CSP problems 2: the Fano plane and friends

- (fun, but worth reading for the application) the reading called "ellenberg.pdf" from Jordan Ellenberg's How not to be wrong
- https://en.wikipedia.org/wiki/Fano_plane

Finite fields. A field is a number system with operations of addition, subtraction, multiplication, and division. For example, usual (real) numbers. Another example is the rational numbers (all the fractions, i.e. numbers of the form $\frac{p}{q}$ where p, q are integers). Another good example is integers $\bmod p$ where p is a prime number. These are the numbers $0,1,2, \ldots, p-1$, with addition and multiplication defined by
$a+b=$ remainder of $a+b$ when divided by p
$a \cdot b=$ remainder of $a \cdot b$ when divided by p
and subtraction $a-b=$ whatever you add to b to get a
$a / b=$ whatever you multiply by b to get a. Note that, like with ordinary numbers, you are not allowed to divide by zero.

1. As a warm up, write down addition and multiplication tables $\bmod 5$. What is $3 / 2 \bmod 5$?
2. Addition and multiplication mod p make sense if p is not prime. What goes wrong with division?
3. Linear algebra makes sense using integers $\bmod p$ (or using any field) - to do matrix multiplication, you just need to be able to add and multiply numbers. What is the determinant of ($23 / / 144)$ $\bmod 5$?
4. Instead of \mathbb{R}^{2} or \mathbb{R}^{3}, you can replace the real numbers \mathbb{R} with any field. (Integers $\bmod p$ is written $\mathbb{Z} / p \mathbb{Z}$.). You can do vector addition in $(\mathbb{Z} / p \mathbb{Z})^{2}$ or $(\mathbb{Z} / p \mathbb{Z})^{3}$, and talk about equations of lines and planes. What points are on the line $(1,0,0)+t(2,1,3)$ in $(\mathbb{Z} / 5 \mathbb{Z})^{3}$?

Finite projective geometries.

1. The $\mathbb{Z} / p \mathbb{Z}$ projective plane is the set of lines through $(0,0,0)$ in $(\mathbb{Z} / p \mathbb{Z})^{3}$. How many points are in the $\mathbb{Z} / 2 \mathbb{Z}$ projective plane? What about $\mathbb{Z} / 3 \mathbb{Z}$? The general case $\mathbb{Z} / p \mathbb{Z}$?
2. The Fano plane is the $\mathbb{Z} / 2 \mathbb{Z}$ projective plane. (Of which you have seen a picture). A projective transformation of the Fano plane is any permutation of the points that sends lines to lines. Can you describe the transformations in a systematic manner? (e.g. what are all the ones that send a particular line to itself?)
3. Can you find a way to visualize projective transformations of the Fano plane?
4. Can you draw a picture representing the $\mathbb{Z} / 3 \mathbb{Z}$ projective plane (hopefully representing some of its symmetries) and describe some- or all) of its transformations?
5. (challenge) How many lines are there in the $\mathbb{Z} / p \mathbb{Z}$ projective plane?
6. Read the chapter from Ellenberg's book, and summarize the application of finite projective planes to lottery problems. (note: I think this is an enlightening view towards how a lot of mathematicians think about geometry in a non-visual manner).
Optional extra things to think about: Some of the properties that we need for adding and multiplying to make sense (or to behave the way ordinary numbers work) are:
a) $0+x=x$, and $0 \cdot x=0$ for any x
b) $1 \cdot x=x$ for any $x \neq 0$.
c) Every number x has something (but only one thing!) you can multiply it by to get 1 (this is another way to define division - that number is $1 / x$).
d) Similarly, every number has something (but only one thing!) you add to it to get 0 .

Why are all of these satisfied for addition mod p ?

