
Sato-Tate groups of genus 2 curves

Kiran S. Kedlaya

Department of Mathematics, University of California, San Diego
kedlaya@ucsd.edu

http://kskedlaya.org

Arithmetic of Hyperelliptic Curves
NATO Advanced Study Institute

Ohrid, Macedonia, August 25–September 5, 2014

These slides: http://kskedlaya.org/slides/ohrid2014.pdf.
Lecture notes: http://kskedlaya.org/papers/nato-notes-2014.pdf.

Kiran S. Kedlaya (UCSD) Sato-Tate groups of genus 2 curves 1 / 33

http://kskedlaya.org
http://kskedlaya.org/slides/ohrid2014.pdf
http://kskedlaya.org/papers/nato-notes-2014.pdf


Contents

1 Lecture 1: The Sato-Tate conjecture

2 Lecture 2: Sato-Tate groups of abelian varieties

3 Lecture 3: The classification theorem for abelian surfaces

Kiran S. Kedlaya (UCSD) Sato-Tate groups of genus 2 curves 2 / 33



Lecture 1: The Sato-Tate conjecture

Contents

1 Lecture 1: The Sato-Tate conjecture

2 Lecture 2: Sato-Tate groups of abelian varieties

3 Lecture 3: The classification theorem for abelian surfaces

Kiran S. Kedlaya (UCSD) Sato-Tate groups of genus 2 curves 3 / 33



Lecture 1: The Sato-Tate conjecture

Elliptic curves over finite fields and Hasse’s theorem

Let E be an elliptic curve over a finite field Fq.

Theorem (Hasse)

We have #E (Fq) = q + 1− aq where |aq| ≤ 2
√

q.

For example, if E is in Weierstrass form

y 2 = x3 + Ax + B

then Hasse’s theorem is consistent with the natural guess from probability
theory. (If the residue symbol of x3 + Ax + B were an independent
random variable for each x ∈ Fq, one would expect q + 1−#E (Fq) to be
bounded by a fixed multiple of

√
q with high probability.)
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Lecture 1: The Sato-Tate conjecture

Statistics for fixed q

For fixed q, let us view aq as a random variable on the (finite) probability
space of (isomorphism classes of) elliptic curves over Fq, and ask
questions about its distribution.

It is useful to study the probability distribution via the moments

Md(aq) := E(adq ) (d = 1, 2, . . . ;E = expected value).

Theorem (Birch)

For q = p ≥ 5, there is a formula

M2d(ap) =
(2d)!

d!(d + 1)!
pd + O(pd−1),

where the error term can be written explicitly in terms of coefficients of
modular forms. (Note that the coefficient of pd is a Catalan number!)
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Lecture 1: The Sato-Tate conjecture

Statistics for a fixed curve

Let’s now take E to be an elliptic curve over a number field K . For each
prime ideal q (with finitely many exceptions), we can reduce E modulo q
to get an elliptic curve over the residue field Fq of q. (Here q equals the
absolute norm of q.)

Write #E (Fq) = q + 1− aq and aq := aq/
√

q. We can now ask how the
aq are distributed across [−2, 2]; more precisely, for each N > 0 we can ask
this for primes q with q ≤ N, and then try to observe a limiting
distribution as N →∞.

Before formalizing this mathematically, let’s try a visualization courtesy of:

http://math.mit.edu/~drew/g1SatoTateDistributions.html
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Lecture 1: The Sato-Tate conjecture

Equidistribution in a probability space

Let x1, x2, . . . be a sequence of points in a topological space X . The
equidistribution measure on X is (if it exists) the unique measure µ on X
such that for any continuous function f : X → R,∫

µ
f = lim

n→∞

f (x1) + · · ·+ f (xn)

n
.

We also say that the sequence is equidistributed for µ.

Example (Weyl)

For α ∈ R−Q, then the fractional parts {nα} = nα− bnαc are
equidistributed in [0, 1) for Lebesgue measure.

For Md ,n(f ) the d-th moment of f on {x1, . . . , xn}, the limit moment is

Md(f ) := lim
n→∞

Md ,n(f ) =

∫
µ

f d .
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Lecture 1: The Sato-Tate conjecture

Equidistribution for aq: the Sato-Tate conjecture

The equidistribution of the aq depends on the arithmetic of the elliptic
curve E . But only a little!

Conjecture (Sato-Tate)

The aq are equidistributed with respect to one of exactly three measures,
according as to whether:

E has complex multiplication by an imaginary quadratic field in K ;

E has complex multiplication by an imaginary quadratic field not in K ;

E does not have complex multiplication.

Theorem (see notes for attributions)

The conjecture is true in the CM cases for any K , and in the non-CM case
for K totally real.
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Lecture 1: The Sato-Tate conjecture

Analogy: the Chebotarev density theorem

Let f ∈ K [T ] be irreducible of degree n. For each q (with finitely many
exceptions), factor the image of f in Fq[T ]; call the degrees of the
irreducible factors d1, ..., dk .

Let L be the splitting field of f and put G := Gal(L/K ) ⊆ Sn. By class
field theory, we get a Frobenius conjugacy class gq ∈ Conj(G ); its cycle
structure in Sn is d1, . . . , dk .

Theorem (Chebotarev)

The sequence gq is equidistributed for the measure on Conj(G ) which
weights each class proportional to its cardinality.

Corollary

As N →∞, the proportion of q with q ≤ N for which f factors in Fq[T ]
with degree sequence d1, . . . , dk tends to the probability that a random
element of G has cycle structure d1, . . . , dk in Sn.
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Lecture 1: The Sato-Tate conjecture

Equidistribution in groups and the Sato-Tate conjecture

Suppose E does not have CM. The fact that |aq| ≤ 2 means that

T 2 − aqT + 1

has roots on the unit circle which are complex conjugates. Such
polynomials are exactly the characteristic polynomials of matrices in

SU(2) = {A ∈ GL2(C) : A−1 = A∗, det(A) = 1}.

Moreover, the trace defines a bijection Conj(SU(2))→ [−2, 2].

The equidistribution measure predicted by Sato-Tate, viewed on
Conj(SU(2)), is exactly the image of Haar measure on SU(2)! That is, the
integral of any f against this measure can be computed by pulling back to
SU(2) and integrating against the translation-invariant measure.

By the way, the even moments of this measure are Catalan numbers! So
Birch’s distributions converge to this one as p →∞.
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Lecture 1: The Sato-Tate conjecture

Equidistribution in groups and the exceptional cases

In case E has CM, the equidistribution measure is the image of Haar
measure not on SU(2), but on a smaller group G :

if the CM field is in K , the group SO(2);

otherwise, the normalizer of SO(2) in SU(2). This group has two
connected components; on the nonidentity component, the trace is
identically zero. This creates a zero-width spike in the distribution of
area 1/2, corresponding to half of the primes being supersingular.

But one can do better: one can lift the classes in Conj(SU(2)) from the
previous slide to classes in G , and prove equidistribution there. This allows
for a uniform statement of the conjecture, in which equidistribution always
happens in some group G determined by the arithmetic of E .

This framework generalizes to abelian varieties of arbitrary dimension!
This will be discussed in the second lecture.
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Lecture 2: Sato-Tate groups of abelian varieties
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Lecture 2: Sato-Tate groups of abelian varieties

The zeta function of an algebraic variety over a finite field

Let X be an algebraic variety over a finite field Fq. Weil introduced the
zeta function

ζ(X , s) =
∏
x∈X◦

(1− q−s deg(x))−1 (Re(s)� 0)

where X ◦ is the set of closed points of X . Equivalently, x runs over Galois
orbits of Fq-points and deg(x) is the size of the orbit.

As a formal power series in q−s , we also have

ζ(X , s) = exp

( ∞∑
n=1

q−ns

n
#X (Fqn)

)
.

Theorem (Dwork, Grothendieck)

The function ζ(X , s) is a rational function in q−s .
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Lecture 2: Sato-Tate groups of abelian varieties

The zeta function of a curve over a finite field

Theorem (Weil)

Let C be a (smooth, projective, geometrically irreducible) curve of genus g
over Fq. Then

ζ(C , s) =
P(q−s)

(1− q−s)(1− q1−s)

where P(T ) ∈ Z[T ] and P(T ) := P(T/
√

q) factors over C as
(1− α1T ) · · · (1− α2gT ) with |αi | = 1 and αg+i = αi .

Note also that

#C (Fqn) = qn + 1− qn/2(αn
1 + · · ·+ αn

2g ) (n = 1, 2, . . . ).

For g = 1, C is an elliptic curve and P(T ) = 1− aqT + T 2.
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Lecture 2: Sato-Tate groups of abelian varieties

The zeta function of an abelian variety over a finite field
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Lecture 2: Sato-Tate groups of abelian varieties

An equidistribution problem for abelian varieties

Let A be an abelian variety of dimension g over a number field K . For q a
prime ideal of K (at which A has good reduction), we may reduce modulo
q to obtain an abelian variety over Fq. Write its zeta function as

P1(q−s) · · ·P2g−1(q−s)

P0(q−s) · · ·P2g (q−s)
.

Put Pq(T ) := P1(T/
√

q); this polynomial has the form

1 + aq,1T + · · ·+ aq,2g−1T 2g−1 + T 2g =

2g∏
i=1

(1− αq,iT ),

where
aq,i ∈ R, aq,2g−i = aq,i , |αq,i | = 1.
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Lecture 2: Sato-Tate groups of abelian varieties

Moments for abelian varieties

We will study the distribution of the polynomial

Pq(T ) = 1 + aq,1T + · · ·+ aq,2g−1T 2g−1 + T 2g

as q varies. For A the Jacobian of a curve C , we have

#C (Fq) = q + 1− q1/2aq,1

but the joint distribution of aq,1, . . . , aq,g carries more information.

In principle, one must consider all of the joint moments

#E(ad1
q,1 . . . a

dg
q,g ) : d1, . . . , dg = 0, 1, . . . .

For the group-theoretic distributions we consider, these will all be integers.

In practice, it is (mostly) sufficient to look at the individual moments of
the aq,i , together with the discrete components of the distributions. These
only occur at 0 for i odd, but can occur at other integers for i even.
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Lecture 2: Sato-Tate groups of abelian varieties

An equidistribution conjecture in the generic case

Consider the unitary symplectic group

USp(2g) := {A ∈ GL2g (C) : A−1 = A∗,AT JA = J}

where J is the matrix defining a standard symplectic form

J :=

J1 0 0

0
. . . 0

0 0 J1

 , J1 :=

(
0 1
−1 0

)
.

Conjecture (Serre, Katz-Sarnak)

For A having “no extra structure”, the Pq(T ) are equidistributed for the
image of the Haar measure on USp(2g) via the characteristic polynomial
map. (This is consistent with Sato-Tate because USp(2) = SU(2).)
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Lecture 2: Sato-Tate groups of abelian varieties

What is extra structure?

For g = 1, “no extra structure” means no complex multiplication.

For g = 2, 3, “no extra structure” similarly means that End(AK ) = Z. In
particular, this will be the case throughout the third lecture.

For g ≥ 4, “no extra structure” needs a subtler definition: there must be
no “unexpected algebraic cycles” on any of the self-products
AK × · · · × AK . Just like endomorphisms, such cycles impose restrictions
on the action of GK := Gal(K/K ) on torsion points, and hence on the
zeta functions.

Kiran S. Kedlaya (UCSD) Sato-Tate groups of genus 2 curves 19 / 33



Lecture 2: Sato-Tate groups of abelian varieties

What is extra structure?

For g = 1, “no extra structure” means no complex multiplication.

For g = 2, 3, “no extra structure” similarly means that End(AK ) = Z. In
particular, this will be the case throughout the third lecture.

For g ≥ 4, “no extra structure” needs a subtler definition: there must be
no “unexpected algebraic cycles” on any of the self-products
AK × · · · × AK . Just like endomorphisms, such cycles impose restrictions
on the action of GK := Gal(K/K ) on torsion points, and hence on the
zeta functions.

Kiran S. Kedlaya (UCSD) Sato-Tate groups of genus 2 curves 19 / 33



Lecture 2: Sato-Tate groups of abelian varieties

What is extra structure?

For g = 1, “no extra structure” means no complex multiplication.

For g = 2, 3, “no extra structure” similarly means that End(AK ) = Z. In
particular, this will be the case throughout the third lecture.

For g ≥ 4, “no extra structure” needs a subtler definition: there must be
no “unexpected algebraic cycles” on any of the self-products
AK × · · · × AK . Just like endomorphisms, such cycles impose restrictions
on the action of GK := Gal(K/K ) on torsion points, and hence on the
zeta functions.

Kiran S. Kedlaya (UCSD) Sato-Tate groups of genus 2 curves 19 / 33



Lecture 2: Sato-Tate groups of abelian varieties

A group-theoretic reformulation

The conditions on Pq(T ) guarantee not only that it is in the image of the
characteristic polynomial map on USp(2g), but also that its inverse image
is a single conjugacy class gq. The previous conjecture can thus be
interpreted as saying that for A having “no extra structure”, the gq are
equidistributed in Conj(USp(2g)) via the image of Haar measure.

Conjecture (after Serre)

For arbitrary A, there are a particular closed subgroup ST(A) of USp(2g)
and a particular sequence gq in Conj(ST(A)) whose characteristic
polynomials are the Pq(T ), for which equidistribution holds for the image
of Haar measure on ST(A).

We call ST(A) the Sato-Tate group of A.
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Lecture 2: Sato-Tate groups of abelian varieties

Sketch of the construction: the group

Choose an embedding K ↪→ C, let V := H1(Aan
C ,Q) be singular homology,

and choose a symplectic basis of V for the cup product. Then USp(2g)
acts on VC.

The connected part ST(A)◦ of ST(A) is the subgroup of USp(2g) which,
for each positive integer m, fixes the subspace of V⊗2m corresponding to
algebraic cycles on A⊗m

K
. For g ≤ 3, it is enough to impose commutation

with the action of endomorphisms of AK .

The full group ST(A) consists of elements of USp(2g) which act on the
homology classes of algebraic cycles as some element of GK . Again, for
g ≤ 3, one has a similar definition using endomorphisms of AK .

In particular, ST(A)◦ is invariant under base change, while ST(A)/ ST(A)◦

is a finite group canonically identified with Gal(L/K ) for some finite
extension L of K . The field L contains the minimal field of definition of
endomorphisms of AK , and is equal for g ≤ 3.
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Lecture 2: Sato-Tate groups of abelian varieties

Sketch of the construction: the sequence

Fix a prime number `. We then have an action of GK on the `-adic Tate
module

T`(A) = lim←−
n→∞

A(K )[`n].

Any Frobenius element in GK associated to q acts on T`(A), and again
acts on elements of T`(A)⊗2m corresponding to algebraic cycles on A⊗m

K
as

some element of GK (namely itself).

Using some trickery (including an algebraic embedding of Q` into C), one
gets a well-defined conjugacy class in ST(A).

Good news: the exact nature of this definition is not so crucial! Given
another definition with the appropriate properties, one can transfer
equidistribution back and forth using Serre’s criterion (see next slide).
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Lecture 2: Sato-Tate groups of abelian varieties

How to prove equidistribution

For each C-linear representation ρ of ST(A), define the L-function

L(ρ, s) =
∏
q

det(1− ρ(g̃q)q−s)−1 (<(s) > 1)

where g̃q ∈ ST(A) is any element of the class gq. For ρ the trivial
representation, this is (almost) the Dedekind zeta function of K , and so
has a simple pole at s = 1.

Theorem (Serre, after Hadamard and de la Vallée Poussin)

Suppose that for each nontrivial irreducible ρ, L(ρ, s) extends to a
holomorphic nonvanishing function on some neighborhood of s = 1. Then
the gq are equidistributed in Conj(ST(A)) for the image of Haar measure,
and so the generalized Sato-Tate conjecture holds for A.
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Lecture 3: The classification theorem for abelian surfaces
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Lecture 3: The classification theorem for abelian surfaces

Overview

Throughout this lecture, let A be an abelian surface over a number field
K , e.g., the Jacobian of a genus 2 curve.

Theorem (Fité–Kedlaya–Rotger–Sutherland)

There are exactly 52 subgroups of USp(4), up to conjugation, which occur
as Sato-Tate groups of abelian surfaces over K; all can be realized using
Jacobians of genus 2 curves over K . Of these, exactly 34 occur for
K = Q; all can be realized using Jacobians of genus 2 curves over Q.

In this lecture, we will give a partial breakdown of this classification,
together with some indications of to what extent the arithmetic of A
determines ST(A) and vice versa. But first, some more visualization:

http://math.mit.edu/~drew/g2SatoTateDistributions.html

(Historical note: the numerics came first!)
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Theorem (Fité–Kedlaya–Rotger–Sutherland)

There are exactly 52 subgroups of USp(4), up to conjugation, which occur
as Sato-Tate groups of abelian surfaces over K; all can be realized using
Jacobians of genus 2 curves over K . Of these, exactly 34 occur for
K = Q; all can be realized using Jacobians of genus 2 curves over Q.

In this lecture, we will give a partial breakdown of this classification,
together with some indications of to what extent the arithmetic of A
determines ST(A) and vice versa. But first, some more visualization:

http://math.mit.edu/~drew/g2SatoTateDistributions.html

(Historical note: the numerics came first!)

Kiran S. Kedlaya (UCSD) Sato-Tate groups of genus 2 curves 25 / 33

http://math.mit.edu/~drew/g2SatoTateDistributions.html


Lecture 3: The classification theorem for abelian surfaces

Overview

Throughout this lecture, let A be an abelian surface over a number field
K , e.g., the Jacobian of a genus 2 curve.
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(Historical note: the numerics came first!)
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Lecture 3: The classification theorem for abelian surfaces

The classification of connected parts

Theorem

There are exactly 6 subgroups of USp(4), up to conjugation, which occur
as connected parts of Sato-Tate groups of abelian surfaces over K :

SO(2), SU(2),SO(2)× SO(2), SO(2)× SU(2),SU(2)× SU(2),USp(4).

Of these, all 6 occur for K = Q.

Let E1,E
′
1 be nonisogenous elliptic curves with CM; let E2,E

′
2 be

nonisogenous elliptic curves over K without CM; let A be an abelian
surface such that End(AK ) = Z. Then the Sato-Tate groups of

E1 × E1, E2 × E2, E1 × E ′1, E1 × E2, E2 × E ′2, A

have the connected parts listed in the theorem.

However, it is also possible to realize all of the connected parts using
absolutely simple abelian surfaces! We will see this later.
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Lecture 3: The classification theorem for abelian surfaces

The classification of component groups

Connected part Component groups

SO(2) C1,C2,C2,C2,C3,C4,C4,C6,C6,C6,D2,D2,D2,
D3,D3,D4,D4,D4,D6,D6,D6,D6,A4, S4,S4,
C4×C2,C6×C2,D2×C2,D4×C2,D6×C2,
A4×C2,S4×C2

SU(2) C1,C2,C2,C3,C4,C6,D2,D3,D4,D6

SO(2)× SO(2) C1,C2,C2,C4,D2

SO(2)× SU(2) C1,C2

SU(2)× SU(2) C1,C2

USp(4) C1

Corollary (improves a bound of Silverberg)

The endomorphisms of AK are all defined over a Galois extension L of K
with [L : K ] ≤ 48. This bound is achieved by the Jacobian of
y 2 = x6 − 5x4 + 10x3 − 5x2 + 2x − 1. (Silverberg’s bound is 11520.)
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Lecture 3: The classification theorem for abelian surfaces

Moment sequences

One cannot distinguish the 52 Sato-Tate groups using moments of aq,1
alone. For instance, the 34 groups that occur over Q give rise to only 26
distinct distributions of aq,1.

Corollary (of the classification)

One can use the individual moments of aq,1 and aq,2 (with no joint
moments) to distinguish all 52 groups.

In practice, one needs fewer moments if one also considers

z1 = Prob(aq,1 = 0), z2 = [Prob(aq,2 = j) : j = −2,−1, 0, 1, 2].

This reduces the amount of numerical data needed to match a given curve
against the classification: it (more than) suffices to consider M2d(aq,1) and
Md(aq,2) for d = 1, 2, 3, 4, 5 together with z1, z2; but without z1, z2 more
moments are needed.
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Lecture 3: The classification theorem for abelian surfaces

Real endomorphism algebras

Let End(AK ) be the (possibly noncommutative) endomorphism ring of AK .

Theorem (Fité-Rotger-Kedlaya-Sutherland)

(a) The group ST(A)◦ (up to conjugation within USp(4)) uniquely
determines, and is uniquely determined by, the R-algebra
End(AK )R = End(AK )⊗Z R.

(b) The group ST(A) (up to conjugation within USp(4)) uniquely
determines, and is uniquely determined by, the R-algebra End(AK )R
equipped with its GK -action.

The options for End(AK )R are distinguished by a labeling called the
absolute type. To distinguish the GK -action, we add extra data to the
label to obtain the Galois type.
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Lecture 3: The classification theorem for abelian surfaces

The absolute type

Absolute type ST(A)◦ End(AK )R
A USp(4) R
B SU(2)× SU(2) R× R
C SO(2)× SU(2) R× C
D SO(2)× SO(2) C× C
E SU(2) M2(R)
F SO(2) M2(C)

Note that tensoring End(AK ) with R loses some distinctions between split
and nonsplit cases. For instance, an abelian surface with CM by a quartic
field has absolute type D; an abelian surface with quaternionic
multiplication (QM) has absolute type E or F.
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Lecture 3: The classification theorem for abelian surfaces

The Galois type

Most Galois type have labels of the form L[G ], where L ∈ {A, . . . ,F} is
the absolute type and G = Gal(L/K ) for L the minimal field of definition
of endomorphisms.

For L = D,E, the label L[C2] is ambiguous; we instead write

L[C2,End(AK )C2
R ].

For L = F, the ring End(AK )Q is a quaternion algebra (or matrix algebra)
over some imaginary quadratic field M. When M 6⊆ K , we use labels of
the form

F[G ,H,End(AK )HR ], G = Gal(L/K ),H = Gal(L/KM).

Corollary (of the classification)

Each Galois type receives a unique label under this scheme.
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Lecture 3: The classification theorem for abelian surfaces

Comments on the proof

The proof of the FKRS classification consists of three main ingredients.

A classification of subgroups of USp(4) up to conjugation satisfying
certain constraints imposed by Hodge theory (the Sato-Tate axioms).
This yields the 52 groups in the theorem, plus three extra groups with
connected part SO(2)× SO(2).

An enumeration of Galois types and matching of these to subgroups
of USp(4). The three extra groups with connected part
SO(2)× SO(2) remain unmatched.

Verification that particular Jacobians of genus 2 curves realize all 52
of the remaining groups.
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Lecture 3: The classification theorem for abelian surfaces

Beyond dimension 2

One might hope to treat abelian threefolds using similar methods. This
looks challenging; there are probably hundreds (thousands) of distinct
groups that occur! (However, recent algorithms of Harvey–Sutherland and
Harvey should make it possible to do numerics efficiently on both
hyperelliptic and planar genus 3 curves.)

Some other cases may be easier. For instance, with Fité and Sutherland
we gave a partial classification of Sato-Tate groups arising from weight 3
motives having the Hodge numbers of the symmetric cube of an elliptic
curve. Such motives arise in mirror symmetry, e.g., from the Dwork pencil
of quintic threefolds:

x5
0 + x5

1 + x5
2 + x5

3 + x5
4 = λx0x1x2x3x4.
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