Homework 3, Math 277, due Friday, March 20.

Given $\kappa > 0$, an ancient solution is κ -noncollapsed at all scales if: For any r > 0 and any radius-r metric ball B in a time slice, for which $|Riem| \le r^{-2}$ on B, we have $r^{-n} \operatorname{vol}(B) \ge \kappa$.

Any blowup limit of a finite-time singularity is an ancient solution which is κ -noncollapsed at all scales for some $\kappa > 0$ (provided that the original Ricci flow is on a compact manifold).

The following manifolds have standard ancient solutions. For which of them is there some $\kappa > 0$ so that it is κ -noncollapsed at all scales? Justify your answer.

- 1. \mathbb{R}^n .
- 2. $\mathbb{R}^{n-1} \times S^1$.
- $3. T^n.$
- 4. S^n , where $n \geq 2$.
- 5. $\mathbb{R} \times S^{n-1}$, where $n \geq 3$.
- 6. The cigar soliton.
- 7. $\mathbb{R} \times (cigar\ soliton)$.
- 8. The Bryant soliton. (This is a 3-dimensional rotationally symmetric gradient steady soliton. The metric at time 0 takes the form $g = dr^2 + \mu(r)h_{S^2}$, where h_{S^2} is the standard metric on S^2 and $\mu(r) \sim r$ for large r. Its sectional curvatures decay like r^{-1} .)