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Abstract

We discuss boundedness and distortion in transformation groups. We show that
the groups Diffr0(Rn) and Diffr(Rn) have the strong distortion property, whenever
0 ≤ r ≤ ∞, r 6= n+ 1. This implies in particular that every abstract length function
on these groups is bounded. With related techniques we show that, for M a closed
manifold or homeomorphic to the interior of a compact manifold with boundary, the
groups Diffr0(M) satisfy a relative Higman embedding type property, introduced by
Schreier. This answers a problem asked by Schreier in the famous Scottish Book.

1 Introduction

It is a classical theorem of Higman, Neumann, and Neumann [18] that every countable
group can be realized as a subgroup of a group generated by two elements. In this paper,
we are concerned with a relative version of this property, inspired by the following
question of Schreier.

Question 1.1 (Schreier (1935), Problem 111 in the Scottish Book [25]). Does there
exist an uncountable group with the property that every countable sequence of elements
of this group is contained in a subgroup which has a finite number of generators? In
particular, does the group S∞ of permutations of an infinite set, and the group of all
homeomorphisms of the interval have this property?

The first part of this question was answered positively, and using the example of
S∞, by Galvin [15], although the existence of such a group also follows easily from the
earlier work of Sabbagh in [28]. A few other examples of groups with this property
have been found, see eg. [8] and references therein. However, as of the 2nd (2015)
edition of the Scottish book, the question concerning the group of homeomorphisms of
the interval remains open. Here we give a positive answer to Schreier’s question for
the group of homeomorphisms of the interval, and show that the property in question
holds for many other transformation groups as well. For concreteness, say that a group
G has the Schreier property if every countable subset of G is contained in a finitely
generated subgroup of G. We prove:

Theorem 1.2. Let 0 ≤ r ≤ ∞, and let M be a Cr manifold with dim(M) 6= r − 1,
either closed or homeomorphic to the interior of a compact manifold with boundary.
Then the group Diffr0(M) of isotopically trivial diffeomorphisms of M has the Schreier
property.

Consequently, the group Diffr(M) has the Schreier property if and only if the
mapping class group Diffr(M)/Diffr0(M) is finitely generated.
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The answer to Schreier’s question is the special case Diff0(R) = Homeo(R) ∼=
Homeo(I). The assumption dim(M) 6= r − 1 in this theorem comes from the fact that
the group Diffrc(M) of compactly supported diffeomorphisms of a manifold M is known
to be simple in this case, but the algebraic structure of Diffrc(M) is not understood
when dim(M) = r − 1.

In many cases, it turns out that Schreier’s property follows from a stronger dynamical
property called strong distortion.

Definition 1.3. A group is strongly distorted1 if there exists an integer m and an
integer-valued sequence wn such that, for every sequence gn in G, there exists a finite
set S of cardinality m, such that each element gn can be expressed as a word of length
wn in S.

In particular, strong distortion implies that every element of G is arbitrarily distorted
in the usual sense of distortion of group elements or subgroups. This fact has important
dynamical implications when G is a group of homeomorphisms or diffeomorphisms
of a manifold or more general metric space, as distortion places constraints on the
dynamics of such transformations. For example, the case of distorted diffeomorphisms
of surfaces is studied in [14].

Closely related to strong distortion are the notions of strong boundedness, also
called property (OB) or the Bergman property, and uncountable cofinality.

Definition 1.4. A group G is strongly bounded if every function ` : G → R≥0,
satisfying `(g−1) = `(g), `(id) = 0, and the triangle inequality `(gh) ≤ `(g) + `(h), is
bounded.

Definition 1.5. A group G has uncountable cofinality if it cannot be written as the
union of a countable strictly increasing sequence of subgroups.

It is not hard to see that the Schreier property implies uncountable cofinality, that
strong distortion implies both strong boundedness and the Schreier property (we give
quick proofs at the end of this introduction), and that strong boundedness is equivalent
to the dynamical condition that every isometric action of G on a metric space has
bounded orbits. Our second main result is the following.

Theorem 1.6. The groups Diffr0(Rn) and Diffr(Rn) are strongly distorted, for all n
and all r 6= n+ 1.

This is particularly surprising since Diffrc(Rn), as well as the groups Diffr0(M) for
compact M , are never strongly distorted, nor even strongly bounded, whenever r ≥ 1.
This is also true of Diff0

0(M) = Homeo0(M) provided that M has infinite fundamental
group – this follows from [7, Example 6.8], or more explicitly from [22, Prop. 20] which
implies that all maximal metrics on Homeo0(M) are unbounded length functions. In
particular, for these examples, there is no hope to improve Theorem 1.2 to a proof of
strong boundedness or distortion.

Interestingly the question of strong boundedness and strong distortion for homeo-
morphism groups of manifolds with finite fundamental group, other than the spheres,
remains open.

The following table summarizes the results mentioned above.

1We follow the terminology of Cornulier. This property was called “Property P” in [20].
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Strongly
distorted

Strongly
bounded

Schreier
property

Uncountable
cofinality

Diffr0(Rn), r 6= n+ 1 X X X X
Homeo0(Sn) X X X X
(Cornulier [7, Appendix])
Homeo0(M), |π1(M)| <∞ ? ? X X
Homeo0(M), |π1(M)| =∞ X [7], [22] X X X
Diffr0(M) r ≥ 1, X X X* X∗
M compact

*under the hypotheses of Theorem 1.2

Despite the results mentioned above, one should not expect that most transformation
groups have Schreier’s property. For instance, we have the following.

Example 1.7 (Failure of Schreier’s property). The group PL(M) of piecewise-linear
homeomorphisms of a PL manifold M does not have the Schreier property. To see this
directly, fix a system of PL charts for M , and note that for any finite symmetric set
S ⊂ G, the set of all jacobians (at all points where defined) of elements of S is a finite
subset, say F ⊂ GL(n,R). Thus, for any element g generated by S and any point
x ∈ M , the jacobian of g at x has each entry an algebraic expression in the (finite)
set of entries of elements of F . Thus, if gn agrees with dilation by λn near some fixed
point x, where λn is a sequence of algebraically independent real numbers, then the
sequence {gn} cannot be generated by any finite set.

As an easier example, suppose G is the group of compactly supported homeomor-
phisms or diffeomorphisms of a noncompact manifold M . Let Kn be an exhaustion
of M by compact sets, with Kn contained in the interior of Kn+1. Then G is the
countable increasing union of the subgroups Gn := {g : g(x) = x for all x /∈ Kn}.
Thus, G has countable cofinality, and hence does not have the Schreier property.

Example 1.8 (Open question). We do not know whether either of the groups
Homeo0(S2, area) or Diffr0(S2, area), r ≥ 1 of area preserving homeomorphisms or
diffeomorphism of the sphere have the Schreier property. We do know that they are
not strongly bounded. In the case of diffeomorphisms, this follows from the fact that
norm of the derivative gives an unbounded length function. However, there is also
another (conjugation-invariant) norm, the Viterbo norm on Diff0(S2, area), and by
work of [29] it extends to a norm on Homeo0(S2, area).

Implications between properties. We conclude these introductory remarks
with some implications between properties that are not evident from the table given
above. Further discussion of these and related properties can be found in [4], and, in
the context of topological groups, also [9, Sect 4.E].

Strong boundedness and uncountable cofinality do not imply Schreier. This comes
from the following example of a group with the strong boundedness property, due to
Cornulier [8].

Example 1.9. Let G be a finite, simple group, and let H be the infinite direct
product of countably many copies of G. It is shown in [8] that such a group H
is strongly bounded. We show that H does not have the Schreier property. Let
S = {s1, ..., sk} be a finite subset of H, and write si = (si,1, si,2, ...) where si,j ∈ G.
Since G is finite, there exists g1 ∈ G such that s1,j = g1 for infinitely many j. Passing
to a further infinite subset of indices, we can find g2 ∈ G such that s2,j = g2 and
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s1,j = g1 for all such j. Similarly, one finds g1, g2, ...gk such that si,j = gi holds for
each i for infinitely many j. Thus any word in the generators projects to the same
element of G in all of these infinitely many places. In particular, a sequence such as
(g, id, id, id ...), (id, g, id, id, ...), (id, id, g, id ...) where g 6= id ∈ G, cannot be written as
a word in S.

Since every strongly bounded group has uncountable cofinality (see [9, Remark
4.E.11]), Example 1.9 also gives an example of a group with uncountable cofinality
that fails to have Schreier’s property.

Strong distorsion implies strong boundedness. Assume that G is a strongly distorted
group. That G has the Schreier property is immediate from the definition. For strong
boundedness, suppose for contradiction that ` is an unbounded length function on G.
Let gn be a sequence of elements in G such that `(gn) > w2

n, where wn is the sequence
given by the definition of strong distortion. Then there is a finite set S such that gn
can be written as a word of length wn in S. However, this implies that `(gn) ≤ Kwn,
where K = max{`(s) | s ∈ S}, giving a contradiction.

Schreier implies uncountable cofinality We show the contrapositive. Suppose that
G1 ( G2 ( G3... is an increasing union of subgroups with

⋃
nGn = G. Choose

fn ∈ Gn \ Gn−1. If S ⊂ G is any finite set, then there is a maximum i such that
S ∩Gi 6= ∅, hence S ⊂ Gi and does not generate {fn}.

Contents and outline of paper. Section 2 gives a direct proof of strong dis-
tortion for Homeo0(R), and therefore a quick answer to Schreier’s question. In Section
3 we introduce further technical tools to prove Theorem 1.2 for closed manifolds. The
proofs of strong distortion of Diffr(Rn) and Theorem 1.2 are given in Sections 4 and 5
respectively.

Acknowledgements. The authors thank Y. de Cornulier for comments, and for
pointing out Corollary 2.6. K. Mann was partially supported by NSF award DMS-
1606254.

2 Strong distortion for Homeo(R)

The purpose of this section is to give a quick answer to Schreier’s question, and
introduce some strategies to be used later in the proof of Theorem 1.6. Note that
strong distortion is inherited from finite index subgroups, so it suffices to work with
the index two subgroup of orientation-preserving homeomorphisms of the interval,
Homeo0(R).

Given a generating set S for a group G, word length of g ∈ G with respect to S is
denoted `S(g).

Proposition 2.1 (Strong distortion for Homeo0(R)). Given a sequence {fn} ⊂
Homeo0(R), there exists a set S ⊂ Homeo0(R) with |S| = 10, such that `S(fn) ≤
14n+ 12 holds for all n.

The first step in the proof is a simple factorization lemma for homeomorphisms. Say
that a setX is a standard infinite union of intervals if it is the image of

⋃
n∈Z[n+ 1

3 , n−
1
3 ]

under some f ∈ Homeo0(R). We denote by supp(h) the support of a homeomorphism
h.
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Lemma 2.2. Let {fn} ⊂ Homeo0(R). There exist sets X, Y ⊂ R, each a standard
infinite union of intervals, and for each n a factorization fn = gnhnkn, where kn has
compact support, supp(gn) ⊂ X, and supp(hn) ⊂ Y .

Proof. This is a special (easier) case of Lemma 4.4 below, this case can be done
by hand as follows. We denote by [a ± ε] the interval [a − ε, a + ε]. First, we
inductively define the endpoints of the intervals in X. Assume without loss of generality
that f0 = id, and let X0 = [−3,−1] t [1, 3]. Inductively, suppose we have defined
Xk = [−x+k ,−x

−
k ]t [x−k , x

+
k ] and points zk−1 for all k < n. Let x−n = x+n−1 + 1. Choose

zn large enough, so that the interval [zn ± 1
2 ] and all its images under f0, . . . , fn are

located on the right-hand side of x−n , and the interval [−zn ± 1
2 ] and all its images

under f0, . . . , fn are located on the left-hand side of −x−n . For instance, one could take
zn = max{(x−n , f−1j (x−j ),−f−1j (−x−j ) : j ≤ n} + 1. Now choose x+n large enough so

that [−x+n , x+n ] contains all the intervals fj
(
[−zn ± 1

2 ]
)
, fj

(
[−zn ± 1

2 ]
)

for j ≤ n. Let
Xn = [−x+n ,−x−n ] ∪ [x+n , x

−
n ].

The purpose of this construction is to guarantee that, for every j < n, there exists
a homeomorphism supported on Xn that agrees with fj on [−zn ± 1

2 ] ∪ [zn ± 1
2 ]. Such

a homeomorphism exists because Xn contains an interval containing both [−zn ± 1
2 ]

and its image under fj (and similarly for [zn ± 1
2 ] and its image).

Let X := tXj , let Y ′ =
⋃
n≥1[−zn ± 1

2 ] ∪ [zn ± 1
2 ], and let Y = R \ Y ′. Then X

and Y both are standard infinite unions of intervals. The observation in the previous
paragraph says that, for each n, we can find gn ∈ Homeo0(R) supported on X that
coincides with fn on the subset⋃

m≥n

[
−zm ± 1

2

]
∪
[
zm ± 1

2

]
of Y ′, so g−1n fn is the identity there. In particular g−1n fn fixes ±zn and we may write
g−1n fn = hnkn with kn supported on [−zn, zn] and hn supported on the complement.
Actually hn is supported on

R \

[−zn, zn] ∪
⋃
m≥n

[−zn ±
1

2
] ∪ [zn ±

1

2
]


which is a subset of Y , and we have fn = gnhnkn as required by the lemma.

Now to prove Proposition 2.1, take the sequences kn, gn and hn given by the lemma.
We will build sets S1, S2 and S3 ⊂ Homeo0(R) with |S1| = 4 and |S2| = |S3| = 3 such
that `S1

(kn) ≤ 6n+ 4, `S2
(gn) ≤ 4n+ 4, and `S3

(hn) ≤ 4n+ 4.

Proof. Given that each kn has compact support, we may take compact intervals Kn

with supp(kn) ⊂ Kn, such that Ki is contained in the interior of Ki+1, and such that⋃
nKn = R. Let d : R→ R be a homeomorphism such that d(Ki) contains Ki+1 for

all i. Then supp(dnknd
−n) ⊂ K1.

We now use a classical trick. It appears, perhaps first, in Fisher [13], but also in a
related form in [15] and later in [7] (and probably elsewhere!).

Construction 2.3. Suppose {an} is a sequence of homeomorphisms supported on a
set Z, and there exist homeomorphisms T and S such that

1. the sets Z, S(Z), S2(Z) . . . are pairwise disjoint,

2. the sets supp(S), T (supp(S)), T 2(supp(S)) . . . are pairwise disjoint, and
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3. The maximum diameter of the connected components of Tn(supp(S)) and of
Sn(Z) converges to 0 as n→∞.

Denote ab = bab−1. Since the map aT
nSm

n is supported on TnSm(Z), the three above
properties entail that the function

A(x) :=
∏

n≥0,m≥0

aT
nSm

n (x)

defines a homeomorphism. Moreover, it is easily verified that the commutator

[AT
−n

, S] = AT
−n

(A−1)ST
−n

= an

by checking this equality separately on each set TnSm(Z).

Remark 2.4. Other variants of condition 3 can also be used in this construction. For
example, it can be replaced by either of:

3’ The collection of sets Z, S(Z), S2(Z) . . . and supp(S), T (supp(S)),
T 2(supp(S)) . . . are locally finite.

3” The maximum diameter of a connected component of Sn(Z) converges to 0, and
supp(S), T (supp(S)), T 2(supp(S)) . . . is locally finite.

We will apply Construction 2.3 to the sequence an := dnknd
−n supported on

K1. To do this, we may take T to be supported on a neighborhood of K1, and to
satisfy T (K1) ∩ K1 = ∅. Then let S be a homeomorphism supported on a smaller
neighborhood N of K1, small enough so that T (N) ∩ N = ∅, and again satisfying
S(K1) ∩K1 = ∅. We can choose T and S such that property 3 of the construction is
satisfied. Let S1 = {d,A, S, T}, then kn = d−nand

n is a word of length 6n+ 4 in S1

Similarly, given the sequence {gn} supported on X (a standard union of disjoint
intervals), we can find a homeomorphism T ′ supported on a neighborhood NX of X
that consists of pairwise disjoint neighborhoods of the intervals comprising X, and
satisfying T ′(X) ∩X = ∅. Then take S′ to be supported on a smaller neighborhood,
say N ′X of X, so that translates of N ′X by T ′ are also disjoint. Choose T ′ and S′ that
satisfies property 3. Together with the construction, this gives a set S2 of cardinality 3
so that each gn is a word of length 4n+ 4 in S2.

Finally, as Y is also a standard union of disjoint intervals, this same argument
applies verbatim to the sequence {hn} supported on Y .

Remark 2.5. This proof can be generalized directly to Homeo0(Rn) using collections
of disjoint concentric annuli in the place of our sets X and Y of disjoint intervals.
However, the strategy does not immediately apply to Diffr0(Rn) for any n and any r ≥ 1,
since the “infinite product” of conjugates of compactly supported diffeomorphisms, as
in Construction 2.3, will not generally be differentiable.

We conclude this section by noting an interesting application to orderable groups.

Corollary 2.6. Let G be a countable left-ordered group. Then there exists a finitely
generated left-orderable group H containing G. Moreover, one can order H such that
the inclusion H → G is order preserving.
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Proof. Given G, realize G as a subgroup of Homeo+(R); this can be done so that the
linear order on G agrees with that on the orbit G(0) ⊂ R under the usual order on R.
(This is standard, see eg. [10, Prop. 1.1.8]). Proposition 2.1 implies that G ⊂ H, for
some finitely generated group H ⊂ Homeo+(R). Now H can be given a left-invariant
order that agrees with the given order on G – in fact all of Homeo+(R) can be given
such an order, following [10, §1.1.3].

Remark 2.7. Related to order structures, we also note that the strategy of the proof
of Proposition 2.1 appears to give an alternative proof of results in [11]. Droste and
Holland show there that that the automorphism group of a doubly homogeneous
chain (meaning a totally ordered set where the set of order-preserving bijections acts
transitively on pairs) has uncountable cofinality. Interpreting [a, b] as {c : a ≤ c ≤ b}
in our proof allows one to extend it to a more general setting.

3 Schreier’s property for Diffr
0(M), M closed

In this section we prove Theorem 1.2 for the case of diffeomorphism groups of closed
manifolds. We defer the case of open manifolds until after the proof of strong bound-
edness for Diffr0(Rn).

The proof uses the following two classical results.

Theorem 3.1 (Simplicity of diffeomorphism groups [1], [23] [24], [30].). Let M be
a connected manifold (without boundary), and r 6= dim(M) + 1. Then the identity
component of the group of compactly supported Cr diffeomorphisms of M , denoted
Diffrc(M), is a simple group.

Here, the C∞ case is due to Thurston [30], and the Cr case, for 1 ≤ r <∞ is from
Mather [23, 24]. Mather and Thurston’s proofs use different arguments, but both deal
with group homology and are quite deep. The C0 case of the theorem, modulo the
next “fragmentation lemma”, is much easier and originally due to Anderson [1].

Lemma 3.2 (Fragmentation). Let M be a compact (not necessarily closed) manifold,
and U a finite open cover of M . Then Diffr0(M) is generated by the set

{f ∈ Diffr0(M) : supp(f) ⊂ U for some U ∈ U}.

The proof of Lemma 3.2 for groups of homeomorphisms is a major result of Edwards
and Kirby, it uses the topological torus trick [12]. The proof for Cr–diffeomorphisms
is much easier: it uses only the fact that each Cr diffeomorphism near the identity can
be written as the time one map of a time-dependent vector field; one then “cuts off”
such vector fields by suitable bump functions. See [3] or [6] for an exposition.

We will also use a lemma on affine subgroups.

Lemma 3.3 (Existence of affine subgroups). Let B ⊂ Rn be a compact ball. There
exist one-parameter families of smooth diffeomorphisms f t and gs supported on B and
satisfying the relations f tgsf−t = gse

t

for all s, t.

The idea of the proof in the one-dimensional case is to conjugate the standard
affine group in Diff∞0 (R) generated by the flows f t(x) = etx and gs(x) = x+ s by a
suitable homomorphism from R to (0, 1) so as to “flatten” derivatives at the endpoints;
this is generalized to higher-dimensional manifolds by embedding a family of copies of
(0, 1) inside a ball.
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Proof. For the 1-dimensional case, we follow [26, §4.3]. Fix ε < 1
2 , and define homeo-

morphisms f1 : (0, 1)→ R and f2 : (0, 1)→ (0, 1) by

f1(x) =

{
−1/x for x ∈ (0, ε)
e−1/x for x ∈ (ε, 1)

f2(x)

{
1/(1− x) for x ∈ (0, ε)

1− e1/(x−1) for x ∈ (ε, 1)

and let f : (0, 1)→ R be the composition f = f1 ◦ f22 .
The standard affine group in Diff∞(R) is has its Lie algebra generated by the vector

fields ∂
∂x and x ∂

∂x . Thus, f∗( ∂
∂x ) and f∗(x ∂

∂x ) generate an affine subgroup of (0, 1).
One checks that these extend to smooth vector fields on [0, 1] that are infinitely flat
at the endpoints, hence extend to smooth vector fields on (−δ, 1 + δ) supported on
[0, 1]. These generate an affine subgroup G ⊂ Diff∞([−δ, 1 + δ]) supported on [0, 1].
Let G(n) be the affine subgroup of Diff∞([−δ, 1 + δ] × Sn−1) given by the product
action of G on the [−δ, 1 + δ] factor, and trivial action on the Sn−1 factor.

Finally, given a manifold M of dimension n and open ball B, we can take φ to be
a smooth embedding of (−δ, 1 + δ) × Sn−1 in M , and consider the affine subgroup
given by extending each element of φG(n)φ−1 to agree with the identity outside of the
image of φ.

Although Theorem 3.1 means that every f ∈ Diffrc(M) can be written as a product
of commutators, Mather’s proof is non-constructive, so gives no control on the norms
of the elements in these commutators and the number of commutators in terms of
the norm of f . (It is however possible to control the norm and number in the r =∞
and r = 0 cases; see [16] for the C∞ case, the C0 case is an exercise.) The benefit to
working inside of affine subgroups is that elements close to the identity can always
be written as commutators of elements close to the identity. Precisely, we have the
following corollary of Lemma 3.3.

Corollary 3.4. Let r be arbitrary, and let G be an affine subgroup of Diffrc(M)
generated by Cr flows f t and gs satisfying relations as in Lemma 3.3. For any
neighborhood U of id in Diffrc(M), there exists a neighborhood V of id such that, if
gs ∈ V, then gs can be written as a single commutator of elements of U ∩G.

Proof. Since the flows f t and gs are continuous in t and s, it suffices to show that,
given ε > 0, there exists δ0 > 0 such that if δ < δ0, then gδ can be written as a
commutator [f t, gs] with t, s < ε. This is immediate from the relation in affine group,

which gives f tgs(f t)−1(gs)−1 = gs(e
t−1).

The next proposition is the main result of this section.

Proposition 3.5 (Theorem 1.2, closed manifold case). Let M be a closed manifold,
and {fn} ⊂ Diffr0(M). Assume r 6= dim(M) + 1. Then there exists a finite set
S ⊂ Diffr0(M) such that {fn} ⊂ 〈S〉

We start with an obvious lemma.

Lemma 3.6. Let G be a group, and let X be a generating set for G. Then G has the
Schreier property if and only if, for every sequence xn ∈ X, there exists a finite set
S ⊂ G such that {xn} ⊂ 〈S〉.

Proof. Let G be a group generated by a subset X. The condition on sequences in X
is an immediate consequence of the Schreier property. For the converse, assume X has
the property in the lemma. Now if fn is an arbitrary sequence in G, we may write
fn = fn,1...fn,j(n) where each fn,i ∈ X. Now apply the assumption from the lemma to
the countable set {fn,i}. This provides a set that S that generates each fn.
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Now to prove the proposition.

Proof. Fix a finite cover of M by open balls. The fragmentation lemma states that
the set of diffeomorphisms whose support lies in a single element of the cover is a
generating set for Diffr0(M). By Lemma 3.6 and the fact that the cover is finite, it
suffices to show that for an open ball B and any sequence {fn} ⊂ Diffrc(B), there
exists a finite set S ⊂ Diffr(M) such that {fn} ⊂ 〈S〉.

Since Diffrc(B) is simple, Lemma 3.3 implies that it is generated by the set

{g : g is the time 1 map of a flow gs from an affine subgroup}.

Thus, again using Lemma 3.6, we can reduce to the case where each fn is the time one
map of a flow gsn from some affine subgroup.

The next short lemma is based on an idea of Avila [2]. To fix terminology, let M
be a Cr manifold, and let B′ be an embedded Euclidean ball in M , i.e. the image
of a standard Euclidean ball by some Cr diffeomorphism φ. This allows us to push
forward the standard Cr norm on Diffrc(Rn) to Diffc(B

′), the subset of Diffc(M)
consisting of diffeomorphisms supported on the interior of B′. Abusing notation
somewhat, we denote this push-forward Cr norm by ‖f‖r. Note that the induced
left-invariant distance dr(f, g) := ‖f−1g‖r on Diffc(B

′) generates the topology of
Diffc(B

′) ⊂ Diffc(M).

Lemma 3.7. Let Z ⊂M be an open set, and T ∈ Diffr0(M) such that the translates
Tn(Z) are pairwise disjoint and contained in an embedded ball B′. Then there
exist εn → 0 (depending on T ) such that, if an is a sequence of diffeomorphisms
with ‖an‖ < εn and support on Z, then the infinite product

∏
n T

nanT
−n is a Cr

diffeomorphism.

Proof. Fix T ∈ Diffr0(M) such that the translates Tn(Z) are pairwise disjoint. For
each n, conjugation by Tn is a continuous automorphism of Diffr0(M), so there exists
εn such that, if an has Cr-norm less than εn, then TnanT

−1 has Cr norm less than
2−n. Thus, for any such sequence an, the sequence

Ak :=

k∏
i=1

TnanT
−1

is Cauchy, so converges in the Cr topology to the diffeomorphism
∏
n∈N

TnanT
−n.

To apply this to our situation, let Z ⊂ M be an open ball, and let T and S ∈
Diffr0(M) be such that the translates Tn(Z), Sm(Z) for n ∈ Z and m ∈ Z \ {0}
are all pairwise disjoint. If dim(M) = 1, one can take S and T as in the proof of
Proposition 2.1, the higher dimensional case is entirely analogous. Using Lemma 3.7,
let εn be such that if an and bn are sequences of diffeomorphisms with ‖an‖r < εn
and ‖bn‖r < εn, then the infinite compositions

∏
SnanS

−n and
∏
TnbnT

−n are Cr

diffeomorphisms. By Corollary 3.4, if we fix k = k(n) sufficiently large, then we can

write g
1/k
n as a commutator [an, bn], such that the ‖an‖r < εn and ‖bn‖r < εn. In this

case, gn = [an, bn]k(n).
Now we apply Lemma 3.7. Define Cr–diffeomorphisms A and B by

A :=
∏

SnanS
−n

9



B :=
∏

TnbnT
−n.

Note that the intersection of the supports of the maps S−nASn and T−nBTn is
contained in Z, and on that set they coincide respectively with an and bn. Thus
[an, bn] = [S−nASn, T−nBTn] which shows that the sequence gn is generated by the
set S = {A,B, T, S}. This completes the proof.

3.1 Mapping class groups, extensions and quotients

To finish the proof of Theorem 1.2 for closed manifolds, we need to show Diffr(M) has
the Schreier property if and only if the mapping class group is finitely generated. This
is a direct consequence of the following observation.

Proposition 3.8. If G is a group with the Schreier property, then any quotient of G
has the Schreier property. If A and C are groups with the Schreier property, then any
extension 1→ A→ B → C → 1 has the Schreier property.

The same statements hold when the Schreier property is replaced by strong distor-
tion.

Proof. The first statement is immediate from the definition of the property. For the
second statement, given a sequence bn ∈ B, let S1 ⊂ C be a finite set generating the
images of bn in C, and let S′1 be a transversal for S1 in B. Then, for each n there
exists an ∈ A such that anbn ∈ 〈S′1〉. Let S2 ⊂ A ⊂ B be a finite set generating {an},
and let S = S′1 ∪ S2.

In the case where A and C have strong distortion (say with sequences wAn and wCn ,
respectively), choosing S′1 such that the images of bn in C have length at most wCn
in S1, and S2 such that an has length at most wAn in S2, shows that B is strongly
distorted with sequence wAn + wCn .

Now our claim about mapping class groups follows from the fact that a countable
group has the Schreier property if and only if it is finitely generated, and that the
mapping class group is the quotient of Diffr(M) by Diffr0(M).

Note that this case does indeed occur: for one concrete example, Hatcher [17]
and Hsiang–Sharpe [19] have independently computed the mapping class group
Diff∞(T5)/Diff∞0 (T5), and it is not finitely generated.

4 Strong distortion for Diffr
0(Rn)

In this section we will prove the following result.

Theorem 4.1. (Strong distortion for Diffr0(Rd)) Let 0 ≤ r ≤ ∞, r 6= d + 1, and let
{fn} ⊂ Diffr0(Rd). Then there exists a set S ⊂ Diffr0(Rd) with 17 elements, such that
each fn can be written as a word of length 50n+ 24 in S.

Since Diffr0(Rd) is the index two subgroup of orientation preserving Cr diffeomor-
phisms in Diffr(Rd), an argument as in Section 3.1 implies that Diffr(Rd) is strongly
distorted also.

To prove Theorem 4.1, we additionally need the following theorem of Burago,
Ivanov, and Polterovich.
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Theorem (Theorem 1.18 in [5]). Let M be a manifold diffeomorphic to a product
M ′ ×Rn−1. If Diffrc(M) is perfect, then any element may be written as the product of
two commutators.

This theorem applies in the more general context where M is a “portable mani-
fold”, but we only need this special case here. The statement in [5] is given for C∞

diffeomorphisms, but the proof does not use smoothness and applies directly to the
Cr case, for any r.

The uniform bound on commutator length from Burago–Ivanov–Polterovich will
help us control word length in the proof of strong boundedness. The other major tool
towards this end is a variant of Lemma 3.7 avoiding the earlier hypothesis that the
norms of diffeomorphisms an are bounded by a sequence tending to zero. Instead, we
will use the unboundedness of Rd to displace supports so as to avoid accumulation
points. This is the purpose of the next technical lemma.

Lemma 4.2. There exist S, T ∈ Diff∞0 (R) that are the identity on (−∞, 0], and a
sequence {Ik}k≥0 of intervals in (0,+∞), such that

1. the family {SiIk1 , T jIk2 , i, j, k1, k2 ≥ 0} is locally finite, and

2. the intervals SiIk1 , T
jIk2 for i, j ∈ Z and k1, k2 ≥ 0 are pairwise disjoint (with

the trivial exception of S0Ik = T 0
1 Ik = Ik for all k).

Figure 1 gives a graphical description of properties 1 and 2 from Lemma 4.2.
The figure shows a configuration of rectangles Ik in R2, and their images under
diffeomorphisms S and T , that satisfy both properties. It is much harder to achieve
this configuration for intervals in R; this is the technical work in proof of the lemma.

I0

S

↗ S(I0)

T

↘ T (I0)

→

→

→

→
↗

↘
S

T

→

→

S2(I0)

T 2(I0)

I1

S

↗

T

↘

→

→

→

→
↗

↘
S

T

→

→

. . .

. . .

. . .

. . .

.

..

Figure 1: Configuration of cubes in R2 satisfying the properties of Lemma 4.2

Proof. Let S be a smooth diffeomorphism of the line which is the identity on (−∞, 0],
and which coincides with an affine map fixing 2, say x 7→ 2(x − 2) + 2, on [2,+∞).
Similarly, let T0 be a smooth diffeomorphism of the line which is the identity on
(−∞, 0], which coincides with S on [3,+∞), fixes 1, and has no fixed point in (1,+∞).
Note that for every point x > 2, the sequence S−n(x) converges to 2 as n→∞, while
the sequence T−n0 (x) converges to 1.
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We will define the intervals I0, I1, I2,... iteratively, modifying T0 at each step to
produce diffeomorphisms T ′0, T ′1, T ′2,... , designed to converge to a diffeomorphism T
with our desired properties.

Take any point x0 ≥ 3 such that x0 /∈ {T k0 (2) : k > 0}. I0 will be the closure
of a small neighborhood of x0, of size to be determined after the construction of T ′0.
For this, we consider the backward iterates of x0 under T0 and S. If there is no
common iterate, i.e. {S−n(x0) : n > 0} ∩ {T−n0 (x0) : n > 0} = ∅, then we let T ′0 = T0.
Otherwise, we modify T0 as follows. Choose x′0 close to x0 outside the countable set
{Tm0 S−n(x0) : n,m > 0}, so that the backward iterates of x′0 under T0 are disjoint
from the backward iterates of x0 under S. Then modify T0 near T−10 (x′0) to obtain
a map T ′0 such that T ′0(T−10 (x′0)) = x0. This can be done, for instance, by taking
a diffeomorphism h with support on a small neighborhood of T−10 (x′0) disjoint from
{T−m0 (x0) : m > 1}, and setting T ′0 = h ◦ T0.

Now the backward iterates of x0 under T ′0 coincide with the backward iterates of x′0
under T0, and thus are disjoint from the backward iterates of x0 under S. Note that by
choosing x′0 sufficiently close to x0 we may keep the property that x0 /∈ {T ′0

k
(2) : k > 0}.

Since {T ′0
−n

(x0) : n > 0} ∩ [2, x0] is finite and does not contain 2, and since [2, x0]
contains {S−n(x0) : n > 0}, if I0 is a sufficiently small neighborhood of x0, then every
image T ′0

−n
(I0) will be disjoint from

⋃
n>0 S

−n(I0). Fix any such interval I0.
At this point, the T ′0-forward iterates {T ′0

n
(I0) : n > 0} of I0 coincide with its

S-forward iterates. We now further modify T ′0 so that they are pairwise disjoint
from the iterates under S. To do this, fix a small neighborhood U of S(I0) so that
U ∩ S(U) = ∅, and let I ′0 be a small interval in U disjoint from S(I0). Then all the
S-forward iterates of I ′0 and S(I0) are disjoint. Now modify T ′0 by postcomposing it
with a diffeomorphism h supported on U and such that h(I0) = I ′0. Call this new map
T1, and note that T1(I0) = I ′0. We have achieved the following properties:

i) the family {SiI0, T j1 I0 : i, j ≥ 0} is locally finite,

ii) the intervals SiI0, T
j
1 I0 for i, j ∈ Z are pairwise disjoint, with the trivial exception

of S0I0 = T 0
1 I0 = I0.

Let Z0 be the union of the intervals in the family from ii) above. We define the
interval I1 by a similar procedure to that of I0. Choose some point x1 > S(x0), outside
Z0, which is not a forward iterate of the point 2 under T1. As before, modify T1
near T−11 (x1) if necessary to obtain a map T ′1 so that the set of backward iterates of
x1 under T ′1 is disjoint from the set of backward iterates of x1 under S. The same
argument as above implies that we may find a small interval I1 around x1, taken
sufficiently small so that it is disjoint from the set Z0, such that every T ′1-backward
iterate of I1 is disjoint from every S-backward iterate of I1. As the forward iterates
of I1 under T ′1 and under S coincide we now modify T ′1 in a neighborhood of I1, to
get a map T2 with the property that all the T2-forward iterates of I1 are disjoint and
disjoint from its S-forward iterates.

We repeat the same process iteratively. At the kth step, choose xk > S(xk−1),
modify the already defined Tk to T ′k as above in order to be able to choose a suitable
small neighborhood Ik of xk and then modify T ′k by composing with a diffeomorphism
supported on a neighborhood of S(Ik) to get Tk+1 so that the following properties
hold:

i) the family {SiIm, T jk+1Im : i, j ≥ 0,m ≤ k} is locally finite, and

ii) the intervals in the family SiIm, T
j
k+1Im for i, j ∈ Z,m ≤ k are pairwise disjoint,

with the trivial exception S0Im = T 0Im.
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Since, at each step, we choose Ik to be a small interval about a point xk ≥ S(xk−1),
the sequence of intervals {Ik} is locally finite. And since on every compact subset K
of the line, all but a finite number of the maps Tk agree, the sequence {Tk} converges
to an element T of Diff∞(R). By construction, these maps T, S and the sequence {Ik}
satisfy properties 1. and 2. from the statement of the lemma.

The next step is a natural generalization of Lemma 2.2. However, since we are
now working in higher dimensions, we need to use the annulus theorem (proved by
Kirby [21] and Quinn [27] for the difficult case r = 0). As an alternative to the annulus
theorem, one can use the related Edwards–Kirby theory of deformations of embeddings.
We will take this latter approach in the next section, for now we use the more familiar
annulus theorem directly. The precise consequence that we need is the following.

Lemma 4.3 (consequence of the annulus theorem). Let B1 ⊂ B2 ⊂ B3 ⊂ B4 be
standard Euclidean closed balls in Rd centered at 0 with pairwise disjoint boundaries.
Let A be the annulus B3\Int(B2). Suppose f ∈ Diffr0(Rd) satisfies f(A) ⊂ Int(B4)\B1,
and that f(A) is homotopically essential in the annulus Int(B4)\B1. Then there exists
h supported on B4 \B1 that agrees with f on A.

Proof. Let B(R) denote the standard Euclidean ball of radius R. It is a standard
corollary of the annulus theorem that, if γ is a Cr embedding of B( 1

2 ) into B(1),
then B(1) \ Int(γ(B( 1

2 ))) is Cr-diffeomorphic to B(1) \ Int(B( 1
2 )). Moreover, the

diffeomorphism can be taken to agree (meaning to agree up to order r) with the
identity on ∂B and agree with γ on ∂B( 1

2 ).
This means that, given f as in the lemma, we may find h1 : B4 \B3 → B4 \ f(B3)

that is the identity on ∂B4 and agrees with f on ∂B3. Extend h1 to a homeomorphism
of Rd that agrees with f on B3 and the identity outside of B4. By the same argument,
we may find h2 that agrees with the identity on f(∂B2) and agrees with f−1 on f(∂B1);
extend h2 to be the identity outside of f(B2) and agree with f−1 on f(B1). Now
h := h2h1 is supported on B4 \B1 and agrees with f on A.

Lemma 4.4. Let {fn} ⊂ Diff0(Rd). There exists sets X and Y , each a union of a
locally finite family of disjoint concentric annuli, such that we can write each element
fn as a product fn = kngnhn, where each kn has compact support, supp(gn) ⊂ X,
and supp(hn) ⊂ Y .

Proof. Similarly to the proof of Lemma 2.2, we first construct two sequences of
concentric annuli. For R > 0, let B(R) denote the closed ball of radius R about 0 in
Rd. The annuli will be defined by

AN = B(R+
N ) \ IntB(R−N ), A′N = B(R′

+
N ) \ IntB(R′

−
N ) (N ≥ 0)

and have the properties that

• the annuli A′N , N ≥ 0 are pairwise disjoint,

• for every N ≥ 0, AN is contained in A′N ,

• for every N ≥ 0 and for every n ≤ N ,

– B(R′
−
N ) is contained in the interior of fn(B(R−N ),

– fn(B(R+
N )) is contained in the interior of B(R′

+
N ).
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Note that the last point says that fn(AN ) is contained in A′N in a homotopically
essential way.

We construct these annuli by induction, the procedure is quite analogous to that in
Lemma 2.2. First set R′

−
0 = 1, then choose R−0 large enough so that the ball B(R′

−
0 )

is contained in the interior of f0(B(R−0 )), then choose for R+
0 any number larger that

R−0 + 1, and finally choose R′
+
0 large enough so that f0(B(R+

0 )) is contained in the

interior of B(R′
+
0 ). Now assume that the annuli have been constructed up to step

N , satisfying the above properties. We construct AN+1 and A′N+1 as follows. First

choose R′
−
N+1 greater than R′

+
N . Then choose R−N+1 large enough so that for every

n = 0, . . . , N+1, the ball B(R′
−
N+1) is contained in the interior of fn(B(R−N+1)). Then

choose for R+
N+1 any number larger that R−N+1 +1. Finally choose R′

+
N+1 large enough

so that for every n = 0, . . . , N + 1, the set fn(B(R+
N+1)) is contained in the interior of

B(R′
+
N+1).

Now let us fix some n ≥ 0, and define the maps kn, gn and hn as follows. The
property that, for anyN ≥ n, the annulus fn(AN ) is contained in A′N in a homotopically
essential way means that we can use Lemma 4.3 to find hn ∈ Diffr(Rd) supported in
the disjoint union X := ∪NA′N , and that coincides with fn on a neighborhood of each
AN with N ≥ n. Fix such an hn. Let kn agree with fnh

−1
n on the ball B(R−n ), and be

the identity elsewhere. Define gn to be the restriction of fnh
−1
n to the complement of

this ball, and the identity elsewhere. Note that fn = kngnhn, and that gn is compactly
supported in the disjoint union of annuli

Y :=
⋃
N≥n

B(R−N+1) \ IntB(R+
N ),

this proves the lemma.

Proof of Theorem 4.1. Let {fn} be a sequence in Diffr0(Rd). We first apply Lemma
4.4, to get two sets X,Y and for each n a decomposition fn = kngnhn, with supp(kn)
compact, supp(gn) ⊂ X and supp(hn) ⊂ Y .

We first take care of the sequence {gn} supported in X. Apply Lemma 4.2 to
get maps S, T ∈ Diff∞0 (R) and a sequence {Ik} of intervals in (0,+∞). Using polar
coordinates, we identify Rd \ {0} with R× Sd−1, and let

Îk = Ik × Sd−1, Ŝ = S × Id, T̂ = T × Id.

Note that since S and T are the identity near −∞, the maps Ŝ, T̂ extends to smooth
diffeomorphisms of Rd fixing 0. Also note that properties 1 and 2 of Lemma 4.2 still
hold if we replace {Ik}, S and T by the sequence of annuli {Îk} and the maps Ŝ, T̂ .

Since {Îk} is a locally finite sequence of concentric pairwise disjoint annuli, there
exists a diffeomorphism that sends the union of the Îk’s onto a neighborhood of the
set X. Up to conjugating by this diffeomorphism, we may assume that X = ∪k≥0Îk,
and each gn is supported in the interior of X.

We now appeal to Burago-Ivanov-Polterovich’s theorem stated above: for each
fixed n and k we may write the restriction of gn to Îk as a product of two commutators
of diffeomorphisms supported in Îk. Since the Îk are pairwise disjoint, we may take
composition over k and get Cr diffeomorphisms an, bn, a

′
n and b′n supported in the

union of the Îk, such that gn = [an, bn][a′n, b
′
n].

We work first with the sequence {an} and {bn} applying the same strategy from
the compact manifold case.
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Let
A =

∏
n≥0

ŜnanŜ
−n, B =

∏
n≥0

T̂nbnT̂
−n.

Note that these infinite products define diffeomorphisms of Rd, because of local
finiteness of the supports (property 1 of Lemma 4.2.) Now Property 2 of the same
lemma implies that for every n ≥ 0 we have

[an, bn] = [Ŝ−nAŜn, T̂−nBT̂n].

The same strategy (and the same Ŝ and T̂ ) can be used to give A′ and B′ such
that [a′n, b

′
n] = [Ŝ−nA′Ŝn, T̂−nB′T̂n].

We have just shown that any sequence {gn} supported in X can be written as a
word in {Ŝ, T̂ , A,B,A′, B′} of length 2(4(2n+1)). We can do the same for the sequence
{fn} supported in Y , writing each as a word of length 16n+ 8 in a set of 6 different
elements, say {Ŝ2, T̂2, A2, B2, A

′
2, B

′
2}. It remains only to treat the sequence {kn}. Let

B(rn) be a sequence of nested balls of increasing radii such that supp(kn) ⊂ B(rn).
Fix a ball K0 ⊂ X, and let φ ∈ Diffr0(Rd) be a diffeomorphism such that, for every
n ≥ 0, we have φn(B(rn)) ⊂ K0. Then φ−nknφ

n is supported in K0 ⊂ X, so the same
argument for the sequence {gn} applies to {φ−nknφn}; in fact, we may even use the
same diffeomorphisms Ŝ and T̂ . This gives a set {Ŝ, T̂ , A3, B3, A

′
3, B

′
3} so that each

φnknφ
−n can be written as a word of length 16n+ 8.

Thus, taking S := {φ, Ŝ, T̂ , Ŝ2, T̂2, A,B,A
′, B′, Ai, Bi, A

′
i, B
′
i : i = 2, 3} as a gen-

erating set, `S(kn) ≤ 18n + 8. Combined with the estimates above, this gives
`S(fn) ≤ 50n+ 24. This completes the proof.

5 The Schreier property for Diffr
0(M), M noncom-

pact

This short section gives the necessarily generalizations to Theorem 4.1 in order to
prove the following.

Proposition 5.1. Let M be an open manifold diffeomorphic to the interior of a
compact manifold with boundary. Then Diff0(M) has the Schreier property.

In the special case that M ∼= N ×Rk for some compact manifold N , then Diff0(M)
is also strongly distorted.

The proof of this proposition follows the same strategy as the Rn case, but in place
of the annulus theorem, we use the following related result (which is also a difficult
theorem in the C0 case). Recall that the trace of an isotopy f t, t ∈ [0, 1] of a set C is
defined to be

⋃
t∈[0,1] f

t(C)

Lemma 5.2. Let f ∈ Diffr0(M), let f t be an isotopy from id = f0 to f = f1, and let
C ⊂M be a compact set. Given a neighborhood U of the trace of C under f t, there
exists g ∈ Diffr0(M) supported on U and agreeing with f on C.

Proof. The C0 case follows from the embedding theory of Edwards and Kirby, this
statement is exactly the generalization of [12, Cor. 1.2] explained in the second remark
of [12, p. 79]. The case for r ≥ 1 is easy: one thinks of ∂

∂tf
t as defining a time-

dependent vector field Xt on M . One then cuts off Xt using a bump function that is
identically one on the trace, and vanishes outside U . The time one map of the resulting
time-dependent vector field is the desired diffeomorphism g.
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Proof of Proposition 5.1. Let M be an open manifold diffeomorphic to the interior of a
compact manifold with boundary. Then ∂M is a compact (possibly disconnected) n−1
dimensional manifold, and a neighborhood of the union of ends of M is diffeomorphic
to ∂M × R.

Let {fn} be a sequence in Diff0(M). We will use Lemma 5.2 to write fn as a
product kngnhn, where kn has compact support, and gn and hn are supported in
the union of ends of M . Moreover, we will have that gn is supported in a set X
diffeomorphic to ∂M ×

⋃
n>0[n+ 1

3 , n−
1
3 ], and hn is supported in a set Y of the same

form. After this, the proof will proceed much as before, with X and Y playing the
roles of the unions of annuli from the M = Rn case.

To produce gn and hn, fix an identification of the complement of a compact set
in M with R× ∂M , and fix isotopies f tn from fn to id. Imitating notation from the
previous proof, for R > 0, let B(R) := (−∞, R] × ∂M ⊂ R × ∂M ⊂ M . We next
construct sequences R±N , R′

±
N .

Set R′
−
0 = 1, then choose R−0 large enough so that the ball B(R′

−
0 ) is contained

in the interior of
⋃
t f

t
0(B(R−0 )). Now choose R+

0 to be any number larger that

R−0 + 1, and finally choose R′
+
0 large enough so that

⋃
t f

t
0(B(R+

0 )) is contained in

the interior of B(R′
+
0 ). The construction of R±n and R′

±
n is by the same inductive

procedure as the Rn case, except that we require R−N+1 to be large enough so that

for every n = 0, . . . , N + 1, the ball B(R′
−
N+1) is contained in the interior of the trace⋃

t f
t
n(B(R−N+1)), and R′

+
N+1 to be large enough so that for every n = 0, . . . , N + 1,

we have
⋃
t f

t
n(B(R+

N+1)) contained in the interior of B(R′
+
N+1).

Let AN = B(R+
N ) \ IntB(R−N ) and A′N = B(R′

+
N ) \ IntB(R′

−
N ), for N ≥ 0. Now

Lemma 5.2 implies that there exists hn ∈ Diffr0(M) supported in X := ∪NA′N , and
coinciding with fn on a neighborhood of each AN with N ≥ n. Fix such an hn. Let kn
agree with fnh

−1
n on the union of B(R−n ) with the compact part (the complement of

the ends) of M , and be the identity elsewhere. Define gn to be the restriction of fnh
−1
n

to the complement of this ball, and the identity elsewhere. As before, fn = kngnhn,
and gn is compactly supported in the disjoint union

Y :=
⋃
N≥n

B(R−N+1) \ IntB(R+
N ),

Following the proof of the M = Rn case verbatim, but replacing Sd−1 with ∂M , we
conclude that {gn} and {hn} can each be written as words of length 16n+ 8 in sets of
6 elements. In the special case M ∼= Rk ×N , then supp(kn) is contained in a set of
the form Kn ×N , where Kn is a compact set in Rk. Moreover, in this case, we have
A′n
∼= Sk ×N . Analogous to the Rn case, one can therefore find a diffeomorphism φ

such that φn(Kn ×N) ⊂ A′0 ⊂ X. Thus, the previous argument shows that kn can be
written as a word of length 16n+ 8 in a finite set; showing that Diffr0(M) is strongly
distorted.

In the general case, supp(kn) is a compact subvariety, but will not typically be
conjugate into X or Y . (In fact, supp(kn) in general will not be displaceable, i.e. there
will be no diffeomorphism S such that S(supp(kn)) ∩ supp(kn) = ∅, so one cannot
hope to imitate the previous proof using Lemma 4.2.) However, we can apply Theorem
3.5 to conclude that {kn} is generated by a finite set. Thus, Diffr0(M) has the Schreier
property.
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6 Further questions

We conclude with some natural questions for further study.
Our argument in the proof of Proposition 2.1 showed that every countable group in

Homeo0(R) is contained in a group generated by 10 elements. This bound is likely not
optimal, but finding the optimal bound seems challenging. More concretely, we ask

Question 6.1. Does there exist a countable set in Homeo0(R) that is not contained
in a 2-generated subgroup?

Of course, by Proposition 2.1, it suffices to consider sets of cardinality 10. We note
that the Higman embedding theorem shows that an abstract countable group can be
embedded in one generated by two elements, and that Galvin [15] proved that this
was also the case within the class of subgroups of the group of permutations of an
infinite set. Perhaps Question 6.1 is more approachable when Homeo0(R) is replaced
by Diff0(Rn).

It is also natural to ask for other transformation groups that satisfy (or fail to satisfy)
strong distortion and Schreier’s property. We mentioned the groups Homeo(S2, area)
and Diffr(S2, area) in the introduction as natural candidates. We see no obvious
obstruction to satisfying Schreier’s property, but our proof tools do not apply here.

Finally, we reiterate the open problem of strong boundedness for homeomorphism
groups of manifolds with finite fundamental group. The obvious first case is the
following.

Question 6.2. Is Homeo(RP2) strongly bounded? If not, is there a natural, geomet-
rically motivated length function on this group?
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[26] A. Navas, Groups of circle diffeomorphisms, Chicago Lect. Math., Univ. of Chicago
Press (2011).

[27] F. Quinn, Ends of maps III: Dimensions 4 and 5, J. Differential Geom. 17 (1982)
503?521

[28] G. Sabbagh, Sur les groupes que ne sont pas réunion d’une suite croissante de
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