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Abstract. We construct products of Fargues–Fontaine curves associated to a perfectoid
field in the categories of schemes and adic spaces. Our main result is a “GAGA” theorem:
the natural morphism from the adic to the schematic construction induces an equivalence of
categories of vector bundles and isomorphisms of sheaf cohomology groups. We also discuss
the theory of slope filtrations for vector bundles.

Throughout this paper, fix a local field E of residue characteristic p, with residue field
of cardinality q, and fix a uniformizer ϖ of E. Over many years and multiple changes in
perspective, it has emerged that continuous representations of the absolute Galois group GE

on finite-dimensional E-vector spaces is closely linked with the geometry of a certain space,
the Fargues–Fontaine curve with coefficients in E [1]. This name in fact applies to two
different but closely related objects in the category of locally ringed spaces: the schematic
Fargues–Fontaine curve, which is a scheme over E, and the adic Fargues–Fontaine curve,
which belongs to Huber’s category of adic spaces over E. The relationship between these two
spaces can be summarized as follows: the adic curve carries a particular ample line bundle
O(1), and the schematic curve is defined by applying the Proj construction to the graded
ring of sections of tensor powers of O(1). Notably, these two spaces are related by a theorem
analogous to Serre’s GAGA theorem in complex analytic geometry [11]: there is a natural
morphism from the adic space to the scheme, and pullback along this morphism induces an
equivalence of categories of coherent sheaves and isomorphisms of sheaf cohomology groups
[1, §11.3].

In this note, we demonstrate similar results for the product of two or more copies of the
Fargues–Fontaine curve with coefficients in E. Such products appear naturally in the local
Langlands correspondence [2] by analogy with the use of “Drinfeld’s lemma” to describe
the global Langlands correspondence for function fields [10]. Our main result is a GAGA
statement, but limited to vector bundles due to the failure of these products to be locally
noetherian (Theorem 3.8).

One lingering question is to what extent the classification of vector bundles on the Fargues–
Fontaine curve [1, Chapter 9] admits an analogue for products of curves. We plan to address
this issue in a subsequent version of this document.

1. Relative FF curves

In order to study vector bundles on products of Fargues–Fontaine curves, we need to
consider somewhat more general sheaves on relative Fargues–Fontaine curves. However, to
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avoid having to worry about sheaf-theoretic issues, we formulate the relevant statements in
algebraic language.

Hypothesis 1.1. Throughout §1, let I be a closed subinterval of (0,+∞) such that I∩I1/q ̸=
∅; let R be a perfectoid Banach ring of characteristic p (i.e., a perfect Banach ring over Fp

carrying a power-multiplicative norm); and let S be a Banach ring over E. We assume further
that R is Tate, i.e., it contains a topologically nilpotent unit.

Definition 1.2. Write

WE(R) := W (R)⊗̂ZpoE = lim←−
n

(W (R)/pn ⊗Zp oE).

For α > 0, let |•|α denote the α-Gauss norm on WE(R)[p−1]:∣∣∣∣∣∑
m

pn[xn]

∣∣∣∣∣ = sup
n
{α−n|xn|}.

This defines a power-multiplicative norm. Let BI
R,E be the completion of WE(R)[p−1] with

respect to the supremum of the |•|α over all α ∈ I. Define also BI
R,S := BI

R,E⊗̂ES.

The q-power Frobenius map on WE(R) induces a map φ : BI
R,S → BI1/q

R,S . By a Banach φ-

module over BI
R,S, we will mean a Banach moduleM over BI

R,S equipped with an isomorphism

Φ : φ∗M⊗̂
BI1/q

R,S

BI∩I1/q
R,S

∼= M⊗̂BI
R,S

BI∩I1/q
R,S .

We define H0
φ(M) and H1

φ(M) as the kernel and cokernel of the induced φ-semilinear map

M →M⊗̂BI
R,S

BI∩I1/q
R,S , m 7→ Φ(m⊗ 1).

For n ∈ Z, define the twist M(n) of M by multiplying the action of Φ by ϖ−n.

Remark 1.3. We will use frequently the fact that because R is Tate, it admits at least
one untilt R♯. For example, we can find a topologically nilpotent unit π ∈ R such that
log|ϖ| |π| ∈ I (e.g., by starting with any topologically nilpotent unit and applying some

power of Frobenius or its inverse), and then the quotient of BI
R,S by the ideal (ϖ− [π]) is an

untilt of R. This yields an exact sequence of φ-modules of the form

(1) 0→ BI
R,S(−1)→ BI

R,S → (R♯)Z → 0.

Lemma 1.4. We have H0
φ(B

I
R,E) = E.

Proof. See [8, Lemma 4.2.10] in the case E = Qp, the general case being similar. □

Definition 1.5. For A a Banach ring and T a set, let AT̂ be the completion of the free
A-module AT for the supremum norm.

Lemma 1.6. Let T be any set and view F = (BI
R,E)

T̂ as a Banach φ-module via the coor-
dinatewise action of Frobenius. Then for all n > 0:

(a) H0
φ(F (n)) generates F (n);

(b) H1
φ(F (n)) = 0;
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(c) for any affinoid algebra S over E, the maps

H0
φ(F (n))⊗̂ES → H0

φ(F (n)⊗̂ES), H1
φ(F (−n))⊗̂ES → H1

φ(F (−n)⊗̂ES)

are isomorphisms.

Proof. Parts (a) and (b) follow as in [8, Proposition 6.2.2, Proposition 6.2.4]. To check (c),
note that if S is topologically countably generated over E, then S admits a Schauder basis
(that is, S is a topologically free E-module) and so the computation of H0

φ and H1
φ both

commute with completed base extension. In general S is the uncompleted direct limit of its
topologically countably generated affinoid subalgebras and so the same conclusion holds. □

Lemma 1.7. With notation as in Lemma 1.6, for all n ≤ 0:

(a) H0
φ(F (n)) = ET̂ if n = 0 and H0

φ(F (n)) = 0 if n < 0;

(b) H1
φ(F (n)) is a Banach module over E;

(c) for any affinoid algebra S over E, the maps

H1
φ(F (n))⊗̂ES → H1

φ(F (n)⊗̂ES)

are isomorphisms.

Proof. We proceed by descending induction on n. By twisting the sequence (1) and taking
cohomology, we obtain an exact sequence

0→ H0
φ(F (n))→ H0

φ(F (n+ 1))→ (R♯)T̂ → H1
φ(F (n))→ H1

φ(F (n+ 1))→ 0.

For the base case n = 0, (a) follows from Lemma 1.6; this implies that the map H0
φ(F (n +

1)) → R♯ is strict. Meanwhile, the term H1
φ(F (1)) vanishes by Lemma 1.6, so H1

φ(F ) is an

extension of two Banach modules over E. For the induction step n < 0, we have H0
φ(F (n+

1)) = 0 unless n = −1, in which case H0
φ(F ) → F̃ is injective; in either case we obtain (a).

We then obtain (b) as in the base case. Given (a) and (b), we check (c) as in Lemma 1.6. □

Remark 1.8. In general, H1
φ(B

I
R,S) is nonzero and its formation does not compute with

completed base change on S. It can be interpreted as the first continuous Galois cohomology
group of the trivial E-local system on SpecR [8, Theorem 8.6.4]; in particular, it vanishes
when R is an algebraically closed perfectoid field, or more generally an absolutely integrally
closed (AIC) perfectoid ring.

Theorem 1.9. For any Banach φ-module M over BI
R,S, there exists an integer N such that

for n ≥ N ,

(a) H0
φ(M(n)) generates M(n);

(b) H1
φ(M(n)) = 0;

(c) for any Banach ring S ′ over S, the map

H0
φ(M(n))⊗̂SS

′ → H0
φ(M(n)⊗̂SS

′)

is an isomorphism.

Proof. The proof of [8, Proposition 6.2.2] directly generalizes to yield (b). Given (b), we may
then deduce (a) by following [8, Proposition 6.2.4]. To check (c), using (a) we may (after
twisting) reduce to the case where there exists an exact sequence

0→ P → F →M → 0
3



of Banach φ-modules with F = (BI
R,E)

T̂ for some set T . From the exact sequence

0→ P (n)→ F (n)→M(n)→ 0

and (a), we obtain an exact sequence

H0
φ(P (n))⊗̂SS

′ //

��

H0
φ(F (n))⊗̂SS

′ //

��

H0
φ(M(n))⊗̂SS

′ //

��

0

0 // H0
φ(P (n)⊗̂SS

′) // H0
φ(F (n)⊗̂SS

′) // H0
φ(M(n)⊗̂SS

′) // 0

Lemma 1.6 shows that the middle vertical arrow is an isomorphism; this implies that the
right vertical arrow is surjective. By the same token, the left vertical arrow is surjective; by
the five lemma, the right vertical arrow is injective. □

2. Multiple FF curves: algebraic description

We next formally promote the previous result to the case of multiple Frobenius actions.
This will then specialize to tell us about vector bundles on products of Fargues–Fontaine
curves.

Hypothesis 2.1. Throughout §2, continue to retain Hypothesis 1.1. In addition, fix a pos-

itive integer m and let I1, . . . , Im be closed subintervals of (0,+∞) such that Ii ∩ I
1/q
i ̸= ∅

for i = 1, . . . ,m.

Definition 2.2. For m a positive integer, let BI1,...,Im
R,S denote the m-fold completed tensor

product BI1
R,S⊗̂S · · · ⊗̂SB

Im
R,S. We again have BI1,...,Im

R,S
∼= BI1,...,Im

R,E ⊗̂ES. To simplify notation,

when I1 = · · · = Im = I we denote BI1,...,Im
R,S also as BI,m

R,S .

For i = 1, . . . ,m, let φi : B
I1,...,Im
R,S → B

I1,...,I
1/q
i ,...,Im

R,S be the map induced by φ on the i-th

factor of the completed tensor products. By a Banach (φ1, . . . , φm)-module over BI1,...,Im
R,S , we

will mean a Banach module M over BI1,...,Im
R,S equipped with isomorphisms

Φi : φ
∗
iM⊗̂

B
I1,...,I

1/q
i

,...,Im

R,S

B
I1,...,Ii∩I

1/q
i ,...,Im

R,S
∼= M⊗̂

B
I1,...,Im
R,S

B
I1,...,Ii∩I

1/q
i ,...,Im

R,S (i = 1, . . . ,m)

which “commute” in the following sense. For P ⊆ {1, . . . ,m}, let CP be the module

M⊗̂
B

I1,...,Ii,...,Im
R,S

BJ1,...,Jm
R,S , Ji =

{
Ii i /∈ P

Ii ∩ I
1/q
i i ∈ P.

For i /∈ P , consider the map CP → CP∪{i} given by m 7→ Φi(m⊗ 1). Then these maps form
a commuting diagram.

With notation as above, define the groups H i
φ1,...,φm

(M) as the cohomology groups of the
totalization of the m-fold complex CP . By definition, these groups vanish for i > m.

For n1, . . . , nm ∈ Z, define the twist M(n1, . . . , nm) of M by multiplying the action of Φi

by ϖ−ni .

Theorem 2.3. Let M be a Banach (φ1, . . . , φm)-module over BI,m
R,S . Then there exists an

integer N such that for n1, . . . , nm ≥ N ,
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(a) H0
φ1,...,φm

(M(n1, . . . , nm)) generates M(n1, . . . , nm);

(b) H i
φ1,...,φm

(M(n1, . . . , nm)) = 0 for all i > 0;
(c) for any Banach algebra S ′ over S, the map

H0
φ1,...,φm

(M(n1, . . . , nm))⊗̂SS
′ → H0

φ1,...,φm
(M(n1, . . . , nm)⊗̂SS

′)

is an isomorphism.

Proof. We proceed by induction on m, the case m = 1 being Theorem 1.9. For m > 1, by
applying Theorem 1.9 repeatedly, we obtain the corresponding statements for n1 sufficiently
large, n2 sufficiently large as a function of n1, and so on. Applying (a) in this weaker form
suffices to produce (after a single twist) an exact sequence

0→ P → F →M → 0

in which F is the completion (for the supremum norm) of a free module equipped with the
coordinatewise action of the partial Frobenius maps.

It remains to show that after replacing M with some twist, statements (a), (b), (c) become
true for all n1, . . . , nm > 0. By Lemma 1.6 this is already true for F itself. Consequently, (b)
holds trivially for i > m, and then by descending induction (using the fact that anything we
can conclude about M is also true about P , but for a different twist) we may deduce it for
all i > 0. We may then similarly deduce (a) and (c). □

3. GAGA for multiple FF curves

We now recast the previous discussion into geometric language, following [8, Chapter 8].

Hypothesis 3.1. Throughout §3, retain Hypothesis 2.1 except for the choice of the intervals
I and I1, . . . , Im (which we will allow to vary).

Lemma 3.2. The underlying Huber ring of BI,m
R,E is sheafy.

Proof. When E is of characteristic p, the perfect closure of BI,m
R,E is the completed direct

limit of BI,m
R,E⊗EEp−n

over all n, and the embedding of BI,m
R,E splits in the category of Banach

modules over BI,m
R,E. This splitting then transfers to any rational localization of BI,m

R,E, so BI,m
R,E

is stably uniform and hence sheafy [4, Theorem 1.2.13].

Similarly, when E is of characteristic 0, the completed direct limit of BI,m
R,E ⊗E E(ϖp−n

)

over all n is a perfectoid ring, and the embedding of BI,m
R,E splits in the category of Banach

modules over BI,m
R,E. This splitting then transfers to any rational localization of BI,m

R,E, so BI,m
R,E

is stably uniform and hence sheafy. In other words, BI,m
R,E is a sousperfectoid ring in the sense

of [3]. □

Definition 3.3. Let Y be the union of the spaces Spa(BI,m
R,E, (B

I,m
R,E)

◦) over all closed subin-
tervals I ⊂ (0,+∞); by Lemma 3.2, Y carries the structure of an adic space. The multiple
Frobenius maps define a properly continuous action of Zm on Y ; let FFR,q,m be the quotient
Y/Zm. We call this the adic m-fold (q-power) Fargues–Fontaine curve over R (even though
it is not an adic space over R).

We may identify vector bundles with FFR,q,m with Zm-equivariant vector bundles on Y .
For n1, . . . , nm ∈ Z, let O(n1, . . . , nm) be the line bundle on FFR,q,m corresponding to the
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trivial line bundle on Y for the action of Zm in which the i-th generator acts as multiplication
by ϖ−ni . We may then form the multigraded ring

PR,q,m =
⊕

n1,...,nm≥0

Γ(FFR,q,m,O(n1, . . . , nm))

and take its Proj; this yields the schematic m-fold (q-power) Fargues–Fontaine curve over
R.

By construction, there is a natural morphism FFR,q,m → ProjPR,q,m of locally ringed
spaces. We will view pullback along this morphism as an analytification functor.

Remark 3.4. It is natural but slightly confusing terminology to say that the previous con-
structions give spaces “over R”, as neither of them gives rise to a locally ringed space mapping
to SpecR. The adic construction does give rise to a morphism to R in the larger category
of diamonds whose underlying map of sets is the topological projection onto Spa(R,R◦).

Remark 3.5. Note that both ProjPR,q,m and FFR,q,m are quasicompact and separated lo-
cally ringed spaces, and so have finite cohomological dimension.

Definition 3.6. In the category of diamonds, we may interpret FFR,q,1 as the quotient
(SpdR × SpdE)/⟨φ⟩, with φ acting only on the first factor, equipped with the structure
morphism to SpdE given by the second projection. By the same token, FFR,q,m can be
viewed as the quotient

(2)
SpdR× · · · × SpdR× SpdE

⟨φ1, . . . , φm⟩
∼=

SpdR× · · · × SpdR

⟨φ1, . . . , φm⟩
× SpdE.

In particular, we have canonical isomorphisms

FFR,q,m
∼= ((SpdR)/φ× SpdE)×SpdE · · · ×SpdE ((SpdR)/φ× SpdE)
∼= FFR,q,1×E · · · ×E FFR,q,1;

the outer isomorphism can also be interpreted directly in the category of adic spaces.

Lemma 3.7. For n1, . . . , nm ∈ Z, the natural maps

H i(ProjPR,q,m,O(n1, . . . , nm))→ H i(FFR,q,m,O(n1, . . . , nm))

are isomorphisms.

Proof. We induct on m; within this induction, we perform a descending induction on i using
Remark 3.5 as the base case. Using the hypothesis that R is Tate, we may choose an untilt
of R and thus obtain a closed immersion j : FFR,q,m−1 → FFR,q,m (and similarly on the
schematic side). This gives us an exact sequence

0→ O(0, . . . , 0,−1)→ O → j∗j
∗O → 0;

by twisting this sequence, we may apply the induction hypothesis for m− 1 to perform the
descending induction on i. □

Theorem 3.8. The pullback of vector bundles along FFR,q,m → ProjPR,q,m (analytification)
is an equivalence of categories. Moreover, the natural maps from the cohomology groups
of any vector bundle on ProjPR,q,m to the cohomology groups of its analytification is an
isomorphism.
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Proof. We first establish the comparison of cohomology groups, which also implies full faith-
fulness (by taking internal Homs). Let F be a vector bundle on ProjPR,q,m. From the Proj
construction, we obtain an exact sequence of the form

0→ G → O(n1, . . . , nm)
⊕d → F → 0

for some d ≥ 0 and some n1, . . . , nm ∈ Z. By Lemma 3.7, we have the desired isomorphism of
cohomology groups at the middle of this sequence; we may thus deduce the same isomorphism
for F by descending induction on the cohomology degree, using Remark 3.5 as the base case.

We next establish essential surjectivity. Let F be a vector bundle on FFR,q,m. By applying
Theorem 2.3 twice, we obtain an exact sequence

E1 → E2 → F → 0

in which E1, E2 arise by pullback from ProjPR,q,m. By the previous paragraph, the morphism
between them also arises by pullback from ProjPR,q,m, as then does F = coker(E1 → E2). □

Remark 3.9. In principle, it should be possible to generalize Theorem 3.8 after taking
completed tensor products over E with a Banach ring S over E. The main difficulty is in
the formulation: it is not clear what conditions are needed to ensure that the underlying
Huber ring of BI,m

R,E⊗̂ES is sheafy, so that it makes sense to form the adic relative m-fold
Fargues–Fontaine curve.

One tractable case is when S is a smooth affinoid algebra over E. In this case, S locally
admits an étale morphism to a torus, in which case it is again sousperfectoid. In this case,
BI,m

R,E⊗̂ES is also sousperfectoid.

Corollary 3.10. Let F be a vector bundle on ProjPR,q,m of rank r ≥ m+1. Then F admits
a surjective morphism onto some line bundle.

Proof. By Theorem 2.3, for n1, . . . , nm ≫ 0 the bundle F∨(n1, . . . , nm) is generated by global
sections. Since r ≥ m + 1, a generic section s of F∨(n1, . . . , nm) will have no zeros; it thus
defines a surjective morphism F → O(n1, . . . , nm). Further details to follow. □

4. A fibration construction

Definition 4.1. On the right-hand side of (2), we may refactor the first term in the product
as YR/φ where YR is the quotient of SpdR × · · · × SpdR by the subgroup of ⟨φ1, . . . , φm⟩
obtained by omitting one of the generators. That is, we may view FFR,q,m as a relative
Fargues–Fontaine curve over YR, which admits the untilt FFR,q,m−1×ER

♯.
For F a vector bundle on FFR,q,m, we may consider the diagonal HN polygon of F over

YR. The diagonal degree of F is locally constant on YR, and hence on R because YR → SpdR
has connected fibers.

For µ ∈ Q, we say that F is diagonally pure of slope µ if the diagonal HN polygon has all
slopes equal to µ; when µ = 0, we also say that F is diagonally étale.

Theorem 4.2. Suppose that R is an Fq-algebra. For µ ∈ Z, there are canonical (depending
on ϖ) equivalence of tensor categories between the following categories.

(a) Vector bundles on FFR,q,m which are diagonally pure of slope µ.
(b) Pro-étale E-local systems on YR (i.e., finite locally free modules for the locally constant

sheaf E on the pro-étale site of YR).
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(c) Pro-étale E-local systems on SpdR× · · · × SpdR which are ⟨φ1, . . . , φn⟩-equivariant
and such that the action of φ = φ1 ◦ · · · ◦ φn becomes the endomorphism ϖ−µ upon
identifying the local system with its φ-pullback.

Moreover, these equivalences are compatible with tensor products between different values of
µ (that is, the source objects belong to the categories indexed by µ1 and µ2 and the target to
the category indexed by µ1 + µ2).

Proof. This follows from [8, Theorem 8.5.12]. □

Definition 4.3. For µ1, . . . , µm ∈ Q with least common denominator s, let O(µ1, . . . , µm)
be the vector bundle of rank s on FFR,q,m corresponding to the (φ1, . . . , φm)-module over

BI,m
R,S with free generators e1, . . . , es with the action of φi given by

Φi(e1) = e2, . . . , Φi(es−1) = es, Φi(es) = ϖ−sµie1.

When s = 1, we may apply Theorem 4.2 to obtain a pro-étale E-local system L of rank
1 on SpdR × · · · × SpdR; which is ⟨φ1, . . . , φn⟩-equivariant; this local system admits a
trivialization for which the action of φi is given by multiplication by ϖ−µi for i = 1, . . . , n.

Theorem 4.4. Suppose that R is an algebraically closed perfectoid field. Then the map
Zm → Pic(FFR,q,m) taking (s1, . . . , sm) to O(s1, . . . , sm) is an isomorphism.

Proof. It is clear that the map in question is a group homomorphism. Injectivity follows from
the case m = 1, e.g., using the fact that H0(FFR,q,1,O(s)) is zero for s < 0 and nonzero
for s ≥ 0. To deduce surjectivity, using Theorem 4.2 and the decomposition E× ∼= o×E ×ϖZ

we reduce to the assertion that every pro-étale oE-local system on YR is trivial. This is a
consequence of Drinfeld’s lemma for perfectoid spaces [5]. □

Definition 4.5. Using Theorem 4.4, we may define for every vector bundle F on FFR,q,m

the full degree map as a locally constant map degF : π0(R) → Zm. We may then define the
full slope map µF = degF / rank : π0(R)→ Qm.

Remark 4.6. The proof of Theorem 4.4 implicitly uses the fact that E× injects into its
profinite completion. By contrast, GLn(E) does not inject into its profinite completion for
n > 1, so étale E-local systems on YR of rank greater than 1 are not necessarily elements of
the isogeny category of pro-étale oE-local systems. See Example 4.7.

Example 4.7. Let R be an algebraically closed perfectoid field and take m = 2 and E = Qp.
By choosing an untilt R♯ of R containing Qp, we may identify YR with the diamond associated
to FFR,q,1×ER

♯.
The Lubin–Tate moduli space gives rise to an irreducible Qp-local system L of rank 2 on

P1
Qp
. By choosing two sections of O(1) on FFR,q,1 with distinct zeros, we may pull L back to

an irreducible Qp-local system on FFR,q,1×ER
♯ with monodromy group PSL2(Qp). Via the

tilting correspondence, L can also be viewed as an irreducible Qp-local system of rank 2 on
YR.

Example 4.8. With notation as in Remark 1.3, choose two E-linearly independent el-
ements s1, s2 ∈ (BI

R,E)
φ=ϖ; these can also be viewed as elements of H0(FFR,q,1,O(1)).

Let t1, t2 ∈ R♯ be the images of s1, s2 via the projection in (1) (projecting to the sum-
mand indexed by 0); these can also be viewed as elements of H0(FFR,q,1,O(1)/O), or of
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H0(FFR,q,1,O(−1)/O(−2)) using the fact that O(1)/O, being supported at a point, is iso-
morphic to all of its twists.

Now view f := s1 ⊗ t2 − s2 ⊗ t1 as an element of

H0(FFR,q,1,O(1))⊗̂H0(FFR,q,1,O(−1)/O(−2)) ∼= H0(FFR,q,2,O(1,−1)/O(1,−2)).
Using the exact sequence

0→ O(1,−2)→ O(1,−1)→ O(1,−1)/O(1,−2)→ 0

derived from R♯ as in Remark 1.3, we may push f along the connecting homomorphism to
a class in H1(FFR,q,2,O(1,−2)). We thus obtain an exact sequence

0→ O(1,−2)→ F → O → 0

For any given point x of YR, the pullback of F to the fiber of FFR,q,2 above y can similarly
be obtained by restricting f to the fiber and then applying the connecting homomorphism.
For a generic choice of x, this results in a nonzero extension class, in which case the diagonal
polygon of F at x must lie strictly above the polygon with slopes 0,−1; the only remaining
option is the polygon with slopes −1/2,−1/2.
Now take x to be the SpdR-valued point of YR given by composing by the diagonal map

∆ : SpdR→ SpdR×SpdR with the tautological quotient map SpdR×SpdR→ YR. Then
by design the extension class vanishes, so the diagonal polygon of F at x has slopes 0,−1.

Remark 4.9. By virtue of the analogy between F -isocrystals at a geometric point and vector
bundles on a Fargues–Fontaine curve, one might hope that Drinfeld’s lemma for F -isocrystals
[6, 9] admits an analogue for vector bundles on a product of Fargues–Fontaine curves. For
example, a direct analogue of [6, Corollary 7.4] would be that for R an algebraically closed
perfectoid field and F a vector bundle on FFR,q,2, the fibers of F along one of the projection
maps all have the same HN polygon; this is refuted by Example 4.8.
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