγ01C =
√
−1

(En − In) ⋅ c1C(τ1 ∧ . . . ∧ τn) = c′1Cτ1 ∧ . . . ∧ τn−1, for another unit constant c′. In particular, the following terms vanish:

⟨1C, γ0γnω0ii1C⟩ = ⟨τn ∧ ϕ, γ0γnω0ii1C⟩ = ⟨1C, γ0γnω0iiτn ∧ ϕ⟩ = 0. (3.13)

As in (2.19), we obtain

EC = −
1
2∫C

H∂N dvol∂N +
1
2∫C
(∂ f )∗ H∂M dvol∂N +Q(ϕ), (3.14)

where Q(ϕ) is an explicit homogeneous expression of order two in ϕ. There is a similar discussion when n is odd.
If K denotes the second fundamental form of N in N then the sum ω0ii on ∂N, which will appear in the next proposition, equals

Tr(K) − K(en, en).

Proposition 11. Suppose that

● M is a convex domain in Rn,
● T00 −

√
−∑n

α=1 T0αT0α ≥ 0,
● H∂N − ∣ω0ii∣ ≥ (∂f ) ∗ H∂M , and
● T00 −

√
−∑n

α=1 T0αT0α > 0 somewhere or H∂N − ∣ω0ii∣ > (∂f ) ∗ H∂M somewhere.
Then Ker(D) = 0.

Proof. The proof is similar to that of Proposition 2. ◻

Proposition 12. Whenever Ker(D) = 0, the quasilocal energy can be described as follows. Within the spinor module associated to Rn,
let {ϵa}2

n
2 −1

a=1 be an orthonormal basis for Ker(γ0γn − I) and let {ϵ′a}2
n
2 −1

a=1 be an orthonormal basis for Ker(γ0γn + I). Extending ϵa and ϵ′a to
constant-valued sections of SM , let ψa ∈ C∞(N; SN) be a harmonic spinor on N with boundary value in (∂f ) ∗ ϵa ⋅ 1C + Ker(γ0γn + I) and let
ψ′a ∈ C∞(NSN) be a harmonic spinor on N with boundary value in (∂ f )∗ ϵ′a ⋅ 1C + Ker(γ0γn − I) Then

EC = −2−n/22
n
2 −1

∑
a=1
∫
∂N
(⟨ψa,∇N

enψa⟩ + ⟨ψ′a,∇N
enψ
′
a⟩)dvol∂N. (3.15)

In particular, this is true under the hypotheses of Proposition 11.

Proof. The proof is the same as for Proposition 8. ◻
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C. Background space in Rn,1

We now let the background space be a more general submanifold of Minkowski space. Let M be the Lorentzian Rn,1 and suppose that
M is a compact connected spacelike hypersurface-with-boundary in M. In general, the term ω̂0̂̂ασ in (3.5) need not be zero and there is an
apparent problem with formal self-adjointness of DN on the interior of N. We can get around this by changing the inner product. We use the
fact that SM is the restriction of the trivial bundle SM to M. Choose a constant timelike unit vector field T in M. There is a corresponding
inner product ⟨⋅, ⋅⟩ T on the trivial bundle SM . Namely, if (⋅, ⋅) is the indefinite Spin(n, 1)-invariant bilinear form on SM then the inner product
on SM is given by ⟨s1, s2⟩ T = (

√
−1c(T )s1, s2), where c(T ) is Clifford multiplication by T . We can then restrict (SM , ⟨⋅, ⋅⟩ T ) to M, dualize to

get an inner product ⟨⋅, ⋅⟩sa on S ∗
M and pullback to N, to obtain an inner product ⟨⋅, ⋅⟩E,sa on E = SN ⊗ f ∗ S ∗

M .
In order to express the boundary conditions, it will be convenient to write things more intrinsically on M. Let U ⊂M be a connected

open subset on which an oriented orthonormal frame {̂e α̂}n
α̂=1 is defined and let m0 ∈ U be a basepoint. Since the connection on S ∗

M is flat,
we can locally write the expression 1

8 ω̂α̂̂β̂σ [̂γ
α̂ , γ̂ β̂ ]⊗ τ̂ σ̂ − 1

2 ω̂0̂̂α̂σ γ̂
0̂ γ̂ α̂ ⊗ τ̂ σ̂ in (3.4) as g−1dg for some g : U → Spin(n, 1). Let ρ : Spin(n, 1)

→ SO(n, 1)+ be the double cover. If ê 0̂(m0) is a unit normal vector to M at m0 then we can partially normalize g by specifying that g(m0)
sends ê 0̂(m0) to T in Tm0 M. The remaining ambiguity in g will be left multiplication by a constant element of Spin(n). On the other hand, a
change of oriented orthonormal frame corresponds to a map ϕ : U → SO(n)which lifts, using the spin structure, to a a map ϕ̃ : U → Spin(n).
The effect of the new frame is to multiply g on the right by ϕ̃−1.

If U1 and U2 are overlapping such domains then their corresponding orthonormal frames will be related by a map ϕ12 : U1 ∩U2

→ SO(n), which we lift using the spin structure to ϕ̃12 : U1 ∩U2 → Spin(n). Then the maps gi : U i → Spin(n, 1) are related on U1 ∩U2

by g1 = u12g2ϕ̃−1
12 , for some constant element u12 ∈ Spin(n). In effect, this uses the fact that ê 0̂ is well-defined on M. Similarly if U1 ∩U2

intersects ∂M then using the fact that the unit normal ê n̂ is well-defined, we can assume that ϕ̃12∣U1∩U2∩∂M
takes values in Spin(n − 1).

On the domain U, put A = g ∗ g and define a weighted inner product ⟨⋅, ⋅⟩S∗
M ,sa by ⟨s1, s2⟩S∗

M ,sa = ⟨s1, As2⟩S∗
M

for s1, s2 ∈ S ∗
M . Left multi-

plication of g by an element of Spin(n) doesn’t change A, so A is independent of choices. The connection (3.4) on S ∗
M is compatible with

⟨⋅, ⋅⟩S∗
M ,sa, since the ambient flat connection on SM is compatible with ⟨⋅, ⋅⟩ T .
Given a smooth spin map f : (N,∂N)→ (M,∂M) which is an isometric spin diffeomorphism on each connected component of ∂N, we

construct the Clifford module E = SN ⊗ f ∗ S ∗
M on N, with the inner product ⟨⋅, ⋅⟩E,sa = ⟨⋅, ⋅⟩∣SN

⊗ f ∗ ⟨⋅, ⋅⟩∣S∗
M ,sa The analog of (2.2) is

∫
N
⟨DNψ1,ψ2⟩E,sa dvolN − ∫

N
⟨ψ1, DNψ2⟩E,sa dvolN (3.16)

= −
√
−1∫

∂N
⟨ψ1, γnψ2⟩E,sa dvol∂N.

Proposition 13. If N satisfies the dominant energy condition T00 ≥
√
−∑n

α=1 T0αT0α then for any ψ ∈ C∞(N; E) satisfying DNψ = 0, we
have

− ∫
∂N
⟨ψ,∇N

enψ⟩E,sa dvol∂N ≥ 0. (3.17)

Proof. On the interior of N, we can think of DN as DW ⊗ Id
C2n/2 . By the calculations in Ref. 2, in this representation we can write

(DN)2 = ((∇N)∗
sa∇N + 1

2
(T00 + T0αγ0γα))⊗ Id

C2n/2 . (3.18)

As DNψ = 0, after integrating by parts we obtain from (3.18) that

− ∫
∂N
⟨ψ,∇N

enψ⟩E,sa dvol∂N (3.19)

= ∫
N
(⟨∇ψ,∇ψ⟩E,sa +

1
2
⟨ψ, (T00 + T0αγ0γα)ψ⟩E,sa)dvol.

The proposition follows. ◻

To follow what was done in Sec. II, we put T = γ0γnγ̂ 0̂ γ̂ n̂ , acting on E∣∂N . We again have T1 = 1. Note that T may not be self-adjoint
with respect to ⟨⋅, ⋅⟩E,sa.

Given σ ∈ Ω∗ (∂N) with Tσ = σ, there are two natural boundary conditions to impose on the equation DNψ = 0; we could ask that
ψ∣∂N ∈ σ + Ker(T + I) or we could ask that ψ∣∂N ∈ σ + (Ker(T − I))�. For concreteness, we take the second choice.

Consider the operator DN acting on elements ψ ∈ C∞(N; E) that satisfy ψ∣∂N ∈ (Ker(T − I))�. This defines an elliptic boundary con-
dition. Let D be the corresponding operator, densely defined on C∞(N; E). Here D may not be self-adjoint but it still has discrete spectrum
with eigenspaces of finite multiplicity.
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We wish to find some ψ ∈ C∞(N; E) so that DNψ = 0 and ψ∣∂N ∈ σ + (Ker(T − I))�. This is an elliptic boundary value problem. Suppose
that we can do this. Note that γn ψ∣∂N ∈ γ

nσ + (Ker(T + I))� Put

H = { η ∈ C∞(N; E) : DNη = 0, η∣∂N ∈Ker(T + I)}. (3.20)

If η ∈ H then from (3.16), we see that ∫ ∂N⟨σ, γnη⟩dvol∂N = 0. Conversely, given σ ∈ Ω∗ (∂N) with Tσ = σ, Fredholm theory implies that
if ∫ ∂N⟨σ, γnη⟩dvol∂N = 0 for all η ∈ H then there is some ψ ∈ C∞(N; E) so that DNψ = 0 and ψ∣∂N ∈ σ + (Ker(T − I))�; cf. Ref. 21,
Theorem 2.4.5. The section ψ is unique up to addition by elements of Ker(D).

As before, C is a nonempty union of connected components of ∂N. We would like to take σ = 1C. To be sure that ψ exists, we may have
to slightly modify this choice. Let Pγn H be orthogonal projection from Ω∗ (∂N) to γn H. We put 1C = 1C − Pγn H1C, take σ = 1C and construct
ψ accordingly.

Definition 3. Put

CC = {ψ ∈ C∞(N; E) : DNψ = 0, ψ∣∂N ∈ 1C + (Ker(T − I))�}. (3.21)

The quasilocal energy is

EC = inf
ψ∈ C(−∫∂N

⟨ψ,∇N
enψ⟩E,sa dvol∂N). (3.22)

Proposition 14. If N =M = Rn,1 and N =M then E∂N = 0.

Proof. In this case, the connection forms satisfy ω̂ = ω. Suppose that n is odd. We can identify E with Λ∗ (T ∗ N) + τ0 ∧Λ∗ (T ∗ N).
Putting γα =

√
−1(Eα − Iα), γ̂ α̂ = Eα + Iα, γ0 =

√
−1(E0 + I0) and γ̂ 0̂ = −(E0 − I0), when acting on Ω∗ (N)⊕ τ0 ∧Ω∗ (N) one can check

that

∇N
σ = eσ + ωαβσEαIβ + ω0ασ(E0Iα + EαI0). (3.23)

In particular,∇N
σ 1 = 0, so DN 1 = 0. It follows that 1 = 1, so 1 ∈ C, with−∫∂N ⟨1,∇N

en 1⟩E,sa dvol∂N = 0. Proposition 13 now implies that E∂N = 0.
The proof when n is even is similar. ◻

For an alternative approach that maintains self-adjointness, if U ⊂M is an open set as before then on U ∩ ∂M, we put

Tsa = [(∂ f )∗ (g ∗ g)]−
1
2 γ0γnγ̂ 0̂ γ̂ n̂ [(∂ f )∗ (g ∗ g)]

1
2 , (3.24)

which is now a self-adjoint idempotent with respect to ⟨⋅, ⋅⟩E,sa. To see that this is globally defined, as mentioned before on an overlap
U1 ∩U2 ∩ ∂M we can assume that ϕ̃12 commutes with γ̂ 0̂ and γ̂ n̂ . As

((u12gϕ̃−1
12 )∗ u12gϕ̃−1

12 )
1
2 = ϕ̃12(g ∗ g)

1
2 ϕ̃−1

12 , (3.25)

we obtain

[(∂ f )∗ (g ∗
1 g1)]

− 1
2 γ0γnγ̂ 0̂ γ̂ n̂ [(∂ f )∗ (g ∗

1 g1)]
1
2 (3.26)

= (∂ f )∗ ϕ̃12{[(∂ f )∗ (g ∗
2 g2)]

− 1
2 γ0γnγ̂ 0̂ γ̂ n̂ [(∂ f )∗ (g ∗

2 g2)]
1
2 }(∂ f )∗ ϕ̃−1

12 .

Taking into account that ϕ̃12 encodes how spinors transform, it follows that Tsa is globally defined on ∂N. We still have Tsaγn + γnTsa = 0.

Lemma 6. Consider the operator DN on elements ψ ∈ C∞(N; E) satisfying the boundary condition

(Tsa + I)ψ∣∂N = 0. (3.27)

It is formally self-adjoint.
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Proof. If ψ1,ψ2 ∈ C∞(N; E) satisfy (Tsa + I)ψ1∣∂N = (Tsa + I)ψ2∣∂N = 0 then

∫
∂N
⟨ψ1, γnψ2⟩E,sa dvol∂N = −∫

∂N
⟨ψ1, γnTsaψ2⟩E,sa dvol∂N (3.28)

= ∫
∂N
⟨ψ1, Tsaγnψ2⟩E,sa dvol∂N

= ∫
∂N
⟨Tsaψ1, γnψ2⟩E,sa dvol∂N

= −∫
∂N
⟨ψ1, γnψ2⟩E,sa dvol∂N ,

so ∫∂N ⟨ψ1, γnψ2⟩E,sa dvol∂N vanishes. Using (3.16), the lemma follows. ◻

With reference to Lemma 6, let D be the self-adjoint extension. It has compact resolvent.
To find the right boundary value problem, we want a section σ of E∣∂N so that Tsaσ = σ. Identifying E∣∂N with End(SN ∣∂N), an initial

attempt would be the operator sC = 2−n/21C[(∂ f )∗ (g ∗ g)]−
1
2 when acting on SN ∣∂N . We note that (g ∗ g)− 1

2 is an isometry from (S ∗
M , ⟨⋅, ⋅⟩)

to (S ∗
M , ⟨⋅, ⋅⟩sa).
More explicitly, at a point n ∈ ∂N, let {va}2

n
2

a=1 be an orthonormal basis of SN and let v ∗
a denote inner product with respect to va. Then

we put

sC = 2−n/21C(∂ f )∗ (g ∗ g)−
1
2 ⋅ Id = 2−n/21C

2
n
2

∑
a=1

va ⊗ (∂ f )∗ (g ∗ g)−
1
2 v ∗

a . (3.29)

If we divide {va}2
n
2

a=1 into orthonormal bases for the ±1-eigenspaces of γ0γn then one sees that TsasC = sC.
Let π± denote orthogonal projections onto the±1-eigenspaces of Tsa acting on sections of E∣∂N . As before, we may have to slightly modify

the boundary data sC to ensure that we can solve the boundary value problem. Put sC = sC − Pγn Ker(D)∣∂N
sC. Then there is some ψ ∈ C∞(N; E)

so that DNψ = 0 and π+(ψ∣∂N) = sC. The section ψ is unique up to addition by elements of Ker(D). We define Esa
C as in Definition 2, using

⟨⋅, ⋅⟩E,sa.

Proposition 15. If N satisfies the dominant energy condition then EC ≥ 0 and Esa
C ≥ 0.

Proof.This follows from Proposition 13. ◻

Proposition 16. EC and Esa
C only depend on f through its boundary value ∂f .

Proof. The proof is the same as for Proposition 7. ◻

The quasilocal energy EC depends on the choice of constant timelike unit vector field T in Rn,1. By minimizing over such choices, we
obtain the quasilocal mass.

Definition 4. The quasilocal mass is MC = inf T EC.

D. Background space in a product manifold
In Sec. V, when the background space was a subspace of Rn,1, we effectively performed a gauge transformation in order to make ∇̂W

locally trivial. This had the effect of making the Dirac-type operator DN formally self-adjoint on the interior of N. Looking at the connection
(3.4), one sees that what one really needs is a gauge transformation to make ∇̂W unitary. This can be achieved if the connection on the ambient
spinor bundle SM is unitary. The easiest situation in which this is guaranteed is when the Lorentzian manifold M is an isometric product R × X
for some n-dimensional Riemannian spin manifold X. Of course, this includes the case when M = Rn,1.

Let M be a spacelike hypersurface with boundary in M = R × X. As in Sec. V, we can find local maps g : U → Spin(n) on M so that

g(1
8
ω̂α̂̂β̂σ [̂γ

α̂ , γ̂ β̂ ]⊗ τ̂ σ̂ − 1
2
ω̂0̂̂α̂σ γ̂

0̂ γ̂ α̂ ⊗ τ̂ σ̂ )g−1 + g dg−1 (3.30)

is a one-form with values in skew-Hermitian matrices (as opposed to its vanishing in Sec. V). We can assume that g(m0) sends ê 0̂(m0) to
the timelike unit vector ∂t in Tm0 M. On an overlap U1 ∩U2, the maps g1 and g2 are related by g1 = u12g2ϕ̃−1

12 for maps u12, ϕ̃12 : U1 ∩U2

→ Spin(n), where u12 is covariantly constant and ϕ̃12 comes from the change of local orthonormal frame.
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On the domain U ⊂M, we put A = g ∗ g and define an inner product ⟨⋅, ⋅⟩S∗
M ,sa by ⟨s1, s2⟩S∗

M ,sa = ⟨s1, As2⟩S∗
M

.

Proposition 17. Suppose that X has nonnegative curvature operator. If ψ ∈ C∞(N; E) satisfies DNψ = 0 and

2
⎛
⎝

T00 −
¿
ÁÁÀ−

n

∑
α=1

T0αT0α⎞
⎠
≥ ∣Λ2df ∣( f ∗ RX) (3.31)

then −∫∂N ⟨ψ,∇E
enψ⟩ ≥ 0.

Proof. After making local gauge transformations, the proof is the same as that of Proposition 13. ◻

We can define EC and Esa
C as in Sec. V. The analogs of Propositions 15 and 16 hold.
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