THE DE RHAM PROPERTY FOR REPRESENTATIONS OF PRODUCTS OF GALOIS GROUPS

KIRAN S. KEDLAYA

1. INTRODUCTION

Let Δ be a finite set. Let K be a complete discretely valued field of characteristic p with perfect residue field k. For each $\alpha \in \Delta$, let $G_{K,\alpha}$ be a copy of the absolute Galois group G_K of K, and put $G_{K,\Delta} := \prod_{\alpha \in \Delta} G_{K,\alpha}$. Let $\operatorname{\mathbf{Rep}}_{\mathbb{Q}_p}(G_{K,\Delta})$ be the category of continuous representations of $G_{K,\Delta}$ on finite-dimensional \mathbb{Q}_p -vector spaces.

The purpose of this note is to compare various possible definitions of the *de Rham* property for objects of $\operatorname{\mathbf{Rep}}_{\mathbb{Q}_n}(G_{K,\Delta})$.

Theorem 1.1. For $V \in \operatorname{\mathbf{Rep}}_{\mathbb{Q}_n}(G_{K,\Delta})$, the following conditions are equivalent.

- (a) For each $\alpha \in \Delta$, the restriction of V along $G_{K,\alpha} \to G_{K,\Delta}$ is de Rham in the sense of Fontaine, i.e., it is admissible with respect to the period ring $\mathbf{B}_{\mathrm{dR},\alpha}$.
- (b) The representation V is admissible with respect to the uncompleted tensor product of the rings B_{dR,α} over Q_p.
- (c) The representation V is de Rham in the sense of [1, Definition above Proposition 4.18], i.e., it is admissible with respect to the period ring $\mathbf{B}_{dR,\Delta}$ (a certain completed tensor product of the rings $\mathbf{B}_{dR,\alpha}$ over \mathbb{Q}_p).
- (d) The module with integrable connection $D_{dif}(V)$ [1, Definition 5.17] is trivial.

The implication from (a) to (b) is essentially formal (see Proposition 2.3), as is the implication from (b) to (c). The equivalence of (c) and (d) is [1, Proposition 5.18]. The main content is therefore the implication from (d) to (a), which we deduce by observing that the construction of $D_{\text{dif}}(V)$ is compatible with restriction along $G_{K,\alpha} \to G_{K,\Delta}$ (see Lemma 4.3).

From Theorem 1.1, it should be possible to deduce analogues of the equivalence among (a), (b), (c) for the crystalline and semistable properties. We also expect a corresponding statement for the Hodge–Tate property, including a modified form of (d): the connection on $D_{\text{dif}}(V)$ should be unipotent, not necessarily trivial.

We also expect similar results about multivariate (φ, Γ) -modules which need not be étale. At present, this is obstructed by the fact that it is not obvious how to define the analogue of restriction along $G_{K,\alpha} \to G_{K,\Delta}$; this is closely related to the fact that we do not have an analogue of Drinfeld's lemma for general multivariate (φ, Γ) -modules; see Conjecture 5.2.

We conclude this introduction by mentioning one potential improvement to Theorem 1.1. By [1, Proposition 4.19], if the equivalent conditions of Theorem 1.1 hold (in particular (c)), then the K_{Δ} -module $D_{dR}(V)$ is free of rank $\dim_{\mathbb{Q}_p} V$. We do not know if the converse implication holds.

Date: version of 4 Oct 2023.

Thanks to Lukas Kofler and Xin Tong for helpful discussions.

2. Restriction of representations

We start with a purely group-theoretical lemma.

Definition 2.1. For $\Delta' \subseteq \Delta$, let $\operatorname{Res}_{\Delta,\Delta'} : \operatorname{Rep}_{\mathbb{Q}_p}(G_{K,\Delta}) \to \operatorname{Rep}_{\mathbb{Q}_p}(G_{K,\Delta'})$ be the functor given by restriction along the inclusion $\iota_{\Delta',\Delta} : G_{K,\Delta'} \to G_{K,\Delta}$. When Δ' is the singleton set α , we substitute α for Δ' in this notation.

Lemma 2.2. Write Δ as a disjoint union $\Delta_1 \sqcup \Delta_2$. Define the functor $\boxtimes : \operatorname{Rep}_{\mathbb{Q}_p}(G_{K,\Delta_1}) \times \operatorname{Rep}_{\mathbb{Q}_p}(G_{K,\Delta_2}) \to \operatorname{Rep}_{\mathbb{Q}_p}(G_{K,\Delta})$ taking the pair V_1, V_2 to the tensor product of the objects obtained from each V_i by restriction along the projection $\pi_{\Delta,\Delta_i} : G_{K,\Delta} \to G_{K,\Delta_i}$. Then every object of $\operatorname{Rep}_{\mathbb{Q}_p}(G_{K,\Delta})$ is a quotient of some object in the essential image of \boxtimes .

Proof. Set $V_1 := \operatorname{Res}_{\Delta,\Delta_1}(V)$ and let W be the G_{K,Δ_1} -invariant subspace of $(V_1 \boxtimes 1)^{\vee} \otimes V$. Since W is evidently also stable under G_{K,Δ_2} , it can be interpreted as $1 \boxtimes V_2$ for $V_2 := \operatorname{Res}_{\Delta,\Delta_2}(W)$.

Now consider the following composition of morphisms in $\operatorname{\mathbf{Rep}}_{\mathbb{O}_n}(G_{K,\Delta})$:

(1)
$$(V_1 \boxtimes 1) \otimes W \to (V_1 \boxtimes 1) \otimes (V_1 \boxtimes 1)^{\vee} \otimes V \to V,$$

where the last map is the natural contraction of the first and second factors in the triple tensor product. After applying $\operatorname{Res}_{\Delta,\Delta_1}$, we obtain maps in $\operatorname{Rep}_{\mathbb{O}_n}(G_{K,\Delta_1})$ of the form

$$V_1 \otimes \operatorname{Res}_{\Delta,\Delta_1}(W) \to V_1 \otimes V_1^{\vee} \otimes V_1 \to V_1.$$

Now let $\mathbf{e}_1, \ldots, \mathbf{e}_n$ be a basis of V_1 and let $\mathbf{e}_1^{\vee}, \ldots, \mathbf{e}_n^{\vee}$ denote the dual basis of V_1^{\vee} . Then $\operatorname{Res}_{\Delta,\Delta_1}(W)$ contains the element $\sum_i \mathbf{e}_i^{\vee} \otimes \mathbf{e}_i$ of $V_1^{\vee} \otimes V_1$ corresponding to the identity map; hence for $j = 1, \ldots, n, V_1 \otimes \operatorname{Res}_{\Delta,\Delta_1}(W)$ contains the element $\mathbf{e}_j \otimes \sum_i (\mathbf{e}_i^{\vee} \otimes \mathbf{e}_i)$ which contracts to \mathbf{e}_j . We conclude that (1) is surjective, and hence V is a quotient of $V_1 \boxtimes W$. \Box

From this lemma, we deduce the implication from (a) to (b) in Theorem 1.1, as well as comparable results for other period rings besides \mathbf{B}_{dR} .

Proposition 2.3. Suppose that $V \in \operatorname{Rep}_{\mathbb{Q}_p}(G_{K,\Delta})$ has the property that for each $\alpha \in \Delta$, $\operatorname{Res}_{\Delta,\alpha}(V)$ is admissible with respect to the period ring $\mathbf{B}_{*,\alpha}$ for some $* \in \{\operatorname{dR}, \operatorname{HT}, \operatorname{crys}, \operatorname{ss}\}$. Then the representation V is admissible with respect to the uncompleted tensor product \mathbf{B} of the rings $\mathbf{B}_{*,\alpha}$ over \mathbb{Q}_p .

Proof. We proceed by induction on $\#\Delta$, the case where this quantity is 1 being a vacuous base case. Suppose $\#\Delta > 1$ and write Δ as a disjoint union $\Delta_1 \sqcup \Delta_2$ of two nonempty subsets. Define V_1, W, V_2 as in the proof of Lemma 2.2. Then $\operatorname{Res}_{\Delta_1,\alpha}(V_1) \cong \operatorname{Res}_{\Delta,\alpha}(V)$ is admissible with respect to $\mathbf{B}_{*,\alpha}$ for each $\alpha \in \Delta_1$. Meanwhile, $\operatorname{Res}_{\Delta_2,\alpha}(V_1 \boxtimes 1)$ is trivially admissible with respect to $\mathbf{B}_{*,\alpha}$ for each $\alpha \in \Delta_2$, as then is $\operatorname{Res}_{\Delta_2,\alpha}((V_1 \boxtimes 1) \otimes V)$. Since admissibility passes to subobjects, we deduce that $\operatorname{Res}_{\Delta_2,\alpha}(W)$ is admissible with respect to $\mathbf{B}_{*,\alpha}$ for each $\alpha \in \Delta_2$.

Applying the induction hypothesis, we deduce that $V_1 \boxtimes V_2$ is admissible with respect to the uncompleted tensor product **B** of the rings $\mathbf{B}_{*,\alpha}$ over \mathbb{Q}_p . Since this property passes to quotients, the same holds for V.

3. Multivariate (φ, Γ) -modules

We recall briefly how the standard framework of (φ, Γ) -modules adapts to the multivariate context.

Definition 3.1. Let F be a field of the form $W(k_0)[p^{-1}]$ for some perfect field k_0 of characteristic p. Let \mathbf{A}_F be the completion of $W(k_0)((\varpi))$ for the p-adic topology. Elements of \mathbf{A}_F are naturally represented as formal Laurent series $\sum_{i \in \mathbb{Z}} c_i \varpi^i$ with $c_i \in W(k_0)$. This ring admits a continuous action of the monoid $\mathbb{Z}_p \setminus \{0\}$ given by

$$\gamma\left(\sum_{i\in\mathbb{Z}}c_i\varpi^i\right) = \sum_{i\in\mathbb{Z}}c_i((\varpi+1)^{\gamma(i)}-1);$$

let φ denote the endomorphism given by the action of $p \in \mathbb{Z}_p \setminus \{0\}$.

Each finite étale algebra over F lifts uniquely to a finite étale extension of \mathbf{A}_F equipped with an extension of the action of $\mathbb{Z}_p \setminus \{0\}$ (need reference). Let \mathbf{A}_K denote the extension of \mathbf{A}_F corresponding to K; the group \mathbb{Z}_p^{\times} acts transitively on the connected components of \mathbf{A}_K with stabilizer Γ_K .

For each $\alpha \in \Delta$, let $\mathbf{A}_{K,\alpha}$ be a copy of \mathbf{A}_K with the variable ϖ replaced by ϖ_{α} , and let $\mathbf{A}_{K,\Delta}$ be the *p*-adic completion of the tensor product of the rings $\mathbf{A}_{K,\alpha}$ over \mathbb{Z}_p . This ring carries an action of the product of $\mathbb{Z}_p \setminus \{0\}$ indexed by Δ , which for uniformity we denote by $(\mathbb{Z}_p \setminus \{0\})_{\Delta}$.

Put $\mathbf{B}_K := \mathbf{A}_K[p^{-1}], \mathbf{B}_{K,\Delta} := \mathbf{A}_{K,\Delta}[p^{-1}].$

Theorem 3.2. Let \mathbf{A}_{Δ} denote the p-adic completion of $\bigcup_{K'/K} \mathbf{A}_{K',\Delta}$ (where K' runs over finite extensions of K). Then for $T \in \operatorname{\mathbf{Rep}}_{\mathbb{Z}_p}(G_{K,\Delta})$,

$$D(T) := \left(T \otimes_{\mathbb{Z}_p} \mathbf{A}_{\Delta}\right)^{G_K}$$

is a finite projective $\mathbf{A}_{K,\Delta}$ -module of rank $\operatorname{rank}_{\mathbb{Z}_p}(T)$, which inherits an action of $(\mathbb{Z}_p \setminus \{0\})_{\Delta}$ from the action on \mathbf{A}_{Δ} , and the natural map

$$D(T) \otimes_{\mathbf{A}_K, \Delta} \mathbf{A}_\Delta \to T \otimes_{\mathbb{Z}_p} \mathbf{A}_\Delta$$

is an isomorphism. (In particular, every T is admissible for the period ring A_{Δ} .)

Proof. In the case $\Delta = \{\alpha\}$ this dates back to Fontaine. For the general case, apply [2, Theorem 1.1].

Corollary 3.3. Set $\mathbf{B}_{\Delta} := \mathbf{A}_{\Delta}[p^{-1}]$. Then for $V \in \mathbf{Rep}_{\mathbb{Q}_p}(G_{K,\Delta})$,

$$D(V) := \left(V \otimes_{\mathbb{Q}_p} \mathbf{B}_{\Delta} \right)^{G_I}$$

is a finite projective $\mathbf{B}_{K,\Delta}$ -module of rank $\dim_{\mathbb{Q}_p}(V)$, which inherits an action of $(\mathbb{Z}_p \setminus \{0\})_{\Delta}$ from the action on \mathbf{B}_{Δ} , and the natural map

$$D(V) \otimes_{\mathbf{B}_K, \Delta} \mathbf{B}_\Delta \to V \otimes_{\mathbb{Q}_p} \mathbf{B}_\Delta$$

is an isomorphism. (In particular, every V is admissible for the period ring \mathbf{B}_{Δ} .)

Proof. Since $G_{K,\Delta}$ is a compact group, its action on V must stabilize some lattice T. We may the deduce the claim from Theorem 3.2.

Definition 3.4. Let $\mathbf{A}_{F,\Delta}^r$ be the subring of $\mathbf{A}_{F,\Delta}$ consisting of formal Laurent series which converge for $p^{-r} \leq |\varpi_{\alpha}| < 1$. This ring is stable under the action of $(\mathbb{Z}_p \setminus \{0\})_{\Delta}$ on $\mathbf{A}_{F,\Delta}$.

The pair $(\mathbf{A}_{F,\Delta}^{\dagger}, (p))$ is henselian, so we have a canonical identification of $\mathbf{A}_{K,\Delta}$ with $\mathbf{A}_{K,\Delta}^{\dagger} \otimes_{\mathbf{A}_{F,\Delta}^{\dagger}} \mathbf{A}_{K,\Delta}$ for some finite étale $\mathbf{A}_{F,\Delta}^{\dagger}$ -algebra $\mathbf{A}_{K,\Delta}^{\dagger}$ equipped with an extension of the action of $(\mathbb{Z}_p \setminus \{0\})_{\Delta}$.

Put $\mathbf{B}_{K}^{\dagger} = \mathbf{A}_{K}^{\dagger}[p^{-1}], \ \mathbf{B}_{K,\Delta}^{\dagger} := \mathbf{A}_{K,\Delta}^{\dagger}[p^{-1}].$

Theorem 3.5. For $T \in \operatorname{\mathbf{Rep}}_{\mathbb{Z}_p}(G_{K,\Delta})$, there is a unique finite projective $\mathbf{A}_{K,\Delta}^{\dagger}$ -submodule $D^{\dagger}(T)$ of D(T) which is stable under the action of $(\mathbb{Z}_p \setminus \{0\})_{\Delta}$ and for which the natural map

$$D^{\dagger}(T) \otimes_{\mathbf{A}_{K,\Delta}^{\dagger}} \mathbf{A}_{K,\Delta} \to D(T)$$

is an isomorphism.

Proof. For $\Delta = \{\alpha\}$, this is a formulation of the theorem of Cherbonnier–Colmez [3]. For the general case, apply [2, Theorem 1.1].

Corollary 3.6. For $V \in \operatorname{\mathbf{Rep}}_{\mathbb{Q}_p}(G_{K,\Delta})$, there is a unique finite projective $\mathbf{B}_{K,\Delta}^{\dagger}$ -submodule $D^{\dagger}(V)$ of D(V) which is stable under the action of $(\mathbb{Z}_p \setminus \{0\})_{\Delta}$ and for which the natural map

$$D^{\dagger}(V) \otimes_{\mathbf{B}_{K,\Delta}^{\dagger}} \mathbf{B}_{K,\Delta} \to D(V)$$

is an isomorphism.

Proof. This again follows from Theorem 3.5 and the existence of stable lattices.

Remark 3.7. We sketch an alternate proof of Corollary 3.6 using only Corollary 3.3 and the Cherbonnier–Colmez theorem. This short-circuits some arguments from [2, §5] which adapt the approach of [4, §2] to the Cherbonnier–Colmez theorem. A similar approach can be used to recover Theorem 3.5.

We proceed by induction on $\#\Delta$, using Cherbonnier–Colmez for the base case. In the induction step, choose a partition $\Delta = \Delta_1 \sqcup \Delta_2$ into nonempty subsets, then apply Lemma 2.2 to write V as a quotient of $V_1 \boxtimes V_2$ for some $V_i \in \operatorname{Rep}_{\mathbb{Q}_p}(G_{K,\Delta_i})$. By the induction hypothesis, $D^{\dagger}(V_i)$ is a finite projective $\mathbf{B}_{K,\Delta_i}^{\dagger}$ -module and the natural map $D^{\dagger}(V_i) \otimes_{\mathbf{B}_{K,\Delta_i}^{\dagger}} \mathbf{B}_{K,\Delta} \to D(V_i)$ is an isomorphism. This implies at once that $D^{\dagger}(V) \otimes_{\mathbf{B}_{K,\Delta}^{\dagger}} \mathbf{B}_{K,\Delta} \to D(V)$ is surjective. By repeating the argument with V replaced by the kernel of $V_1 \boxtimes V_2 \to V$, we may then apply the five lemma to deduce that in fact $D^{\dagger}(V) \otimes_{\mathbf{B}_{K,\Delta}^{\dagger}} \mathbf{B}_{K,\Delta} \to D(V)$ is also injective, and hence an isomorphism. Since $\mathbf{A}_{K,\Delta}^{\dagger} \to \mathbf{A}_{K,\Delta}$ is faithfully flat (being a completion with respect to an ideal in the Jacobson radical), so is $\mathbf{B}_{K,\Delta}^{\dagger} \to \mathbf{B}_{K,\Delta}$; we may thus conclude that $D^{\dagger}(V)$ is a finite projective $\mathbf{B}_{K,\Delta}^{\dagger}$ -module.

4. Multivariate (φ, Γ) -modules and Berger's construction

We follow $[1, \S5]$.

Definition 4.1. Let $\mathbf{B}_{\mathrm{rig},F,\Delta}^r$ denote the ring of rigid analytic functions on the product of the annuli $p^{-r} \leq |\varpi_{\alpha}| < 1$ over $\alpha \in \Delta$. Put $\mathbf{B}_{\mathrm{rig},F,\Delta}^{\dagger} := \bigcup_{r>0} \mathbf{B}_{\mathrm{rig},F,\Delta}^r$; when $\Delta = \{\varpi\}$ this is

commonly called the *Robba ring* over F in the variable ϖ_{α} . Set $\mathbf{B}^{\dagger}_{\mathrm{rig},K,\Delta} := \mathbf{B}^{\dagger}_{\mathrm{rig},F,\Delta} \otimes_{\mathbf{A}^{\dagger}_{F,\Delta}} \mathbf{A}^{\dagger}_{K,\Delta}$.

For $\alpha \in \Delta$, define

$$t_{\alpha} = \log(1 + \varpi_{\alpha}) \in \mathbf{B}^{\dagger}_{\mathrm{rig},F,\Delta};$$

it has the property that $\gamma(t_{\alpha}) = \gamma \cdot t_{\alpha}$ for $\gamma \in (\mathbb{Z}_p \setminus \{0\})_{\alpha}$.

Definition 4.2. For $V \in \operatorname{\mathbf{Rep}}_{\mathbb{Q}_p}(G_{K,\Delta})$, define $D_{\operatorname{rig}}^{\dagger}(V) := D^{\dagger}(V) \otimes_{\mathbf{B}_{K,\Delta}^{\dagger}} \mathbf{B}_{\operatorname{rig},K,\Delta}^{\dagger}$. Note that for any given V, we can fix r > 0 so that $D_{\operatorname{rig}}^{\dagger}(V)$ is the base extension of a finite projective $\mathbf{B}_{F,\Delta}^r$ -module M on which $\Gamma_{K,\Delta}$ acts (but not φ_{α}).

The action of $\Gamma_{K,\Delta}$ on M then induces an action of its Lie algebra Lie $\Gamma_{K,\Delta}$ with logarithmic singularities at the zeroes of $\prod_{\alpha \in \Delta} t_{\alpha}$. For zeroes in the region $p^{-r} \leq |\varpi_{\alpha}| < 1$ for rsufficiently small, the residue of the action of Lie $\Gamma_{K,\alpha}$ will be the same on all components of the singular locus. Crucially, since Lie $\Gamma_{K,\Delta}$ is commutative, this residue will be defined over K.

Lemma 4.3. In Theorem 1.1, condition (d) implies condition (a).

Proof. Condition (d) implies that the residue of the action of Lie $\Gamma_{K,\alpha}$ is zero for every $\alpha \in \Delta$. From the last point of Definition 4.2, we see that this condition persists on passage from V to $\operatorname{Res}_{\Delta,\alpha}(V)$. This proves the claim.

5. Restriction for multivariate (φ, Γ) -modules

Definition 5.1. A $(\varphi_{\Delta}, \Gamma_{\Delta})$ -module over $\mathbf{B}^{\dagger}_{\operatorname{rig},K,\Delta}$ is a finite projective module over this ring equipped with a semilinear action of $(\mathbb{Z} \setminus \{0\})_{\Delta}$ which is continuous for the LF (limit of Fréchet) topology on the base ring.

While we do not know how to define a restriction functor on Galois representations for not necessarily étale ($\varphi_{\Delta}, \Gamma_{\Delta}$)-modules, we can formulate an analogue of the conclusion of Lemma 2.2 as a conjecture.

Conjecture 5.2. For any partition $\Delta = \Delta_1 \sqcup \Delta_2$, every $(\varphi_{\Delta}, \Gamma_{\Delta})$ -module over $\mathbf{B}^{\dagger}_{\mathrm{rig},K,\Delta}$ is the quotient of some object in the essential image of \boxtimes .

Remark 5.3. It follows from [2, Theorem 1.1] that Conjecture 5.2 holds in the case of an étale $(\varphi_{\Delta}, \Gamma_{\Delta})$ -module. It is also possible to prove it for rank 1 modules and for de Rham objects; the latter uses the results of [5, §3] to obtain a form of Drinfeld's lemma for multivariate connections with partial Frobenius structures.

One subtlety inherent in Conjecture 5.2 is that the natural analogue for vector bundles on a product of Fargues–Fontaine curves is known to be false, even for bundles of rank 2. In particular, one cannot directly reduce to the étale case using slope filtrations. See [6] for further discussion.

References

- O. Brinon, B. Chiarellotto, and N. Mazzari, Multivariable de Rham representations, Sen theory and p-adic differential equations, arXiv:2111.11563v1 (2021).
- [2] A. Carter, K.S. Kedlaya, and G. Zábrádi, Drinfeld's lemma for perfectoid spaces and overconvergence of multivariate (φ, Γ)-modules, Doc. Math. 26 (2021), 1329–1393.

- [3] F. Cherbonnier and P. Colmez, Réprésentations p-adiques surconvergentes, Invent. Math. 133 (1998), 581–611.
- [4] K.S. Kedlaya, New methods for (φ, Γ) -modules, *Res. Math. Sci.* **2** (2015) (Robert Coleman memorial issue).
- [5] K.S. Kedlaya, Monodromy representations of *p*-adic differential equations in families, arXiv:2209.00593v1 (2022).
- [6] K.S. Kedlaya, Vector bundles on products of Fargues-Fontaine curves, preprint.