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Abstract. Building on work of [BHW21], we study the action of the
homeomorphism group of a surface S on the fine curve graph C†(S).
While the definition of C†(S) parallels the classical curve graph for map-
ping class groups, we show that the dynamics of the action of Homeo(S)
on C†(S) is much richer: homeomorphisms induce parabolic isometries
in addition to elliptics and hyperbolics, and all positive reals are realized
as asymptotic translation lengths.

When the surface S is a torus, we relate the dynamics of the ac-
tion of a homeomorphism on C†(S) to the dynamics of its action on the
torus via the classical theory of rotation sets. We characterize home-
omorphisms acting hyperbolically, show asymptotic translation length
provides a lower bound for the area of the rotation set, and, while no
characterisation purely in terms of rotation sets is possible, we give suf-
ficient conditions for elements to be elliptic or parabolic.

1. Introduction

For a closed surface S of genus g ≥ 1, the classical curve graph C(S)
has vertex set the isotopy classes of essential simple closed curves on S,
with edges between pairs of isotopy classes that can be realized disjointly
(a slight modification is needed for genus 1 surfaces). Masur and Minsky
[MM99, MM00] showed that the graph C(S) is Gromov hyperbolic, a re-
sult which has become an essential tool in the study of the geometric and
algebraic structure of the mapping class group Map(S), see for example
[BM08, Mah11, BKMM12, BBF15, DGO17].

In [BHW21] three of the authors introduced the fine curve graph C†(S)
to study the group of all homeomorphisms of S. This graph has essential
simple closed curves as vertices, so admits a faithful action of Homeo(S)
by isometries. It is shown in [BHW21] that C†(S) has infinite diameter
and is hyperbolic (here, the assumption on positive genus is necessary, see
[BHW21, Section 5.2]). This enables large scale geometric techniques for
studying Homeo(S) via its action on C†(S), for instance, stable commutator
length and fragmentation norm on Homeo0(S) are unbounded, answering a
question posed by Burago, Ivanov, and Polterovich [BIP08].

In this paper, we show that there is a rich correspondence between the
dynamics of the induced action of a homeomorphism on C†(S) and its dy-
namics on the surface S itself. We first address this in a general setting, then
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specialize to the case of the torus where we study the interactions between
the curve graph and the existing dynamical theory of rotation sets for torus
homeomorphisms.

1.1. General results. Isometries of hyperbolic metric spaces admit a dy-
namical trichotomy as elliptic, parabolic or hyperbolic according to the as-
ymptotic translation length and diameter of orbits (see Section 2 for a review
of definitions). In the classical setting of C(S), it follows from [MM99, Propo-
sition 4.6] and the Nielsen–Thurston classification [Thu88] that no mapping
classes act parabolically. By contrast, we show the following.

Theorem 1.1 (Parabolic examples). For any closed orientable surface S 6=
S2 there exist isotopically trivial homeomorphisms of S whose action on
C†(S) is parabolic.

The proof of Theorem 1.1 is via explicit constructions, some of which also
yield smooth examples. Hyperbolic and elliptic isometries are much easier to
build: for the elliptic case, it is easy to define many homeomorphisms which
fix a given curve, and many examples of hyperbolics are given in [BHW21].

Our next result shows that the action of Homeo(S) on C†(S) is dynam-
ically very rich; it may be interpreted as giving some justification of the
pervasiveness of hyperbolic examples.

Theorem 1.2 (Continuity). Let S have genus g ≥ 1. Asymptotic transla-
tion length on C†(S) is a continuous function on Homeo(S). Consequently,

(1) all nonnegative real numbers can be realized as asymptotic translation
lengths in Homeo0(S), and

(2) hyperbolicity is an open condition in the C0 topology.

Interestingly, while the set of elliptic mapping classes is not open, one can
easily construct examples of open subsets of Homeo(S) consisting entirely
of elliptics, see Construction 3.3, which can be taken to be smooth. Hence
hyperbolicity is not generic in the C0 topology.

We highlight another key difference to the classical setting of C(S) via
Theorem 1.2. Indeed, Bowditch [Bow08] proved that asymptotic translation
lengths on C(S) belong to 1

mZ with m depending only on S i.e. they are uni-
formly rational. On the other hand Theorem 1.2 shows that all nonnegative
reals occur as asymptotic translation lengths on C†(S).

1.2. Torus homeomorphisms and rotation sets. In the case of the torus
T = R2/Z2, there is a well-developed theory of the dynamics of isotopically
trivial homeomorphisms via their rotation sets, subsets of R2 which, loosely
speaking, measure the average displacement of points under iteration. The
influential paper [MZ89] of Misiurewicz and Ziemian sparked a general pro-
gram to relate the dynamics of torus homeomorphisms to the geometric and
topological properties of their rotation sets. Their work shows that rota-
tion sets are compact and convex, so these are either points, line segments
or have nonempty interior. Each of these do in fact arise: by considering
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homeomorphisms of the torus which preserve a foliation by circles and act
like a rotation on each of those circles, it is easy to produce examples of
homeomorphisms whose rotation set is a singleton or a segment of rational
slope containing rational points. Homeomorphisms whose rotation set is a
segment with irrational slope were constructed by Katok (see [Han89, Exam-
ple 1.4] and [Kwa07]); while Avila announced a construction of an example
whose rotation set is a segment contained in a line of irrational slope and
with no rational point. Le Calvez and Tal [LCT18] introduced a new orbit
forcing theory and proved, among other results, that an irrational slope line
rotation set cannot have a rational point in its interior, which verifies a case
of the Franks–Misiurewicz conjecture [FM90].

We show that the topology of the rotation set classifies homeomorphisms
of the torus which act hyperbolically on C†(T ):

Theorem 1.3 (Hyperbolic characterisation, special case). Let f ∈ Homeo0(T ).
The following are equivalent

(1) f acts hyperbolically on C†(T ),
(2) ρ(f) has non-empty interior, and
(3) there is a finite, f -invariant set P ⊂ T such that the restriction of

f to T − P represents a pseudo-Anosov mapping class.

We also show that the area of the rotation set is bounded from below in
terms of the square of the asymptotic translation length, see Proposition 5.2.

The above theorem highlights a new connection between geometry of
C†(S), dynamics via the rotation set, and topology via the mapping class
represented in the complement of an invariant finite set of points. We note
that the implication from (2) to (3) above was already known: it is a con-
sequence of the work of Franks [Fra89] and Llibre–MacKay [LM91]. The
implication from (3) to (2) is more subtle because the rotation vectors of
P may be equal. Nonetheless Boyland [Boy09] shows that the Thurston
representative on T − P has rotation set with non-empty interior, and so
(2) can be deduced from Nielsen fixed point theory and the convexity of the
rotation set. In this paper we prove (1) implies (2) and (3) implies (1) using
different methods.

Following [Doe97], one may also define a rotation set for homeomorphisms
of T that admit a power isotopic to a (power of a) Dehn twist map. This set
measures the speed of orbits transversally to the twist; see Definition 2.14.
Using this, we extend Theorem 1.3 to give an analogous characterisation
applicable to all homeomorphisms of T . The precise statement is given in
Theorem 5.3 below.

One might hope that elliptic and parabolic isometries of C†(T ) could sim-
ilarly be distinguished by their rotation sets. This is half-true: we show
that one can give sufficient conditions separately for parabolicity and ellip-
ticity, but also show via explicit examples that one cannot hope to give both
sufficient and necessary conditions as in Theorem 1.3.
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Theorem 1.4. Let f ∈ Homeo0(T ). If ρ(f) is a segment of irrational
slope, then f acts on C†(T ) parabolically. If ρ(f) is a segment of rational
slope containing rational points, then f acts elliptically.

Note that there are many elliptic elements whose rotation set is a singleton
e.g. any homeomorphism whose support is contained in a disk has null
rotation set. Thus, the condition on elliptics in Theorem 1.4 is not necessary.
For parabolics, in Section 6 we also show

Proposition 1.5. There are homeomorphisms f that act parabolically on
C†(T ) with ρ(f) = {(0, 0)}.

This implies, in particular, that one cannot hope to distinguish elliptics
from parabolics via rotation sets alone. Some of our examples can be chosen
to be smooth.

1.3. Further questions. An interesting related question is to study actions
on analogous graphs for infinite type surfaces, as a kind of intermediate
point between C†(S) and C(S). Work of Bavard [Bav16] and of Horbez–
Qing–Rafi [HQR21] shows that many of these groups admit dynamically
interesting actions on hyperbolic metric spaces. However, there is no known
analog of the Nielsen–Thurston classification, and whether these actions
have parabolic elements appears to be open.

It is natural to try to extend Theorem 1.3 on rotation sets for tori to the
case of higher genus surfaces. We conjecture that the equivalence of (1) and
(3) should hold generally. However, existing analogs of the rotation set on
higher genus surfaces do not lend themselves as easily to such an analysis as
we do here. Guihéneuf and the fourth author [GM22] recently introduced
the notion of homotopic rotation sets, and proved that the desired periodic
points exist under slightly stronger conditions on the corresponding rotation
sets, giving a step towards the equivalence of statements analogous to (2)
and (3).

There is also the question of the relationship between the asymptotic
translation length on the fine curve graph, and the topological entropy of
the homeomorphism. Since homeomorphisms supported on a disc can have
arbitrarily large topological entropy, there can be no upper bound on entropy
in terms of the asymptotic translation length. On the other hand, a lower
bound seems to be within reach. For the torus, the area of the rotation
set is bounded from below in terms of the asymptotic translation length, see
Proposition 5.2 below. The work of Kwapisz [Kwa95] provides lower bounds
on the topological entropy in terms of shape and area of the rotation set.

1.4. Outline. The paper is organised as follows. In Section 2 we briefly
provide the necessary background for our theorems and proofs. In Section 3
we show that the asymptotic translation length of a homeomorphism on
C†(S) is C0-continuous, and therefore Cr-continuous for 1 ≤ r ≤ ∞. In
Section 4 we provide useful bounds on distances in C†(S), which enable us
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to give statements about rotation sets given actions on curves, or vice versa.
These are of independent interest, but also used in our later proofs. In
Section 5 we provide the proofs of Theorems 1.3 and 5.3. In Section 6 we
provide the proofs of Theorem 1.1 and Proposition 1.5.

Acknowledgments. Bowden and Hensel greatly acknowledge the support
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by the DFG. Mann was partially supported by NSF CAREER grant DMS
1844516 and a Sloan Fellowship. Militon was supported by the ANR project
Gromeov ANR-19-CE40-0007. Webb was supported by an EPSRC Fellow-
ship EP/N019644/2.

2. Background

In this section, we set up notation and recall basic facts from coarse
geometry and topological dynamics to be used later in this work.

2.1. Hyperbolic spaces and their isometries. Let X be a geodesic met-
ric space.

Notation 2.1. For points x, y in X, we denote by [x, y] any geodesic be-
tween them. We make the convention that statements about [x, y] are sup-
posed to hold for any choice of geodesic.

We say that X is δ–hyperbolic if geodesic triangles are δ–slim i.e. if for
all points x, y, z ∈ Z we have

[x, y] ⊂ Nδ([y, z] ∪ [z, x]).

Here, Nδ denotes the closed δ-neighbourhood. We say that X is Gromov
hyperbolic (or just hyperbolic) if X is δ-hyperbolic for some δ ≥ 0. For
details, background, and basic properties of Gromov hyperbolic spaces, we
refer the reader to [BH99, Chapter III.H]. It is a straightforward consequence
of the definition that the Hausdorff distance between any geodesics joining
the same two points is bounded by δ.

For an isometry g of a Gromov hyperbolic space X, the asymptotic trans-
lation length is defined as

|g|X := lim
n→∞

1
ndX(x, gn(x))

It is a standard exercise to see that this limit exists and is independent of
x. This independence immediately implies that the asymptotic translation
length is a conjugacy invariant of isometries of X.

We have the following classification of isometries [Gro87, § 8]:

Definition 2.2. Let g be an isometry of a Gromov hyperbolic space. We
say that g is

Hyperbolic: if the asymptotic translation length is positive,
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Parabolic: if the asymptotic translation length is zero but g has no
finite diameter orbits, and

Elliptic: if g has finite diameter orbits.

Note again that these categories are invariant under conjugation by isome-
tries. The reader may recall that there is an equivalent reformulation of this
trichotomy in terms of fixed points on the Gromov boundary of X, but we
do not require this point of view in the present work.

2.2. Surfaces and Curves. Throughout this article, surface will mean a
closed, oriented surface S of genus at least 1, with T being used to denote the
torus. A curve on such a surface will always be required to be an essential
closed loop (i.e. non-trivial in π1(S)), frequently we restrict our attention
to simple (i.e. topologically embedded) curves.

The main geometric tool we use in this article is the following variant of
the classical curve graph, which is the 1-skeleton of the curve complex, see
[MM99, Section 2.2] for a definition.

Definition 2.3. For a surface S of genus at least two, the fine curve graph,
denoted by C†(S), is the graph with vertex set equal to the set of essential
simple closed curves in S, and edges given by disjointness.

In the case of the torus T , vertices of C†(T ) are again essential simple
closed curves, but two vertices are now joined by an edge when the corre-
sponding curves are either disjoint or intersect topologically transversely at
most once.

We endow C†(S) with a metric in which each edge is isometric to the
unit interval, and the distance between two vertices is given by the minimal
length of a path between them. The distance between two vertices α and β
of C†(S) will be denoted by d†(α, β).

We need two facts about C†(S) which are true for any surface S of genus
at least 1 (compare also [BHW21, Section 5.2] for comments on the torus
case):

Theorem 2.4 ([BHW21, Theorem 3.8]). The graph C†(S) is Gromov hy-
perbolic.

Theorem 2.5 ([BHW21, Lemma 4.2]). Suppose that F : S → S is a home-
omorphism fixing a finite set P ⊂ S, and let ϕ be the mapping class of S−P
defined by F . Then,

|F |C†(S) ≥ |ϕ|C(S−P ).

By the work of Masur–Minsky (see [MM99, Proposition 4.6]), if ϕ is
pseudo-Anosov, then |ϕ|C(S−P ) > 0 hence F acts hyperbolically on C†(S).

Remark 2.6 (Smooth versus non-smooth). In [BHW21], the graph C†(S)
has vertices corresponding to smooth curves, whereas for the applications
here we need to allow all essential curves as vertices. As discussed in
[BHW21, Remark 3.2], these two graphs are quasi-isometric, which yields
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Theorem 2.4. The argument given in [BHW21] for Theorem 2.5 is stated
in the smooth context but applies equally well in the C0 setting, giving the
statement above.

In addition, we use the following easy lemma:

Lemma 2.7. Suppose that S is any surface of genus g ≥ 1, and suppose
that α and β are two curves on S intersecting in a finite number of points.
Then

d†(α, β) ≤ 2#(α ∩ β) + 2

This lemma can be deduced easily from Lemma 3.4 of [BHW21] and the
corresponding estimate for usual curve graphs. We give an alternative proof
using curve surgery, as a warm-up for later arguments which will use similar
tools.

Proof. Suppose that α and β are two curves which intersect in a finite num-
ber of points. Let a ⊂ α be an embedded subarc such that a∩ β is equal to
the endpoints of a. Denote by b′, b′′ ⊂ β the two connected components of
β \ a. Then a ∪ b′ and a ∪ b′′ are simple closed curves, at least one of which
is essential. Call this essential curve β′.

If a approaches β from the same side at both endpoints, then β′ is homo-
topic to, and disjoint from, a curve β′′ which is disjoint from β. If instead
a approaches β from opposite sides at both endpoints, one can instead find
such a curve β′′ that intersects β in a single point.

Thus, this curve β′′ obtained from β by surgery along a has distance at
most 2 from β in C†(S). By construciton, β′′ can be taken to intersect α in
strictly fewer points than β, which shows Lemma 2.7 by induction. �

Remark 2.8. The bound given in Lemma 2.7 is far from optimal. In fact,
one could also bound the distance d† by the logarithm of the intersection
number (as in the case of usual curve graphs, see [Hem01]). Namely, by
choosing the right subarc a, one can ensure that both choices for β′′ are
essential, so we can halve the number of intersections in each step.

2.3. Rotation sets for torus homeomorphisms. Here and in what fol-
lows, we view the torus with its standard Euclidean structure T = R2/Z2.

Definition 2.9. Let f̃ ∈ Homeo0(R2) be a lift of an isotopically trivial

homeomorphism of T . The rotation set ρ(f̃) ⊂ R2 is the set of vectors

ρ(f̃) :=
{
v ∈ R2 : ∃xi ∈ R2, ni →∞ s.t. (f̃ni (xi)−xi)

ni
→ v

}
.

We recall some basic properties of ρ. The following are easy consequences
of the definition:

(1) For p ∈ Z2 and n ∈ Z, we have

ρ(f̃n + p) = nρ(f̃) + p
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(2) For any lift g̃ of an isotopically trivial torus homeomorphism, we
have

ρ(g̃f̃ g̃−1) = ρ(f̃),

and
(3) For any matrix A ∈ SL2(Z), we have

ρ(Af̃A−1) = A(ρ(f̃)).

Another important and much less trivial property is the result of Misi-
urewicz and Ziemian [MZ89] that ρ(f̃) is compact, convex, and equal to the
convex hull of the pointwise rotation set

ρp(f̃) :=
{
v ∈ R2 : ∃x ∈ R2, ni →∞ s.t. (f̃ni (x)−x)

ni
→ v

}
.

Thus, ρ(f̃) is either a point, a closed interval, or has non-empty interior.
These, and many other properties of interest (for example, the property
of containing a point with rational coordinates) are invariant under integer
translations and therefore independent of the lift of f chosen. When con-
sidering such questions, we will often abuse notation and simply write ρ(f),

rather than ρ(f̃), thinking of ρ(f) as a set well defined up to translation by
Z2.

As a byproduct of the proof of the convexity of the rotation set, Misi-
urewicz and Ziemian obtained the following result that we will need. Fix a
fundamental domain D ⊂ R2. For any integer n > 0, let

1

n
f̃n(D) =

{
f̃n(x)

n
: x ∈ D

}
.

Lemma 2.10 (Misiurewicz-Ziemian [MZ89]). The sequence of compact sub-

sets ( 1
n f̃

n(D)) converges to ρ(f̃) in the Hausdorff topology.

As mentioned in the introduction, there is a rich and well-developed the-
ory relating the dynamics of torus homeomorphisms to the geometric and
topological properties of their rotation sets. A general introduction can
be found in the original work of Misiurewicz and Ziemian [MZ89], and a
more detailed description of recent developments in the survey [Beg07] (in
French). We will need the following two important results.

Theorem 2.11 (Franks [Fra89]). If (a/q, b/q) is a point with rational coor-

dinates in the interior of ρ(f̃), then f has a periodic point of period q.

Theorem 2.12 (Llibre–MacKay, [LM91]). Suppose f ∈ Homeo0(T ) has
rotation set with non-empty interior. Then there exists a finite f -invariant
set P such that the restriction of f to T − P is a pseudo-Anosov mapping
class.

The existence of the finite set P comes from Franks’s theorem quoted
above. Llibre–Mackay’s insight was to show that the orbits of any three
periodic points with non-collinear rational rotation vectors gives the desired
set P with the pseudo-Anosov property.
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Dehn twists. As discussed in [Doe97], homeomorphisms of T isotopic to
a Dehn twist map also have a rotation set relative to the direction of the
twist. We explain this now.

Definition 2.13. Let α be a curve of T . We say a homeomorphism f of T
is a Dehn twist map around α when the following hold

(1) the support of f is contained in an embedded annulus A ⊂ T which
contains α, and

(2) there exists a chart ϕ : A→ R/Z×[0, 1] which sends α to R/Z×{1/2}
and r ∈ Z \ {0} such that ϕf|Aϕ

−1 = τ r, where

τ : R/Z× [0, 1] → R/Z× [0, 1]
(x, y) 7→ (x+ y, y)

.

Fix a simple (oriented) essential loop α and let Ť denote the associated
cyclic cover of T . We fix an identification of Ť with R/Z × R, with deck
group equal to the integral translations in the second coordinate, oriented
so that a lift of α is oriented in the positive direction. Let f ∈ Homeo(T )
be isotopic to a Dehn twist map around α, and let f̌ : Ť → Ť be a lift of f .
Let p2 : Ť = R/Z×R→ R be the projection to the second co-ordinate, and

t : Ť → Ť
(x, y) 7→ (x, y + 1)

.

Definition 2.14. [Doe97] The rotation set ρα(f̌) of the lift f̌ is the subset
of R consisting of accumulation points of{

p2(f̌
n(x̌))− p2(x̌)

n
: n ≥ 1 and x̌ ∈ Ť

}
.

This set is a segment of R. Similarly to the case of homeomorphisms iso-
topic to the identity, it follows from the definition that ρα(f) = ρgα(gfg−1)
for any homeomorphism g of T , and for any integers p and q, we have

ρ(tpf̌ q) = qρ(f̌) + p.

Thus, two lifts of f to Ť have rotation sets which differ by an integral
translation of R, and so we use ρα(f) (and occasionally ρ(f) when α is
understood), rather than ρα(f̌) to mean the rotation set of any fixed lift
when we wish to speak of properties independent of choice of lift.

3. Asymptotic Translation Length

In this section we prove continuity of asymptotic translation length. As
a direct consequence, one may conclude that hyperbolicity for the action
on C†(S) is an open condition on Homeo(S). Before embarking on the
proof, we take a brief detour to discuss the contrasting results that there
are hyperbolic elements arbitrarily close to the identity, as well as open sets
of elliptic elements.

Here, and for the remainder of the paper, | · | always denotes asymptotic
translation length on the curve graph C†(S).
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Lemma 3.1. For any closed surface S of genus at least 1, any C0 neigh-
bourhood of the identity contains homeomorphisms acting hyperbolically on
C†(S).

Proof. First assume that S has genus at least 2. Recall that a filling loop
γ means that every loop homotopic to γ intersects every essential simple
closed curve on S. Let p ∈ S be a point, and let γ : [0, 1]→ S be a smooth,
filling loop based at p, with transverse self-intersections.

Next, choose times 0 = t0 < . . . < tn = 1 so that γ|[ti,ti+1] has length at
most ε. By possibly adding more times before self-intersection points, we
may assume that γ can be covered with disks D1, . . . , D2k so that

(1) Each Di has diameter < ε,
(2) Di ∩Dj = ∅ if i− j is even, and
(3) γ|[ti,ti+1] ⊂ Di for all i.

We let G0 (respectively, G1) be the endpoint of the isotopy supported in the
union of all Di for i even (respectively, odd) and in each such Di slides γ(ti)
to γ(ti+1) along γ|[ti,ti+1]. By choosing ε small enough,

F = G1 ◦G0

is arbitrarily close to the identity. We claim that F acts on C†(S) hyperbol-
ically. To this end, it suffices to show that some power of F does. Observe
that F k is a homeomorphism of S fixing p, and (by composing the isotopies
defining G0, G1), there is an isotopy from F k to id whose trace of the point
p is exactly the loop γ. This implies that the isotopy class [F k] lies in the
kernel of the forgetful map

1→ π1(S, p)→ Mcg(S − p)→ Mcg(S)→ 1

and corresponds exactly to the loop γ ∈ π1(S, p) (compare [FM12, Sec-
tion 4.2] for this Birman exact sequence). Since γ is filling, Kra’s theorem
[Kra81] implies that the mapping class [F k] ∈ Mcg(S−p) is pseudo-Anosov.
Theorem 2.5 then implies that F k (hence F ) acts hyperbolically on C†(S).

If S = T is the torus, we need to choose γ to be filling in T \ {q} for some
point q (as the Birman exact sequence requires at least one puncture in the
case of the torus), and argue analogously. �

Remark 3.2. We emphasise that the construction in Lemma 3.1 is flexible
– the choice of the filling loop γ is arbitrary, and we can construct a root of
the corresponding point-pushing pseudo-Anosov.

The following gives a general construction of open sets of elliptic elements
which can be taken arbitrarily close to (though not containing) the identity.

Construction 3.3 (Open sets of elliptics). Let A ⊂ S be an embedded
essential, closed annulus, and f : S → S a homeomorphism isotopic to the
identity and sending A into the interior of A. Let α denote a boundary curve
of A. There exists a neighborhood of f in Homeo0(S) consisting of homeo-
morphisms which send A into the interior of A. Any such homeomorphism
g will satisfy that gN (α) ∩ α = ∅, giving a bounded orbit.
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3.1. Proof of Theorem 1.2. We now prove the following result.

Theorem 3.4. Let fm → f in the C0-topology on Homeo(S). Then

|fm| → |f |.
In particular, the set of homeomorphisms acting hyperbolically on C†(S) is
an open set in the C0-topology.

This is the main technical content of Theorem 1.2 stated in the introduc-
tion, indeed we have:

Proof of Theorem 1.2 given Theorem 3.4. Openness of hyperbolicity is im-
mediate from the continuity of asymptotic translation length. What re-
mains to show is that all positive real values are realized. In [BHW21], it
is shown that taking powers of elements which act as pseudo-Anosov home-
omorphisms relative to a fixed finite set produces elements with arbitrarily
large translation length. Since Homeo0(S) is connected, this implies all
positive real values are attained. �

The proof of Theorem 3.4 will occupy the rest of the section. We begin
with the following elementary lemma.

Lemma 3.5. Suppose that gm is a sequence of homeomorphisms converging
to a homeomorphism g in the C0-topology, and let α be an essential simple
closed curve. Then, for all m large enough, we have

d†(gmα, gα) ≤ 2.

Proof. Let C be a small collar neighbourhood of gα, so that the boundary
of C consists of two simple closed curves disjoint from gα. Then, for all m
large enough, we have

gmα ⊂ int(C),

which implies the claim. �

We now pick a sequence fm with limit f as in Theorem 3.4.

Lemma 3.6. Given any n ∈ N and essential simple closed curve α, for all
sufficiently large m we have

n|fm| = |fnm| ≤ d†(α, fnα) + 2.

Proof. The first equality is immediate from the definition of asymptotic
translation length. For the inequality, we have

|fnm| ≤ d†(α, fnmα) ≤ d†(α, fnα) + d†(fnα, fnmα),

and since fnm → fn as m → ∞, we invoke Lemma 3.5, which shows that
d†(fnα, fnmα) ≤ 2 for sufficiently large m, and we are done. �

As a consequence of this lemma we have

lim sup
m→∞

|fm| ≤ |f |
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Figure 1. The situation in the proof of Lemma 3.7 (left)
and 3.8 (right)

In particular, if |f | = 0, we have limm→∞ |fm| = 0 = |f | and we are done.
Hence, we may from now on assume that |f | > 0 and we aim to prove that
lim infm→∞ |fm| ≥ |f |.

Let δ be a hyperbolicity constant for C†(S), so that any geodesic triangle
in C†(S) is δ–slim, and any geodesic quadrilateral is 2δ–slim.

The first step will be to choose a convenient curve α to serve as a base-
point.

Lemma 3.7. There is α ∈ C†(S) and N ∈ N such that for all n ≥ N we
have

d†(α, [f−nα, fnα]) ≤ 2δ,

and furthermore, for sufficiently large m,

d†(α, [f−Nm α, fNmα]) ≤ 2δ.

Proof. Start with any β ∈ C†(S). Then the sequence (fnβ)n is a C-quasi-
geodesic for some C > 0. By [BH99, Theorem III.H.1.7.] (quasi-geodesics
fellow travel geodesics) there exists a constant B = B(δ, C) such that any
geodesic segment [f iβ, f jβ] lies within Hausdorff distance B of (fkβ)i≤k≤j .

Take any N ∈ N satisfying

N > max

{
3B + 3δ

|f |
,
2δ +B + 4

|f |

}
and choose α to be a closest-point projection of β to [f−Nβ, fNβ]. We have
that d†(β, α) ≤ B. Fix n > N and consider a geodesic segment [f−nα, fnα]
with n ≥ N . Now we study the geodesic quadrilateral given by the afore-
mentioned two geodesics together with [f−Nβ, f−nα] and [fNβ, fnα], as
indicated in the left side of Figure 1.

Since quadrilaterals are 2δ–slim, the point α ∈ [f−Nβ, fNβ] has distance
at most 2δ to one of the other three sides. To prove the lemma we want to
show that α is not in the 2δ-neighborhood of [f−Nβ, f−nα] or of [fNβ, fnα].

So, suppose for contractiction that α is within 2δ of [fNβ, fnα] (the other
case is analogous). Since d†(α, β) ≤ B, we have

[fNβ, fnα] ⊂ NB+δ([f
Nβ, fnβ])

Therefore, [fNβ, fnα] is in a (2B+ δ)-neighborhood of (f iβ)N≤i≤n. Since α
is within 2δ of [fNβ, fnα], this shows that β has distance at most 3B+3δ to
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a point in (f iβ)N≤i≤n, This contradicts the first lower bound in our choice
of N , since |i| · |f | ≤ d†(f iβ, β) ≤ 3B + 3δ, but on the other hand we have
N ≤ i by definition of i.

Now we tackle the last claim of the lemma, using the fact that

N >
2δ +B + 4

|f |
.

Pick α as before. Then for sufficiently large m for i ∈ {−N,N} we have
that d†(f imα, f

iα) ≤ 2. We consider the geodesic quadrilateral with ver-
tices f−Nm α, f−Nβ, fNβ, and fNmα. Recall that α lies on the geodesic
[f−Nβ, fNβ]. As before, if α is within 2δ of [fNβ, fNmα], then α is within
2δ +B + 4 of fNα, which is a contradiction. �

Lemma 3.8. If N is chosen large enough, and m is sufficiently large (de-
pending on N), then for all n ∈ N and i with −n ≤ i ≤ n, we have that
(fNm )iα is within 4δ of [(fNm )−nα, (fNm )nα].

Proof. Here, we require in addition to the constraints of the previous proof
that N > 8δ+2

|f | .

Given n ∈ N, fix a geodesic segment [(fNm )−nα, (fNm )nα] and let i be an
index with −n ≤ i ≤ n such that that z := (fNm )iα maximises distance to
[(fNm )−nα, (fNm )nα]. Let D denote the distance from z to [(fNm )−nα, (fNm )nα].

Let x := (fNm )i−1α and let y := (fNm )i+1α. Let z′, x′ and y′ be choices of
closest-point projections of z, x and y, respectively, to [(fNm )−nα, (fNm )nα].
Finally, let z be a closest point projection of z to [x, y], and recall that z is
within 2δ of [x, y] by Lemma 3.7.

Now consider the geodesic quadrilateral [x, y], [y, y′], [y′, x′], [x′, x]. By
2δ–slimness, z ∈ [x, y] is 2δ–close to one of the other three sides. To finish
the proof, what we need to show is that the distance from z to [x′, y′] is at
most 2δ. Similarly to the previous lemma, we proceed by using a proof by
contradiction to show that z cannot be close to one of the other two sides.

So, for contradiction, assume that z is 2δ–close to a point y ∈ [y, y′] (the
case of [x, x′] is analogous). The set-up is illustrated in the right side of
Figure 1.

We then have

D = d(z, [(fNm )−nα, (fNm )nα]) ≤ 4δ + d(y, [(fNm )−nα, (fNm )nα])),

and therefore

d†(y, [(fNm )−nα, (fNm )nα])) ≥ D − 4δ.

On the other hand, because our choice of z was a point that maximised
distance to [(fNm )−nα, (fNm )nα], we have that

d†(y, [(fNm )−nα, (fNm )nα])) ≤ D,

hence

d†(y, y) ≤ 4δ.



14 BOWDEN, HENSEL, MANN, MILITON, AND WEBB

Thus we obtain in total that

d†((fNm )iα, (fNm )i+1α) = d(z, y) ≤ 8δ,

hence
d†(α, fNα) ≤ 8δ + 2.

This contradicts N > 8δ+2
|f | , completing the proof. �

Remark 3.9. Observe that the proof of Lemma 3.8 also shows that for any
large enough N , the closest-point projections of the (fNm )iα for −n ≤ i ≤ n
on the geodesic [(fNm )−nα, (fNm )nα] are monotonic.

Lemma 3.10. For all sufficiently large N , and sufficiently large m (depend-
ing on N), for all n ∈ N we have

2n(|fN | − 2− 8δ) ≤ d†((fNm )−nα, (fNm )nα).

Therefore, |fm| ≥ |f | − 2+8δ
N .

Proof. Divide the segments of a geodesic [(fNm )−nα, (fNm )nα] into 2n disjoint
pieces by taking closest-point projections of the points (fNm )iα to the geo-
desic (by the monotonicity of projections guaranteed by Remark 3.9). Each
piece has length at least |fN | − 2− 8δ by Lemma 3.8 and Lemma 3.6 so we
obtain the first inequality. The second inequality follows by rearranging the
first inequality and taking the limit of this quantity over n as n tends to
∞. �

As a consequence of the above lemma, we obtain

lim inf
m→∞

|fm| ≥ |f | −
2 + 8δ

N

for all sufficiently large N . This shows that lim infm→∞ |fm| ≥ |f |, and
Theorem 3.4 follows. �

4. Distance Estimates

In this section, we provide key results which allow us to connect the
geometry of C†(S) to the topology of curves on S and their lifts to specific
covers.

Our first criterion, Lemma 4.1 below, works for all surfaces S of genus
g ≥ 2, and uses covering spaces. One can think of this as a C†(S)–version of
the criterion introduced by Hempel in [Hem01, Section 2]. To state it, we
need to introduce some vocabulary and basic observations. If π : S′ → S is
a (possibly branched) cover, and α ⊂ S is an essential simple closed curve
(disjoint from the branch points), then we say that an elevation of α is a
connected component of π−1(α). The following two properties are obvious,
yet important:

(1) Elevations of simple closed curves are simple. If the cover has finite
degree, an elevation of such a curve is also closed.

(2) Any two elevations of disjoint simple closed curves are disjoint.
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Lemma 4.1. Let S be a surface of genus g ≥ 2. If α and β are two curves
with d†(α, β) = 2, then there is a degree 2 cover X → S such that α and β
admit disjoint elevations in X.

Proof. Since d†(α, β) = 2, there is a curve γ which is disjoint from both
α and β. The following argument shows that we may take such a curve
to be non-separating. Since d†(α, β) 6= 1, the curves intersect, and so if γ
were separating, then α, β would be contained in the same complementary
component of γ. Thus, we could replace γ with any non-separating curve in
the other complementary component.

Taking the mod-2 intersection number with γ gives a homomorphism
π1(S) → Z/2Z; let X be the associated degree 2 cover. We claim that X
has the desired property, and in fact α, β even admit disjoint lifts to X. Let
γ1 and γ2 denote the two elevations of γ to X. Then

X − (γ1 ∪ γ2) = X1 ∪X2

where X1 and X2 are the two preimages of S−γ. Now, the desired elevations
can be obtained by lifting of α into X1, and β into X2. �

Iterating Lemma 4.1 immediately yields the following.

Corollary 4.2. If S is a surface of genus g ≥ 2 and α, β ∈ C†(S) with
d†(α, β) ≤ n, then there is a cover of S of degree at most 2n to which α, β
admit disjoint elevations.

As a consequence, we have the following criterion that we will frequently
apply later.

Lemma 4.3. Let S be a surface of genus g ≥ 2 and let K ≥ 0. There is a
finite-sheeted cover X → S (depending only on K) such that any two curves
α and β on S satisfying d†(α, β) ≤ K admit disjoint elevations to X.

Proof. Let Γ < π1(S) be the intersection of the finite index subgroups of
degree at most 2K in π1(S). It is a well-known fact that a finitely generated
group has only finitely many subgroups a given index (e.g. since an index n
subgroup H of G is determined by the action of G on the cosets of H, and
there are only finitely many homomorphisms of a finitely generated group to
the symmetric group of n elements). Thus, Γ also has finite index in π1(S).
By covering space theory, the subgroup Γ determines a finite cover X → S of
degree equal to the index of Γ. We claim this cover has the desired property.
Indeed, by Corollary 4.2, any pair of curves α and β satisfying d†(α, β) ≤ K
will admit disjoint elevations to some cover X ′, where X ′ → S has degree
at most 2K . By definition of Γ, we have Γ < π1(X

′) < π1(S), and hence
X → S factors through X → X ′ → S. Disjoint elevations stay disjoint in
further covers, hence α and β have disjoint elevations to X as required. �

4.1. A crossing number estimate. We also develop an upper bound on
distance in C†(T ) (Lemma 4.5, below) specifically for the torus. This will
be used in our work on rotation sets in the next section.
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......

α̂0 α̂1 α̂2

β̂

Figure 2. Crossing number via annuli

Definition 4.4. Let α and β be essential simple closed curves on the torus

T = S1 × S1. Interpret β as a map β : [0, 1]→ T and denote by β̃ : [0, 1]→
T̃ = R2 a lift.

We define the α-crossing number Cα(β) as the number of distinct eleva-

tions of α which β̃ intersects.

When α and β are homotopic essential simple closed curves, there is a
useful alternative way to describe Cα(β). Namely, let A be the annular
covering of T corresponding to the cyclic subgroup generated by α. We can
identify A with S1×R so that the lifts α̂m of α are the circles S1×{m},m ∈
Z.

Then the crossing number Cαβ is equal to the cardinality of

{α̂m : β̂ ∩ α̂m 6= ∅},

where β̂ is an elevation of β. In other words, the number of lifts of α which
β̂ intersects (compare Figure 2). Observe that this last characterisation is
independent of the identification of the annulus with S1 × R.

Lemma 4.5. If α and β are isotopic simple closed curves on T , then

Cα(β) + 1 ≥ d†(α, β).

Proof. We will perform a surgery replacing α with a homotopic curve α′

such that i(α, α′) = 0 and Cα′(β) ≤ Cα(β)−1. By induction, this is enough
to prove the lemma.

To this end, we fix the cover A and a lift β̂ as in the discussion before
the lemma, and keep the notation α̂m = S1×{m} for the lifts of α. Choose

a < b ∈ Z with b − a minimal, so that β̂ ⊂ S1 × [a, b]. Note that, if β̂
intersects α̂b = S1×{b}, then we may replace α with a nearby parallel copy
of itself α′ avoiding these finitely many points or intervals of intersection,
and decreasing crossing number, thus already satisfying our desired outcome.
Thus, we may assume β̂ does not intersect S1×{b}. Consider the intersection

of β̂ with S1 × [b − 1,∞). This is a collection of arcs b1, . . . , bk with each
arc intersecting α̂b−1 only in its endpoints. Choose disjoint, closed disks
B1, . . . , Br with the following properties:

(1) Each Bi is bounded by a segment contained in α̂b−1, and one of the
bj .

(2) Each bj is contained in one of the Bi.
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α̂b−1

α̂′

B1

B2

Figure 3. Surgery of α along arcs of β

(3) All Bi are disjoint from α̂i, i 6= b− 1.

By the third property, the Bi map to disjoint, embedded disks in T under
the covering map.

We let α′ be the curve obtained from surgery of α at all bj which appear
as boundary segments of Bi. Since this surgery can be done on A, α′ is
homotopic to α. Since all bj approach α̂b−1 from the same side, the surgered
curve α′ can be chosen to be disjoint from α. Hence, the cover defined by
α′ is still A. The lifts α̂′i are obtained from α̂i by surgering at deck group
translates of the Bi.

Thus, the lift β̂ can only intersect α̂′i if it also intersects α̂i. By property

2, β̂ does not intersect α̂′b−1. Thus, we have Cα′(β) ≤ Cα(β) − 1 by the
description of crossing number before the lemma. �

Remark 4.6. One could define a version of crossing number also for sur-
faces of higher genus by using the Bass–Serre tree of the cyclic splitting of
the fundamental group determined by α. In this case the diameter of the
projection to the Bass–Serre tree will provide an upper bound on distance,
the idea of the proof is the same. However, since we do not need this for
our intended applications, we do not pursue this here.

5. Hyperbolic Elements

In this section, we will study homeomorphisms isotopic to the identity
acting hyperbolically on C† and prove Theorem 1.3 from the introduction.

5.1. Proof of Theorem 1.3. Recall that Theorem 1.3 asserts the equiva-
lence of the following statements for f ∈ Homeo0(T ):

(1) f acts hyperbolically on C†(T ),
(2) the rotation set ρ(f) of f has non-empty interior, and
(3) there is a finite f -invariant set P ⊂ T such that f represents a

pseudo-Anosov mapping class of T − P .

For the proof, we will need the following consequence of Lemma 4.5.
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Lemma 5.1. If f acts hyperbolically on C†(T ) then for any curve α ∈ C†(T )
and for all n > 0 we have

Cα(fn(α)) ≥ |f | · n− 1.

Proof. Using Lemma 4.5 we have for all n > 0

|f | · n ≤ d†(α, fn(α)) ≤ Cα(fn(α)) + 1. �

Proof of Theorem 1.3. The assertion (2) ⇒ (3) is Theorem 2.12 of Llibre–
MacKay [LM91], and (3) ⇒ (1) is Theorem 2.5. Thus, we need only show
the implication (1)⇒ (2).

Suppose f acts hyperbolically on C†(T ). Identify T with R2/Z2, and let
α be the simple closed curve whose lifts to R2 are the horizontal lines in R2

with integer second co-ordinates. Let f̃ be a lift of f to R2.
By Lemma 5.1 we have

Cα(fn(α)) ≥ |f | · n− 1.

This means that for any n, lifts of fn(α) intersect at least |f | ·n− 1 distinct
horizontal lines (with integer second co-ordinate) in the plane R2. In other
words, there are sequences of points zn and z′n (on the same horizontal line)

so that, for each n ∈ N the points f̃n(zn) and f̃n(z′n) have y-coordinate
differing by at least |f | · n − 1, hence the displacements dn := fn(zn) − zn
and d′n := fn(z′n) − z′n have y-coordinates differing by at least |f | · n − 1.
This implies that the projection of ρ(f) to the y-axis has diameter at least
|f |.

Since rotation sets are convex and compact, we need only now rule out the
possibility that ρ(f) is a line segment. Suppose for contradiction that ρ(f)
were a line segment, `. If ` has rational slope, then we may find A ∈ SL2(Z)
such that A(`) is a subset of the x-axis. As discussed in Section 2.3, we have
ρ(AfA−1) = Aρ(f). Since asymptotic translation length is a conjugacy
invariant, we have |AfA−1| = |f |, so we may apply the same argument as
above to conclude that projection of ρ(AfA−1) = Aρ(f) to the y-axis has
diameter at least |f |, a contradiction. If the slope of ` is irrational, we can
again find A ∈ SL2(Z) such that A(`) has projection to the y-axis a set of
diameter less than |f |: in fact, with a process similar to Euclid’s algorithm,
one may apply elementary matrices to make the projection of the length of
the segment ` arbitrarily small, again contradicting the lower bound. This
concludes the proof. �

In the following proposition we bound the area of the rotation set from
below by a constant multiple of the square of the asymptotic translation
length on C†(S). There is no analogous upper bound because there are
rotation sets with arbitrarily large area but of bounded height, and height
bounds the translation length from above by Lemma 5.1.
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Proposition 5.2. Let f ∈ Homeo0(T ) act hyperbolically on C†(T ). Then

Areaρ(f) ≥
√

3

8
|f |2.

Proof. First note that ρ(f) is compact, and has non-empty interior by The-
orem 1.3, so we may pick a maximal area parallelogram P ⊂ ρ(f). Now
find A ∈ SL2(R) such that the diagonals of the parallelogram A · P are
horizontal/vertical, and of the same length. Thus A · P is equal to a closed
r-ball in the L1 norm centered at the intersection of the diagonals Q. Since
A · ρ(f) is also convex, and A · P ⊂ A · ρ(f) has maximal area, we must
have that A ·ρ(f) is contained within the closed r-ball in the L∞ norm with
the same centre Q. This in turn is contained in a disk D of radius

√
2r.

Thus AreaD = πAreaP. It suffices to bound the diameter of D from below
to establish a lower bound on Areaρ(f).

After post composing by a rotation, we may assume that (h, 0) ∈ A·Z2 is a
non-zero vector of smallest length and h > 0. It is well known that h2 ≤ 2√

3
.

Let (k, v) ∈ A · Z2 be a smallest length vector outside the span of (h, 0).
Then we must have v = 1

h because A is area preserving. Now D contains
A · ρ(f), so by Lemma 5.1 the projection of D to the second co-ordinate is
at least 1

h · |f |. This gives the desired lower bound on AreaD = πAreaP and
hence Areaρ(f) as required. �

5.2. General characterisation of hyperbolic isometries. In this sec-
tion we prove the following extensions of Theorem 1.3.

Theorem 5.3 (Characterisation of hyperbolic homeomorphisms). Let f be
an orientation preserving homeomorphism of T . Then f acts hyperbolically
on C†(T ) if and only if f satisfies one of the following (mutually exclusive)
conditions.

(1) The homeomorphism f is isotopic to an Anosov homeomorphism of
T ,

(2) a finite power of f is isotopic to a Dehn twist map about some simple
closed curve α, and its rotation set ρα has non-empty interior, or

(3) a finite power of f is isotopic to the identity and its rotation set has
non-empty interior.

Of course, if a homeomorphism f of T reverses the orientation, f acts
hyperbolically on C†(T ) if and only if the orientation-preserving homeomor-
phism f2 does so. We hence have a complete characterisation of elements
of Homeo(T ) which act hyperbolically on C†(T ).

Proof. For the first statement, it is a special (and easy) case of the Nielsen–
Thurston classification theorem that any orientation-preserving homeomor-
phism of T either is isotopic to an Anosov homeomorphism of T , or has a
power isotopic to a Dehn twist map of T , or has a power isotopic to the
identity. In the first case, it acts hyperbolically on C†(T ) since it acts hy-
perbolically on the Farey graph C(T ), and there is a 1-coarsely Lipschitz
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map C†(T )→ C(T ) via sending α to its isotopy class [α]. In the third case,
Theorem 1.3 states that f acts hyperbolically if and only if its rotation set
has nonempty interior. Thus, we need only understand the case where f is
isotopic to a Dehn twist.

To this end, suppose f is isotopic to a Dehn twist around the essential
simple closed curve α. Assume first that ρα(f) has non-empty interior.
Then, by a theorem by Doeff (see [Doe97, Theorem 6.5]), f is isotopic to
a pseudo-Anosov homeomorphism relative to a finite subset P of T . By
Theorem 2.5, this implies that f acts hyperbolically on C†(T ).

Now, suppose that ρα(f) has empty interior, in which case it is a singleton.
With the same methods as for homeomorphisms isotopic to the identity, we
will prove that f cannot act hyperbolically on C†(T ). Denote by Ť the
cyclic covering associated to α. Take any lift α̌ of the loop α to Ť and fix
a lift f̌ : Ť → Ť of f . We identify Ť with R/Z × R, where the group of
deck transformations of the covering map Ť → T is the group of integral
translations of R/Z × R. Let p2 : Ť = R/Z × R → R be the projection.
For any n ≥ 0, denote by Dn the diameter of p2(f̌

n(α̌)) and observe that
bDnc ≤ Cα(fn(α)) ≤ bDnc+ 1.

As the rotation set of f is a singleton,

lim
n→+∞

Dn

n
= 0

so

lim
n→+∞

Cα(fn(α))

n
= 0.

Hence, by Lemma 4.5,

lim
n→+∞

d†(α, fn(α))

n
= 0

and f does not act hyperbolically, concluding the proof of Theorem 5.3. �

6. Parabolic and Elliptic Elements

Given Theorem 1.3, one might näıvely hope for a similar characterisation
of elliptic and parabolic isometries of C†(T ) in terms of their rotation sets.
In this section we show this näıve hope is too optimistic, giving sufficient dy-
namical criteria for elliptic and parabolic actions on the torus, then showing
why these cannot be necessary. Finally, we return from the torus to surfaces
of higher genus and complete the proof of Theorem 1.1.

6.1. Sufficient dynamical criteria. Recall Theorem 1.4 is the claim that,
for f ∈ Homeo0(T ),

(1) if ρ(f) is an irrational slope segment, then f acts on
C†(T ) as a parabolic isometry, and

(2) if ρ(f) is a rational slope segment through a rational
point, then the action of f is elliptic.
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Proof of Theorem 1.4, rational slope through rational point case. This case fol-
lows from work of Dávalos [Dav18] and our crossing number estimates. Sup-
pose that f is isotopic to the identity and the rotation set ρ(f) is a rational
slope segment through a rational point. By Theorem A in [Dav18], f is
annular, which means that there is some v ∈ Z2 so that for any lift F of f
to R2 we have

|〈Fn(x)− x, v〉| ≤M
for some M and all x ∈ R2. This implies that the crossing numbers Cα(fnα)
(as in Section 4) are bounded for suitable α, and thus f acts elliptically, as
desired. �

Remark 6.1. A similar argument can be applied to homeomorphisms iso-
topic to a Dehn twist map around an essential simple closed curve α whose
rotation set consists of a single rational point. Denote by Ť the cyclic cover
associated to α, by f̌ : Ť → Ť a lift of f to this cyclic cover and, by t a
positive generator of the group of deck transformations of Ť → T . Then,

if the rotation set of f̌ is
{
p
q

}
, by a theorem by Addas-Zanata, Garcia and

Tal (see [AZTG14, Theorem 2]), the homeomorphism t−pf̌ q has a compact
invariant set which separates Ť . Hence f acts elliptically on C†(T ).

To treat the case of irrational slope, we use the following construction.

Construction 6.2. For n ∈ N, let Tn → T be the cover of the torus defined
by reducing mod n in homology:

π1(T )→ (Z/nZ)2

We equip T with the usual flat metric inherited from T = R2/Z2, and we
equip Tn with the metric obtained by pulling back the metric of T to Tn,
and rescaling by 1/n. Observe that T and Tn are isometric, but not via the
covering map.

The following lemma says that this covering behaves nicely with respect
to the associated curve graphs:

Lemma 6.3. Suppose that α and β are adjacent in C†(T ). Then any choice
of lifts of α and β in Tn are adjacent in C†(Tn).

Proof. Let α′ and β′ be any choice of lifts in Tn of α and β. If α and β
were disjoint then it is immediate that α′ and β′ are disjoint. On the other
hand if |α ∩ β| = 1 then, after applying a homeomorphism of T (which
lifts to the characteristic cover Tn), we can suppose that α and β are the
standard generators of the fundamental group of T = R2/Z2. Then it is
immediate that lifts α and β to Tn have only one intersection point and are
thus adjacent in C†(Tn). �

We also need the following consequence of Lemma 4.3.
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Lemma 6.4. Given any K ≥ 0 there exists a translation surface X = X(K)
with the following property:

For any n and any p ∈ Tn, there is a cover f : X → Tn branched only
over p so that:

(1) If α and β are curves on Tn disjoint from p with

d†(α, β) ≤ K + 1,

then α, β admit disjoint elevations in the branched cover f .
(2) The branched cover f is a local isometry at each nonsingular point.

We emphasise that in the lemma, the covering map f may depend on p,
but the geometry of the translation surface X does not. In addition, the
geometry of X does not depend on n.

Proof. First, we show that given K and p ∈ Tn, there is a translation surface
X(K, p) which has the desired properties for Tn, we then show independence
from n and p.

To prove this, begin by observing that there is a 3-fold branched cover
f1 : Y → Tn, branched only at p, where Y has genus 2. Suppose that
d†(α, β) ≤ K + 1, and let α′ and β′ be any choice of elevations of α and
β to Y . Observe that d†(α′, β′) ≤ 2K + 2 in C†(Y ). This is because any
choice of elevations of adjacent curves in Tn to Y will intersect at most three
times, and therefore have distance at most 2 in C†(Y ). Now we may apply
Lemma 4.3 to find a finite-sheeted cover f2 : X → Y , which only depends
on K (and Y ), such that any α′ and β′ as above admit disjoint elevations
to X. The branched cover fp = f1 ◦ f2 : X(K, p) → Tn then has (1). By
pulling back the translation surface structure from Tn to X(K, p), we can
also satisfy (2).

Now if p′ is any other point, observe that there is an isometry ι : Tn → Tn
mapping p to p′. Then fp′ = ι ◦ f1 ◦ f2 : X(K, p) → Tn has the desired
property (1) for curves disjoint from the point p′. Since ι is an isometry, fp′
also satisfies (2). Hence, the translation surface X(K, p) can be chosen not
to depend on p. Since all Tn are isometric, the surface X(K) can also be
chosen to be the same for all Tn. �

Finally, we use the following observation, likely well known to experts.
We include a short proof for completeness.

Lemma 6.5. Let X be a compact square-tiled translation surface and λ /∈ Q.
Then there exists L > 0 such that any straight line of length L and slope λ
that is disjoint from the singularities of X will intersect all horizontal curves
on X.

Proof. Since λ is irrational, every half-leaf of the foliation with slope λ is
dense in X. Supposing for contradiction that we can find a sequence of
segments Ln of length `n → ∞ so that each Ln misses some horizontal
curve cn. We parametrize the segments Ln by arclength so that we see the
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segments Ln as continuous maps [−`n/2, `n/2] → X. After possibly taking
a subsequence, we can assume that these Ln converge uniformly on any
segment of R to an infinite leaf µ of slope λ.

Since µ is dense and of constant slope, some compact subinterval µ′ ⊂ µ
will intersect all horizontal curves, and we may find such a µ′ which does
not contain any singularity of X. Thus, by compactness, there exists ε > 0
such that the ε-neighborhood N of µ′ is disjoint from the singularities of X.
Since the Ln converge to µ locally on compact subintervals, the intersection
Ln∩N is non-empty for sufficiently large n. Now any connected component
of Ln ∩N which does not contain the endpoints of Ln is also a line of slope
λ, and must intersect all horizontal curves because µ′ can be isotoped along
horizontal lines to a subset of Ln ∩N . But this contradicts the definition of
Ln, completing the proof. �

Proof of Theorem 1.4, irrational slope case. Suppose ρ(f) is a line segment
of irrational slope λ and length ` > 0. By Theorem 1.3, the homeomorphism
f is not hyperbolic, as the rotation set has empty interior. Thus, to prove
the theorem, it suffices to show f is not elliptic. Let α be the standard
horizontal curve on T . Supposing for contradiction that f is elliptic, there
exists some K such that d†(α, fnα) ≤ K for every n.

Consider the finite-sheeted covers Tn → T and metrics as described above.
Let D = [0, 1] × [0, 1] denote the standard fundamental domain for T =
R2/Z2. We also view Tn as the standard quotient R2/Z2 because Tn is
isometric to T . We choose Dn to be the subset [0, 1/n]× [0, 1/n] in R2. Fix

a lift f̃ : R2 → R2 of f : T → T . Now we may also construct f̃n : R2 → R2

defined by

f̃n(x) =
1

n
f̃(nx),

which descends to a map f̂n : Tn → Tn, which is a lift of f .
Let L > 0 be the length guaranteed by Lemma 6.5 applied to the surface

X = X(K) guaranteed by Lemma 6.4 and slope λ, i.e. any straight line on
X of slope λ and length L must intersect every horizontal curve on X.

Now fix some k ∈ N such that k` > L. By Lemma 2.10 we have that
1
n f̃

n(D) converges to ρ(f) in the Hausdorff topology as n→∞. By defini-

tion we have that f̃knn (Dn) = 1
n f̃

kn(D), and hence f̃knn (Dn) also converges

to kρ(f). Let kρn ⊂ Tn denote the projection of kρ(f), where we drop f
from the notation for convenience.

We claim now that for each n there is a straight line an in T (disjoint from
the standard horizontal curve α), with lift ân in Tn, such that the Hausdorff

distance between f̂knn (ân) and kρn tends to 0 as n tends to ∞. To find such

a straight line, pick two points qn and q′n in f̂knn (Dn) which are close to the
two ends of kρn. Then take as ân the straight line of Dn which joins the

points f̂−kn(qn) and f̂−kn(q′n), and an its projection to T .
Now define simple closed curves αn on T such that αn contains an but

is also isotopic to and disjoint from the standard horizontal curve α. For
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large enough n we have that the Hausdorff distance between f̂knn (Dn) and
kρn on Tn tends to 0 as n tends to ∞. Write α̂n for the lift of αn to Tn that
contains ân, and let α̂ be an arbitrary lift of α to Tn.

By our initial assumption on f we have d†(α, fknαn) ≤ K + 1 for every

n > 0. By Lemma 6.3 we also have d†(α̂, f̂knn α̂n) ≤ K + 1 for all n >

0 in C†(Tn). For any point p disjoint from both α̂ and f̂knn α̂n, applying
Lemma 6.4, we find that there are branched covers πn : X → Tn, so that α̂
and f̂knn α̂n admit disjoint lifts to X.

By our choices, there is a lift of f̂knn ân to X which is disjoint from some

horizontal curve in X for each n. But f̂knn ân converges to kρ(f), which
has slope λ and length k` > L. By choosing the branch point p outside
a small embedded regular neighbourhood of kρ(f), we can guarantee that

lifts of f̂knn ân to X contain segments which converge to a segment with
slope λ and length k` > L as well. For sufficiently large n this contradicts
Lemma 6.5. �

6.2. Parabolics with a singleton rotation set. It is easy to produce
examples of elliptic isometries with a given singleton rotation vector. Given
(a, b), the translation (x, y) 7→ (x+ a, y+ b) is a lift of a torus map with ro-
tation set {(a, b)}. There are many dynamically more interesting examples
as well. For instance, Koropecki and Tal constructed a homeomorphism of
the torus whose rotation set is reduced to {(0, 0)} but which has unbounded
orbits in every direction in the universal cover (see [KT14]). Similar exam-
ples can be constructed with any rational one-point rotation set. We believe
that their example acts as a parabolic isometry of C†(S).

In this section we give a construction that produces parabolic isometries
with singleton rotation sets.

Proposition 6.6. There are homeomorphisms f that act parabolically on
C†(T ) with ρ(f) = {(0, 0)}.

As we remark later, a small modification of the construction can be used
to produce singleton rotation sets other than {(0, 0)}. We first give the
construction, then prove it is parabolic.

Construction 6.7. Start with a standard Denjoy counterexample map
D : S1 → S1 with irrational rotation number α, produced by blowing up
a single orbit of a standard irrational rotation. See [Ghy01] for an intro-
duction to these examples. We interpret T = S1 × S1 as the mapping torus
of D, and let ϕt be the suspension flow. The time-1–map ϕ1 of this flow
preserves the foliation of T into circles, acting with rotation number α on
each of them. We think of the circles as being horizontal, and the flow lines
as being vertical.

Let K be the suspension of the minimal invariant Cantor set of D; the
set K is invariant under the flow ϕt. Denote by λ the suspension of the
boundary points. Now let J denote a closed interval in a horizontal circle
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whose interior J̊ is a wandering interval for the Denjoy circle map. Then we
obtain an embedding Φ: U = J̊ × R → T given by flowing this transverse
segment, whose complement is exactly the suspension of the invariant Cantor
set of D. We denote the coordinates given by this map by (x, t). We now
define a map preserving flow lines of U via the map

(x, t) 7−→ (x, t+ η(x)e−|t|)

where η(x) < 1 is a bump function supported on J that is strictly positive on
the interior. This map extends to continuously over K as the identity. We
call the resulting map f . We will prove that it is the desired counterexample.
Note that f preserves flow lines of ϕt, moving along lines monotonically and
with exponentially decreasing speed as one approaches the set K.

Proposition 6.6 will be a consequence of the following two claims:

Claim 6.8. The rotation set of f is {(0, 0)}.

Claim 6.9. The homeomorphism f acts parabolically on C†(T ).

Proof of Claim 6.8. Denote by ϕ̃t, f̃ respective lifts of ϕt, f to the universal
cover R2 of T . For any p = (x̃, t) ∈ R2 in (a lift of) U we have using growth
condition (∗) above that

lim
i→∞

f̃ni(p)− p
ni

< lim
i→∞

f̃ni(pk)− p
ni

= lim
i→∞

f̃ni(pk)− pk
ni

< e−tk → 0,

where pk = f̃k(p) = (x̃, tk) denotes an iterate of p so that tk → ∞ and the
claim follows. �

Proof of Claim 6.9. Given Claim 6.8 and Theorem 1.3, it follows that the
homeomorphism is not hyperbolic.

We thus have to exclude the case that it is elliptic. To this end, suppose
that it were. Let γ be a horizontal curve on T containing the segment J
from property (4). By hypothesis, the sequence (d†(γ, fn(γ)))n is bounded.

By Lemma 6.4, there exists a translation surface X and a finite cover
X → T of bounded order, branched at a single point p (independent of n),

so that, for any n, the curves γ, fn(γ) admit disjoint lifts γ̃ and β̃n to X
and the cover is locally isometric. Note that we are free to pick p outside γ
and J × R.

By Lemma 6.5, there is a number L > 0 so that any segment of slope α
and length greater than L of X intersects every horizontal curve.

Claim 6.9 will be a consequence of the following technical claim.

Claim 6.10. There exists a sequence kn → +∞ of integers and a sequence
(Ln) of straight segments of T of slope α such that

(1) for any n ≥ 0, there exists a subsegment σn of fkn(J × {0}) such
that dHausdorff (Ln, σn)→ 0.

(2) the length of Ln tends to +∞.
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(3) for any n ≥ 0, the segment Ln does not meet the singularity p.

Before proving this claim, let us use it to prove Claim 6.9. For any n ≥ 0,
let σ̃n be the lift of σn to X which is contained in β̃n, L̃n be the lift of Ln
which is close to σ̃n. Taking a subsequence if necessary, the sequence L̃n
converges (on compact subsegments) to a straight line L̃∞ of infinite length
(like in the proof of Lemma 6.5). Take a subsegment L′∞ of L∞ which does
not meet the singularities of the covering map and whose length is greater
than L. Take ε > 0 such that the ε-neighbourhood of L′∞ does not meet
the singularities of the covering map and such that any connected set at
Hausdorff distance at most ε from L′∞ meets any horizontal curve.

For n ≥ 0 sufficiently large, some connected subset σ̃′n of σn is at Hausdorff
distance at most ε from L′∞ and hence meets any horizontal curve. But this

is not possible as, by definition of X, σ̃n ⊂ β̃n is disjoint from the horizontal
curve γ̃. �

Proof of Claim 6.10. Fix n ≥ 0. Let Cn = [an, bn] = [Dn(a0), D
n(b0)] be

the connected component of the complement in S1 × {0} of the minimal
Cantor set of D which contains J × {n}. As the Cn’s are pairwise disjoint
and S1 × {0} has finite length, the diameter of Cn tends to 0 as n→ +∞.

Let D̃ : R → R be a lift of D to the universal cover of S1 = R/Z. Recall
that the rotation number of D is α. Then it is standard that, for any n,

D̃n(ã0) = nα̃+Bn,

where (Bn) is a bounded sequence and ã0 and α̃ are respective lifts of a0
and α to R (see [Ghy01, Section 5]). Take a sequence (k′n)n of integers such
that the sequence (Bk′n) converges and k′n+1 − k′n → +∞. Observe that the

sequence (Dk′n+1(a0)−Dk′n(a0)− (k′n+1 − k′n)α) converges to 0.

Take kn sufficiently large so that the set fkn(J×{0}) meets J×[k′n+1,+∞).

Let L̃n be the line of the universal cover R2 of T which joins (ak′n , k
′
n) to

(ak′n+1
, k′n+1) and L̃n be either the line which joins (ak′n , k

′
n) to (ak′n +(k′n+1−

k′n)α, k′n+1) or a tiny translate of this line if it meets some lift of the point

p. Denote by Ln and Ln the respective projections of L̃n and L̃n to T .

As the sequence (Dk′n+1(a0)−Dk′n(a0)− (kn+1−kn)α) converges to 0, the
Hausdorff distance between Ln and Ln tends to 0. As the set fkn(J × {0})
meets both J×{0} and J×

{
k′n+1

}
and is contained in J×R, there exists a

connected component σn of fkn(J × {0})∩ J × [k′n, k
′
n+1] which meets both

J × {k′n} and J ×
{
k′n+1

}
. As the diameter of Cn tends to 0 as n tends

to +∞, the Hausdorff distance between Ln and σn tends to 0. Finally, the
Hausdorff distance between Ln and σn tends to 0. �

One can alternatively show the map f from Construction 6.7 is parabolic
with the following argument using bicorns.

Alternative proof of Claim 6.9. Recall we have identified T with [0, 1]×[0, 1]
with the top and bottom edges identified by the Denjoy map D, and the left
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and right by rigid translation. Let γ = [0, 1]×{0} be the standard horizontal
curve on T , let J ⊂ γ be the interval used in the definition of f ; we may
parametrize γ so that the left endpoint of J is 0. Choose a horizontal curve
γ′ = [0, 1]×{ε′} slightly above γ so that γ′ is transverse to each curve fn(γ)
(each iterate will have only countably many points tangent to a horizontal
curve, so we may find such a γ′ as close as we wish to γ).

Let J ′ = [0, ε] ⊂ J be a subinterval on which the bump function in the
construction of f is monotone increasing. For each n > 0 large enough that
fn(J ′) intersects γ in at least two points, let jn ⊂ fn(J ′) be the subarc
bounded by the leftmost intersection point on γ of fn(J ′) ∩ γ′ (which by
construction lies in [0, ε] × {ε′}), and the rightmost intersection point of
fn(J ′) ∩ γ′ on γ′. Let cn be the union of jn and the short segment of γ′

containing 0 which connects them. This is a closed curve. The isotopy
class [cn] represents a vertex in C(T ); which is simply the Farey graph with
vertex set Q ∪ {∞} each point representing the slope of the curve. By
construction, as n → ∞, the average slope of jn, and hence cn, approaches
α. Thus, necessarily [cn] eventually leaves each compact set of C(T ).

We now show that this means f cannot act elliptically on C†(T ). Suppose
for contradiction that it did, i.e. d†(γ, fn(γ)) ≤ K for some constant K ≥ 0.
Then d†(γ′, fn(γ)) ≤ K + 1. Let Pn be a finite set of points so that each
complementary region of γ′ ∩ fn(γ) contains at least one point of Pn. Then
γn and fn(γ) are in minimal position in T −Pn, so by [BHW21, Lemma 3.4]
the distance in Cs(T−P ) between [γn]T−Pn and [fn(γ)]T−Pn is at most K+1
also.

Since cn is a union of a subarc of γ′ and of fn(γ) and these are in minimal
position in T−Pn, the class [cn]T−Pn is a bicorn of [γ′]T−Pn and [fn(γ)]T−Pn .
In [Ras20] A. Rasmussen proves that the set of bicorns between two curves
in the nonseparating curve graph of any finite-type surface satisfies the cri-
terion of Masur–Schleimer [MS13, Theorem 3.5]. In fact any bicorn will be
a uniformly bounded distance L ≥ 0 away from a geodesic [Bow14, Proposi-
tion 3.1]. Therefore the distance between [cn]T−Pn and [γ′]T−Pn is bounded
by at most K + L + 1, a bound independent of n. However, there is a
1-coarsely Lipschitz map of the (nonseparating) curve graph of T − Pn to
the Farey graph, simply by considering isotopy classes in T . This contra-
dicts our earlier observation that the sequence [cn] is unbounded in C(T ), a
contradiction. We conclude that f acts parabolically on C†(T ). �

Remark 6.11. A modification of the construction (by post-composing with
the time t0-map ϕt0 of the flow the homeomorphism f) can be used to show
that for any irrational α and any t0 6= 0 there is a homeomorphism acting
parabolically with rotation set {(t0α, t0)}.

Remark 6.12 (Parabolics with irrational slope). A further variation yields
homeomorphisms whose rotation sets is a segment of irrational slope through
the origin. Simply let χ : T → [0, 1] be a continuous bump function that is
surjective and vanishes precisely on the suspension of the invariant Cantor
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C of the Denjoy map. Then consider the time-1 map of the reparametrized
Denjoy flow ϕs(p) given by setting s(t, p) = t(1− χ(p)).

This flow has fixed points and agrees with the Denjoy flow on C. Hence
one obtains points (0, 0) and (1, α) in the rotation set. Since f preserves
flow lines it is easy to see that all other elements of the rotation set are
(positive) multiples of (1, α) and hence ρ(f) is a segment of irrational slope.

6.3. Proof of Theorem 1.1. A similar construction can also be used to
build homeomorphisms of higher genus surfaces S which act parabolically on
C†(S), proving Theorem 1.1. We give the details now, and discuss alternative
constructions below.

Proof of Theorem 1.1, first construction. Let S be a surface of genus g ≥ 2,
fix a hyperbolic structure on S, and let Λ be a minimal filling geodesic
lamination on S. Let X be a vector field supported on the complement of
Λ, so that the flow of X pushes points into the cusps of the lamination. This
may be defined explicitly on each complementary region of Λ, modeled on
a vertical flow supported on a standard ideal hyperbolic triangle with one
vertex at infinity in the upper half plane. Let f be the time-one map of this
flow. Note that by cutting off the support of the flow, we may view f as a
C0-limit of homeomorphisms supported on disks.

Let Ŝ → S be a finite cover of S. Via pullback, Ŝ inherits a hyperbolic
structure from S, and the preimage Λ̂ is a minimal filling geodesic lamination
of Ŝ. We may lift our flow described above to Ŝ and write f̂ for the time-
one map. The minimality of Λ̂ ensures the following: for any simple closed
curves γ and γ′ of Ŝ, there exists N such that for any n > N we have that
f̂nγ intersects γ′. This is because γ intersects the support of f̂ (every half-

leaf is dense in Λ̂), moreover there is some subarc c of γ inside the support

that connects different half-leaves of Λ̂. Deeper into the cusp, there is a
subarc c′ of γ′ likewise connecting different half-leaves. By definition of f̂ ,
eventually f̂nc intersects c′ for sufficiently large n.

It thus follows from Lemma 4.3 that any f -orbit in C†(S) has infinite
diameter and so f is not elliptic. On the other hand, f is the C0-limit of
disk-supported maps. Since such maps act elliptially on C†(S), C0-continuity
of the asymptotic translation length (Theorem 1.2) shows that f also has
translation length 0. This shows that it is parabolic. �

Proof of Theorem 1.1, second construction. Start with an abelian differen-
tial on S and pick a slope λ that defines a minimal (oriented) foliation Fλ.
The abelian differential endows S with a translation surface structure, in
particular a metric with zero curvature off the singularities, which we nor-
malise with unit area. For simplicity we will assume that there are no saddle
connections of slope λ.

Consider a smooth vector field on S with direction λ with zeroes occurring
only at the singularities of the abelian differential. Let f be the time-1 map
of the flow along the vector field.
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We now prove that f does not act hyperbolically on C†(S). To do this,
we will find for any n ∈ N a curve α such that d†(α, fnα) ≤ 2. Given
n ∈ N, pick a (small) closed interval J perpendicular to the slope λ, such
that ∪t∈[0,n]φtJ is disjoint from the singularities, and such that the φtJ are
pairwise disjoint. The existence of such an interval follows from the fact that
Fλ contains an infinite leaf. Choose α to be a simple closed curve which is
a union of an interval of slope λ, and a subinterval of J (which is possible
because there is a half-leaf of slope λ through J which is dense). Observe
that the complement of α ∪ fnα consists of two regions, one of which is a
rectangle, foliated by the φtJ . It must be the case that the other region
carries an essential simple closed curve disjoint from α ∪ fnα, and so we
conclude that d†(α, fnα) ≤ 2 and thus f is not hyperbolic.

To finish the proof we now prove that f is not elliptic, by considering a
curve containing a horizontal segment adjacent to a singularity. For con-
creteness, define a curve α on S by starting at a singularity x, following a
line of slope λ until one intersects a horizontal through the same singularity,
then following that horizontal to x in order to close the curve. Thus, α
is the union of a horizontal segment τ , and a segment of slope λ each of
which have one endpoint at x. We claim that d†(α, fnα) is unbounded. To
show this, suppose for contradiction that d†(α, fnα) ≤ K, for all n ∈ Z. By

Lemma 4.3 there is a finite-sheeted cover Ŝ of S such that α and fnα admit
disjoint elevations, for any n ∈ Z.

Let µ be the half-leaf of Fλ emanating from x. Note that every lift of
µ to S is dense in S. As n increases, fn(τ) converges on compact sets to
µ. For n sufficiently large, any elevation of fn(τ) to S will intersect every
horizontal segment of fixed length, and thus intersects any elevation of τ .
This contradicts that α and fnα should have disjoint elevations, concluding
the proof. �

References
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