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The law of quadratic reciprocity, discovered by euler
(X.X) and first proved by gauss (X.X) (who dubbed it
his theorema aureum, or golden theorem), is consid-
ered a crown jewel of number theory, and with good
cause. Whereas its statement could be rediscovered
by a sufficiently ingenious student (indeed, it actu-
ally has been rediscovered on a regular basis at the
Arnold Ross mathematics summer program for several
decades), rare is the student who comes up with a proof
unassisted.

The law is most conveniently stated in legendre’s
(X.X) formulation. For n an integer not divisible by the
prime p, write (np ) = 1 if n is congruent to some per-
fect square modulo p, and (np ) = −1 if it is not. Then
quadratic reciprocity states the following. (The prime 2
must be treated separately.)

Theorem (quadratic reciprocity). Suppose that p and
q are two different primes, neither equal to 2. Then
(pq )(

q
p ) = −1 if p and q are both congruent to 3

modulo 4, and (pq )(
q
p ) = 1 otherwise.

For instance, if p = 13 and q = 29, then (pq )(
q
p ) = 1.

Since 29 is congruent modulo 13 to the perfect square
16, it must be that 13 is congruent to some perfect
square modulo 29, and in fact 100 = 3 · 29+ 13.

This statement is simple but also mysterious,
because it violates our intuition that congruences mod-
ulo different primes should act independently. For
instance, the Chinese remainder theorem asserts that
(in a suitably precise sense) knowing that a random
integer is odd or even does not prejudice it toward hav-
ing any particular remainder modulo 3. Number theo-
rists are fond of using geometric language to describe
this situation, referring to phenomena associated with
congruences modulo a single prime (or a power of a sin-
gle prime) as local phenomena. The Chinese remainder
theorem can be interpreted as saying that local phe-
nomena at one point really are local, in that they do not
influence local phenomena at another point. However,
just as a particle physicist cannot explain the behav-
ior of the universe by analyzing individual particles in
isolation, one cannot hope to understand the behavior
of integers by looking at individual primes in isolation.
Quadratic reciprocity thus emerges as one of the first

known examples of a global phenomenon, proving to

be a “fundamental force” that binds together two dif-

ferent primes. The interplay between local and global

is built thoroughly into our modern understanding

of number theory, but the phenomenon of quadratic

reciprocity was where it first came to light.

Another indication of the fundamental nature of

quadratic reciprocity is that it admits proofs using

many different techniques. Gauss himself devised eight

proofs in his lifetime, and nowadays dozens of proofs

are available. These suggest numerous directions of

generalization; here we will focus on the direction that

led historically to class field theory. Among the many

fascinating sidelights that this will force us to omit is

the theory of Gauss sums and its surprisingly diverse

range of applications, such as Kolyvagin’s work on the

conjecture of birch and swinnerton-dyer (X.X),

and the use of number theory in cryptography (X.X)

and other areas of computer science.

Euler had sought reciprocity laws for perfect third

and fourth powers, but had had limited success. Gauss

succeeded in formulating such laws (but not proving

them; that fell to Eisenstein later) by realizing that one

could only properly understand them by stepping out

of the ring of integers.

Let us see this explicitly for fourth powers. Let p and

q be primes that are both congruent to 1 modulo 4.

The reciprocity between p being congruent to a fourth

power modulo q and vice versa cannot be easily stated

in terms of p and q. Instead, we must recall a result

of Fermat: we can write p = a2 + b2 and q = c2 + d2,

where each of the pairs (a, b) and (c, d) is unique up to

changing signs and ordering. In other words, in the ring

of complex numbers whose real and imaginary parts

are integers (now called the Gaussian integers), we have

p = (a+ bi)(a− bi) and q = (c + di)(c − di).
Gauss defined an analogue of the Legendre symbol

as follows. It was already known to Euler that(
n
p

)
≡ n(p−1)/2 (mod p);

to see that the right-hand side is either 1 or −1, note

that it squares to 1 by fermat’s little theorem (X.X),

and the equation x2 = 1 has just these two roots. Gauss

similarly defined (
c + di
a+ bi

)
4

to be ik, for the unique choice of k modulo 4 for which

ik ≡ (c+di)(a
2+b2−1)/4 = (c+di)(p−1)/4 (mod a+bi).
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Here we say that two integers are congruent mod a+bi

if their difference is a multiple of a+ bi by a Gaussian

integer. The existence of such k again follows from Fer-

mat’s little theorem: if you expand (c+di)p , then all the

binomial coefficients are multiples of p apart from the

first and the last, so you obtain cp+(di)p , which equals

c + di by Fermat’s theorem and the assumption that p
is congruent to 1 mod 4; it follows that (c+di)p−1 ≡ 1.

(Alternatively, one can prove this by showing that the

Gaussian integers mod a+ bi form a group of order

p − 1 and applying Lagrange’s theorem.)

Before stating the reciprocity law, we must stamp out

the ambiguity in the choice of a, b, c, and d. We require

that a and c must be odd, and that a+b−1 and c+d−1

must be divisible by 4. (Note that we can still flip the

signs of b and d.)

Theorem (quartic reciprocity). With p, q, a, b, c, and

d as above, we have(
a+ bi
c + di

)(
c + di
a+ bi

)
= −1

if p and q are both congruent to 5 modulo 8, and
(
a+ bi
c + di

)(
c + di
a+ bi

)
= +1

otherwise.

One might expect to find an nth power reciprocity

law that looks like this by working with the ring gen-

erated by a primitive nth root of 1. What complicates

matters is that this ring does not enjoy the property of

unique factorization (X.X) (whereas the usual inte-

gers and the Gaussian integers both do). This was reme-

died only by kummer’s (X.X) theory of ideals (X.X)

(short for “ideal numbers”). An ideal is a set that has the

typical properties of the set of all multiples of a given

number, but it can be more general. (Even if an ideal is

the set of all multiples of some number, that number

is not unique, since one can multiply it by a unit. For

instance, both 2 and −2 generate the ideal of all even

numbers.) Using Kummer’s theory, Kummer and Eisen-

stein managed to formulate broad generalizations of

quadratic reciprocity for higher powers.

hilbert (X.X) then realized that these should fit

together as part of some sort of maximally general

reciprocity law. He also gave a candidate for this law,

inspired by a reformulation of quadratic reciprocity

itself in terms of the norm residue symbol. For a prime

p, and any nonzero integersm andn, the norm residue

symbol (m,np ) equals +1 if, for all sufficiently large k,

the equations mx2 + ny2 ≡ z2 (mod pk) have solu-
tions where x, y , and z are not all divisible by pk;
otherwise the symbol equals −1. In other words, the
symbol equals +1 if the equation mx2 +ny2 = z2 has
a solution in the p-adic numbers (X.X).

Hilbert’s formulation of quadratic reciprocity is that,
for any nonzero m and n,

∏
p

(
m,n
p

)
= 1,

where the product is taken over all primes p and the
prime p = ∞. The latter requires some explanation:
we write (m,n∞ ) = +1 if and only if m and n are not
both negative, i.e., if the equation mx2 + ny2 = z2

has a solution in the real numbers. This fits into a gen-
eral pattern, that conditions quantified over “all prime
numbers” must also account for the so-called infinite
prime.

It should also be clarified that Hilbert’s product only
makes sense by virtue of the fact that, for fixed m
and n, (m,np ) = 1 for all but finitely many p. This is
because in general, since approximately half the inte-
gers mod pk are quadratic residues, it is easy to solve
the equation mx2 + ny2 = z2: difficulties arise only
when multiplication bym or n identifies many of these
quadratic residues. For instance, if m and n are (posi-
tive) prime numbers, then only those two primes con-
tribute to the product; the two resulting factors can
be related to (mn ) and ( nm), leading back to quadratic
reciprocity.

Using this formulation, Hilbert was able to state and
prove a form of quadratic reciprocity over any number
field, in which the corresponding product of symbols
is quantified over the prime ideals of the number field
(together with some “infinite primes”). Hilbert also con-
jectured a higher-power reciprocity law over any num-
ber field. That conjecture was tackled by Hasse, Takagi,
and finally artin (X.X), who stated a general reciprocity
law. Its statement is a bit too technical to include here;
we limit ourselves to observing that Artin’s reciprocity
law, when applied to a number fieldK, describes certain
norm residue symbols in terms of Abelian extensions
of K, i.e., number fields containing K whose groups of
symmetries (galois groups (X.X)) are commutative.

The Abelian extensions of Q are easy to describe: the
Kronecker–Weber theorem asserts that they are all con-
tained in fields generated by roots of 1. This explains
the role of the roots of 1 in the classical reciprocity
laws. However, describing the Abelian extensions of an
arbitrary number field K is somewhat harder. They can
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at least be classified in terms of the structure of the
field K itself; this is what is commonly referred to as
class field theory.

However, explicitly specifying generators of the Abe-
lian extensions ofK (Hilbert’s twelfth problem) remains
mostly unsolved, except in some special cases. For
instance, the theory of elliptic functions (X.X) solves
this problem for fields of the form Q(

√−d) with d > 0
via the theory of complex multiplication. Some addi-
tional examples emerged from the work of Shimura on
modular forms, leading to the Shimura reciprocity law.

This last example shows that the story of reci-
procity laws is not yet complete. Any new instance of
explicit class field theory would reveal another reci-
procity law that had previously been hidden from view.
Some exciting new conjectures in this direction have
been advanced by Bertolini, Darmon, and Dasgupta,
who have proposed some new constructions of Abe-
lian extensions using p-adic analysis. These are analo-
gous to the aforementioned constructions using ellip-
tic functions, in which one evaluates a transcendental
function at a special value. At first, there seems to be no
reason to expect the resulting complex number to have
any special properties, but in fact it turns out to be an
algebraic number that generates an appropriate Abe-
lian extension of the base field. While one can check in
individual examples, using computer calculations, that
the construction seems to be converging p-adically to
a particular generator of the right field, a proof seems
out of reach at present.
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