THE DE RHAM PROPERTY FOR REPRESENTATIONS OF PRODUCTS OF GALOIS GROUPS

KIRAN S. KEDLAYA

1. Introduction

Let Δ be a finite set. Let K be a complete discretely valued field of characteristic p with perfect residue field k. For each $\alpha \in \Delta$, let $G_{K, \alpha}$ be a copy of the absolute Galois group G_{K} of K, and put $G_{K, \Delta}:=\prod_{\alpha \in \Delta} G_{K, \alpha}$. Let $\operatorname{Rep}_{\mathbb{Q}_{p}}\left(G_{K, \Delta}\right)$ be the category of continuous representations of $G_{K, \Delta}$ on finite-dimensional \mathbb{Q}_{p}-vector spaces.

The purpose of this note is to compare various possible definitions of the de Rham property for objects of $\operatorname{Rep}_{\mathbb{Q}_{p}}\left(G_{K, \Delta}\right)$.

Theorem 1.1. For $V \in \operatorname{Rep}_{\mathbb{Q}_{p}}\left(G_{K, \Delta}\right)$, the following conditions are equivalent.
(a) For each $\alpha \in \Delta$, the restriction of V along $G_{K, \alpha} \rightarrow G_{K, \Delta}$ is de Rham in the sense of Fontaine, i.e., it is admissible with respect to the period ring $\mathbf{B}_{\mathrm{dR}, \alpha}$.
(b) The representation V is admissible with respect to the uncompleted tensor product of the rings $\mathbf{B}_{\mathrm{dR}, \alpha}$ over \mathbb{Q}_{p}.
(c) The representation V is de Rham in the sense of [1, Definition above Proposition 4.18], i.e., it is admissible with respect to the period ring $\mathbf{B}_{\mathrm{dR}, \Delta}$ (a certain completed tensor product of the rings $\mathbf{B}_{\mathrm{dR}, \alpha}$ over \mathbb{Q}_{p}).
(d) The module with integrable connection $D_{\text {dif }}(V)$ [1, Definition 5.17] is trivial.

The implication from (a) to (b) is essentially formal (see Proposition 2.3), as is the implication from (b) to (c). The equivalence of (c) and (d) is [1, Proposition 5.18]. The main content is therefore the implication from (d) to (a), which we deduce by observing that the construction of $D_{\text {dif }}(V)$ is compatible with restriction along $G_{K, \alpha} \rightarrow G_{K, \Delta}$ (see Lemma 4.3).

From Theorem 1.1, it should be possible to deduce analogues of the equivalence among (a), (b), (c) for the crystalline and semistable properties. We also expect a corresponding statement for the Hodge-Tate property, including a modified form of (d): the connection on $D_{\text {dif }}(V)$ should be unipotent, not necessarily trivial.

We also expect similar results about multivariate (φ, Γ)-modules which need not be étale. At present, this is obstructed by the fact that it is not obvious how to define the analogue of restriction along $G_{K, \alpha} \rightarrow G_{K, \Delta}$; this is closely related to the fact that we do not have an analogue of Drinfeld's lemma for general multivariate (φ, Γ)-modules; see Conjecture 5.2.

We conclude this introduction by mentioning one potential improvement to Theorem 1.1. By [1, Proposition 4.19], if the equivalent conditions of Theorem 1.1 hold (in particular (c)), then the K_{Δ}-module $D_{\mathrm{dR}}(V)$ is free of rank $\operatorname{dim}_{\mathbb{Q}_{p}} V$. We do not know if the converse implication holds.

Date: version of 4 Oct 2023.
Thanks to Lukas Kofler and Xin Tong for helpful discussions.

2. Restriction of representations

We start with a purely group-theoretical lemma.
Definition 2.1. For $\Delta^{\prime} \subseteq \Delta$, let $\operatorname{Res}_{\Delta, \Delta^{\prime}}: \operatorname{Rep}_{\mathbb{Q}_{p}}\left(G_{K, \Delta}\right) \rightarrow \operatorname{Rep}_{\mathbb{Q}_{p}}\left(G_{K, \Delta^{\prime}}\right)$ be the functor given by restriction along the inclusion $\iota_{\Delta^{\prime}, \Delta}: G_{K, \Delta^{\prime}} \rightarrow G_{K, \Delta}$. When Δ^{\prime} is the singleton set α, we substitute α for Δ^{\prime} in this notation.

Lemma 2.2. Write Δ as a disjoint union $\Delta_{1} \sqcup \Delta_{2}$. Define the functor $\boxtimes: \boldsymbol{\operatorname { R e p }}_{\mathbb{Q}_{p}}\left(G_{K, \Delta_{1}}\right) \times$ $\operatorname{Rep}_{\mathbb{Q}_{p}}\left(G_{K, \Delta_{2}}\right) \rightarrow \operatorname{Rep}_{\mathbb{Q}_{p}}\left(G_{K, \Delta}\right)$ taking the pair V_{1}, V_{2} to the tensor product of the objects obtained from each V_{i} by restriction along the projection $\pi_{\Delta, \Delta_{i}}: G_{K, \Delta} \rightarrow G_{K, \Delta_{i}}$. Then every object of $\operatorname{Rep}_{\mathbb{Q}_{p}}\left(G_{K, \Delta}\right)$ is a quotient of some object in the essential image of \boxtimes.

Proof. Set $V_{1}:=\operatorname{Res}_{\Delta, \Delta_{1}}(V)$ and let W be the $G_{K, \Delta_{1}}$-invariant subspace of $\left(V_{1} \boxtimes 1\right)^{\vee} \otimes V$. Since W is evidently also stable under $G_{K, \Delta_{2}}$, it can be interpreted as $1 \boxtimes V_{2}$ for $V_{2}:=$ $\operatorname{Res}_{\Delta, \Delta_{2}}(W)$.

Now consider the following composition of morphisms in $\operatorname{Rep}_{\mathbb{Q}_{p}}\left(G_{K, \Delta}\right)$:

$$
\begin{equation*}
\left(V_{1} \boxtimes 1\right) \otimes W \rightarrow\left(V_{1} \boxtimes 1\right) \otimes\left(V_{1} \boxtimes 1\right)^{\vee} \otimes V \rightarrow V, \tag{1}
\end{equation*}
$$

where the last map is the natural contraction of the first and second factors in the triple tensor product. After applying $\operatorname{Res}_{\Delta, \Delta_{1}}$, we obtain maps in $\operatorname{Rep}_{\mathbb{Q}_{p}}\left(G_{K, \Delta_{1}}\right)$ of the form

$$
V_{1} \otimes \operatorname{Res}_{\Delta, \Delta_{1}}(W) \rightarrow V_{1} \otimes V_{1}^{\vee} \otimes V_{1} \rightarrow V_{1}
$$

Now let $\mathbf{e}_{1}, \ldots, \mathbf{e}_{n}$ be a basis of V_{1} and let $\mathbf{e}_{1}^{\vee}, \ldots, \mathbf{e}_{n}^{\vee}$ denote the dual basis of V_{1}^{\vee}. Then $\operatorname{Res}_{\Delta, \Delta_{1}}(W)$ contains the element $\sum_{i} \mathbf{e}_{i}^{\vee} \otimes \mathbf{e}_{i}$ of $V_{1}^{\vee} \otimes V_{1}$ corresponding to the identity map; hence for $j=1, \ldots, n, V_{1} \otimes \operatorname{Res}_{\Delta, \Delta_{1}}(W)$ contains the element $\mathbf{e}_{j} \otimes \sum_{i}\left(\mathbf{e}_{i}^{\vee} \otimes \mathbf{e}_{i}\right)$ which contracts to \mathbf{e}_{j}. We conclude that (11) is surjective, and hence V is a quotient of $V_{1} \boxtimes W$.

From this lemma, we deduce the implication from (a) to (b) in Theorem 1.1, as well as comparable results for other period rings besides \mathbf{B}_{dR}.

Proposition 2.3. Suppose that $V \in \operatorname{Rep}_{\mathbb{Q}_{p}}\left(G_{K, \Delta}\right)$ has the property that for each $\alpha \in \Delta$, $\operatorname{Res}_{\Delta, \alpha}(V)$ is admissible with respect to the period ring $\mathbf{B}_{*, \alpha}$ for some $* \in\{\mathrm{dR}, \mathrm{HT}, \mathrm{crys}, \mathrm{ss}\}$. Then the representation V is admissible with respect to the uncompleted tensor product \mathbf{B} of the rings $\mathbf{B}_{*, \alpha}$ over \mathbb{Q}_{p}.

Proof. We proceed by induction on $\# \Delta$, the case where this quantity is 1 being a vacuous base case. Suppose $\# \Delta>1$ and write Δ as a disjoint union $\Delta_{1} \sqcup \Delta_{2}$ of two nonempty subsets. Define V_{1}, W, V_{2} as in the proof of Lemma 2.2. Then $\operatorname{Res}_{\Delta_{1}, \alpha}\left(V_{1}\right) \cong \operatorname{Res}_{\Delta, \alpha}(V)$ is admissible with respect to $\mathbf{B}_{*, \alpha}$ for each $\alpha \in \Delta_{1}$. Meanwhile, $\operatorname{Res}_{\Delta_{2}, \alpha}\left(V_{1} \boxtimes 1\right)$ is trivially admissible with respect to $\mathbf{B}_{*, \alpha}$ for each $\alpha \in \Delta_{2}$, as then is $\operatorname{Res}_{\Delta_{2}, \alpha}\left(\left(V_{1} \boxtimes 1\right) \otimes V\right)$. Since admissibility passes to subobjects, we deduce that $\operatorname{Res}_{\Delta_{2}, \alpha}(W)$ is admissible with respect to $\mathbf{B}_{*, \alpha}$ for each $\alpha \in \Delta_{2}$.

Applying the induction hypothesis, we deduce that $V_{1} \boxtimes V_{2}$ is admissible with respect to the uncompleted tensor product \mathbf{B} of the rings $\mathbf{B}_{*, \alpha}$ over \mathbb{Q}_{p}. Since this property passes to quotients, the same holds for V.

3. Multivariate (φ, Γ)-modules

We recall briefly how the standard framework of (φ, Γ)-modules adapts to the multivariate context.

Definition 3.1. Let F be a field of the form $W\left(k_{0}\right)\left[p^{-1}\right]$ for some perfect field k_{0} of characteristic p. Let \mathbf{A}_{F} be the completion of $W\left(k_{0}\right)((\varpi))$ for the p-adic topology. Elements of \mathbf{A}_{F} are naturally represented as formal Laurent series $\sum_{i \in \mathbb{Z}} c_{i} \varpi^{i}$ with $c_{i} \in W\left(k_{0}\right)$. This ring admits a continuous action of the monoid $\mathbb{Z}_{p} \backslash\{0\}$ given by

$$
\gamma\left(\sum_{i \in \mathbb{Z}} c_{i} \varpi^{i}\right)=\sum_{i \in \mathbb{Z}} c_{i}\left((\varpi+1)^{\gamma(i)}-1\right) ;
$$

let φ denote the endomorphism given by the action of $p \in \mathbb{Z}_{p} \backslash\{0\}$.
Each finite étale algebra over F lifts uniquely to a finite étale extension of \mathbf{A}_{F} equipped with an extension of the action of $\mathbb{Z}_{p} \backslash\{0\}$ (need reference). Let \mathbf{A}_{K} denote the extension of \mathbf{A}_{F} corresponding to K; the group \mathbb{Z}_{p}^{\times}acts transitively on the connected components of \mathbf{A}_{K} with stabilizer Γ_{K}.

For each $\alpha \in \Delta$, let $\mathbf{A}_{K, \alpha}$ be a copy of \mathbf{A}_{K} with the variable ϖ replaced by ϖ_{α}, and let $\mathbf{A}_{K, \Delta}$ be the p-adic completion of the tensor product of the rings $\mathbf{A}_{K, \alpha}$ over \mathbb{Z}_{p}. This ring carries an action of the product of $\mathbb{Z}_{p} \backslash\{0\}$ indexed by Δ, which for uniformity we denote by $\left(\mathbb{Z}_{p} \backslash\{0\}\right)_{\Delta}$.

Put $\mathbf{B}_{K}:=\mathbf{A}_{K}\left[p^{-1}\right], \mathbf{B}_{K, \Delta}:=\mathbf{A}_{K, \Delta}\left[p^{-1}\right]$.
Theorem 3.2. Let \mathbf{A}_{Δ} denote the p-adic completion of $\bigcup_{K^{\prime} / K} \mathbf{A}_{K^{\prime}, \Delta}$ (where K^{\prime} runs over finite extensions of $K)$. Then for $T \in \boldsymbol{\operatorname { R e p }}_{\mathbb{Z}_{p}}\left(G_{K, \Delta}\right)$,

$$
D(T):=\left(T \otimes_{\mathbb{Z}_{p}} \mathbf{A}_{\Delta}\right)^{G_{K}}
$$

is a finite projective $\mathbf{A}_{K, \Delta}$-module of rank $\operatorname{rank}_{\mathbb{Z}_{p}}(T)$, which inherits an action of $\left(\mathbb{Z}_{p} \backslash\{0\}\right)_{\Delta}$ from the action on \mathbf{A}_{Δ}, and the natural map

$$
D(T) \otimes_{\mathbf{A}_{K}, \Delta} \mathbf{A}_{\Delta} \rightarrow T \otimes_{\mathbb{Z}_{p}} \mathbf{A}_{\Delta}
$$

is an isomorphism. (In particular, every T is admissible for the period ring \mathbf{A}_{Δ}.)
Proof. In the case $\Delta=\{\alpha\}$ this dates back to Fontaine. For the general case, apply [2, Theorem 1.1].

Corollary 3.3. Set $\mathbf{B}_{\Delta}:=\mathbf{A}_{\Delta}\left[p^{-1}\right]$. Then for $V \in \operatorname{Rep}_{\mathbb{Q}_{p}}\left(G_{K, \Delta}\right)$,

$$
D(V):=\left(V \otimes_{\mathbb{Q}_{p}} \mathbf{B}_{\Delta}\right)^{G_{K}}
$$

is a finite projective $\mathbf{B}_{K, \Delta}$-module of rank $\operatorname{dim}_{\mathbb{Q}_{p}}(V)$, which inherits an action of $\left(\mathbb{Z}_{p} \backslash\{0\}\right)_{\Delta}$ from the action on \mathbf{B}_{Δ}, and the natural map

$$
D(V) \otimes_{\mathbf{B}_{K}, \Delta} \mathbf{B}_{\Delta} \rightarrow V \otimes_{\mathbb{Q}_{p}} \mathbf{B}_{\Delta}
$$

is an isomorphism. (In particular, every V is admissible for the period ring \mathbf{B}_{Δ}.)
Proof. Since $G_{K, \Delta}$ is a compact group, its action on V must stabilize some lattice T. We may ths deduce the claim from Theorem 3.2.

Definition 3.4. Let $\mathbf{A}_{F, \Delta}^{r}$ be the subring of $\mathbf{A}_{F, \Delta}$ consisting of formal Laurent series which converge for $p^{-r} \leq\left|\varpi_{\alpha}\right|<1$. This ring is stable under the action of $\left(\mathbb{Z}_{p} \backslash\{0\}\right)_{\Delta}$ on $\mathbf{A}_{F, \Delta}$.

The pair $\left(\mathbf{A}_{F, \Delta}^{\dagger},(p)\right)$ is henselian, so we have a canonical identification of $\mathbf{A}_{K, \Delta}$ with $\mathbf{A}_{K, \Delta}^{\dagger} \otimes_{\mathbf{A}_{F, \Delta}} \mathbf{A}_{K, \Delta}$ for some finite étale $\mathbf{A}_{F, \Delta}^{\dagger}$-algebra $\mathbf{A}_{K, \Delta}^{\dagger}$ equipped with an extension of the action of $\left(\mathbb{Z}_{p} \backslash\{0\}\right)_{\Delta}$.

Put $\mathbf{B}_{K}^{\dagger}=\mathbf{A}_{K}^{\dagger}\left[p^{-1}\right], \mathbf{B}_{K, \Delta}^{\dagger}:=\mathbf{A}_{K, \Delta}^{\dagger}\left[p^{-1}\right]$.
Theorem 3.5. For $T \in \operatorname{Rep}_{\mathbb{Z}_{p}}\left(G_{K, \Delta}\right)$, there is a unique finite projective $\mathbf{A}_{K, \Delta}^{\dagger}$-submodule $D^{\dagger}(T)$ of $D(T)$ which is stable under the action of $\left(\mathbb{Z}_{p} \backslash\{0\}\right)_{\Delta}$ and for which the natural map

$$
D^{\dagger}(T) \otimes_{\mathbf{A}_{K, \Delta}^{\dagger}} \mathbf{A}_{K, \Delta} \rightarrow D(T)
$$

is an isomorphism.
Proof. For $\Delta=\{\alpha\}$, this is a formulation of the theorem of Cherbonnier-Colmez [3]. For the general case, apply [2, Theorem 1.1].

Corollary 3.6. For $V \in \operatorname{Rep}_{\mathbb{Q}_{p}}\left(G_{K, \Delta}\right)$, there is a unique finite projective $\mathbf{B}_{K, \Delta}^{\dagger}$-submodule $D^{\dagger}(V)$ of $D(V)$ which is stable under the action of $\left(\mathbb{Z}_{p} \backslash\{0\}\right)_{\Delta}$ and for which the natural map

$$
D^{\dagger}(V) \otimes_{\mathbf{B}_{K, \Delta}^{\dagger}} \mathbf{B}_{K, \Delta} \rightarrow D(V)
$$

is an isomorphism.
Proof. This again follows from Theorem 3.5 and the existence of stable lattices.
Remark 3.7. We sketch an alternate proof of Corollary 3.6 using only Corollary 3.3 and the Cherbonnier-Colmez theorem. This short-circuits some arguments from [2, §5] which adapt the approach of [4, §2] to the Cherbonnier-Colmez theorem. A similar approach can be used to recover Theorem 3.5.

We proceed by induction on $\# \Delta$, using Cherbonnier-Colmez for the base case. In the induction step, choose a partition $\Delta=\Delta_{1} \sqcup \Delta_{2}$ into nonempty subsets, then apply Lemma 2.2 to write V as a quotient of $V_{1} \boxtimes V_{2}$ for some $V_{i} \in \operatorname{Rep}_{\mathbb{Q}_{p}}\left(G_{K, \Delta_{i}}\right)$. By the induction hypothesis, $D^{\dagger}\left(V_{i}\right)$ is a finite projective $\mathbf{B}_{K, \Delta_{i}}^{\dagger}$-module and the natural map $D^{\dagger}\left(V_{i}\right) \otimes_{\mathbf{B}_{K, \Delta i}^{\dagger}} \mathbf{B}_{K, \Delta} \rightarrow D\left(V_{i}\right)$ is an isomorphism. This implies at once that $D^{\dagger}(V) \otimes_{\mathbf{B}_{K, \Delta}^{\dagger}} \mathbf{B}_{K, \Delta} \rightarrow D(V)$ is surjective. By repeating the argument with V replaced by the kernel of $V_{1} \boxtimes V_{2} \rightarrow V$, we may then apply the five lemma to deduce that in fact $D^{\dagger}(V) \otimes_{\mathbf{B}_{K, \Delta}^{\dagger}} \mathbf{B}_{K, \Delta} \rightarrow D(V)$ is also injective, and hence an isomorphism. Since $\mathbf{A}_{K, \Delta}^{\dagger} \rightarrow \mathbf{A}_{K, \Delta}$ is faithfully flat (being a completion with respect to an ideal in the Jacobson radical), so is $\mathbf{B}_{K, \Delta}^{\dagger} \rightarrow \mathbf{B}_{K, \Delta}$; we may thus conclude that $D^{\dagger}(V)$ is a finite projective $\mathbf{B}_{K, \Delta}^{\dagger}$-module.

4. Multivariate (φ, Γ)-modules and Berger's construction

We follow [1, §5].
Definition 4.1. Let $\mathbf{B}_{\mathrm{rig}, F, \Delta}^{r}$ denote the ring of rigid analytic functions on the product of the annuli $p^{-r} \leq\left|\varpi_{\alpha}\right|<1$ over $\alpha \in \Delta$. Put $\mathbf{B}_{\mathrm{rig}, F, \Delta}^{\dagger}:=\bigcup_{r>0} \mathbf{B}_{\mathrm{rig}, F, \Delta}^{r}$; when $\Delta=\{\varpi\}$ this is
commonly called the Robba ring over F in the variable ϖ_{α}. Set $\mathbf{B}_{\mathrm{rig}, K, \Delta}^{\dagger}:=\mathbf{B}_{\mathrm{rig}, F, \Delta}^{\dagger} \otimes_{\mathbf{A}_{F, \Delta}^{\dagger}}$ $\mathbf{A}_{K, \Delta}^{\dagger}$.

For $\alpha \in \Delta$, define

$$
t_{\alpha}=\log \left(1+\varpi_{\alpha}\right) \in \mathbf{B}_{\mathrm{rig}, F, \Delta}^{\dagger}
$$

it has the property that $\gamma\left(t_{\alpha}\right)=\gamma \cdot t_{\alpha}$ for $\gamma \in\left(\mathbb{Z}_{p} \backslash\{0\}\right)_{\alpha}$.
Definition 4.2. For $V \in \operatorname{Rep}_{\mathbb{Q}_{p}}\left(G_{K, \Delta}\right)$, define $D_{\text {rig }}^{\dagger}(V):=D^{\dagger}(V) \otimes_{\mathbf{B}_{K, \Delta}^{\dagger}} \mathbf{B}_{\text {rig }, K, \Delta}^{\dagger}$. Note that for any given V, we can fix $r>0$ so that $D_{\text {rig }}^{\dagger}(V)$ is the base extension of a finite projective $\mathbf{B}_{F, \Delta}^{r}$-module M on which $\Gamma_{K, \Delta}$ acts (but not φ_{α}).

The action of $\Gamma_{K, \Delta}$ on M then induces an action of its Lie algebra Lie $\Gamma_{K, \Delta}$ with logarithmic singularities at the zeroes of $\prod_{\alpha \in \Delta} t_{\alpha}$. For zeroes in the region $p^{-r} \leq\left|\varpi_{\alpha}\right|<1$ for r sufficiently small, the residue of the action of $\operatorname{Lie} \Gamma_{K, \alpha}$ will be the same on all components of the singular locus. Crucially, since Lie $\Gamma_{K, \Delta}$ is commutative, this residue will be defined over K.

Lemma 4.3. In Theorem 1.1, condition (d) implies condition (a).
Proof. Condition (d) implies that the residue of the action of Lie $\Gamma_{K, \alpha}$ is zero for every $\alpha \in \Delta$. From the last point of Definition 4.2, we see that this condition persists on passage from V to $\operatorname{Res}_{\Delta, \alpha}(V)$. This proves the claim.

5. Restriction for multivariate (φ, Γ)-modules

Definition 5.1. A $\left(\varphi_{\Delta}, \Gamma_{\Delta}\right)$-module over $\mathbf{B}_{\mathrm{rig}, K, \Delta}^{\dagger}$ is a finite projective module over this ring equipped with a semilinear action of $(\mathbb{Z} \backslash\{0\})_{\Delta}$ which is continuous for the LF (limit of Fréchet) topology on the base ring.

While we do not know how to define a restriction functor on Galois representations for not necessarily étale $\left(\varphi_{\Delta}, \Gamma_{\Delta}\right)$-modules, we can formulate an analogue of the conclusion of Lemma 2.2 as a conjecture.

Conjecture 5.2. For any partition $\Delta=\Delta_{1} \sqcup \Delta_{2}$, every $\left(\varphi_{\Delta}, \Gamma_{\Delta}\right)$-module over $\mathbf{B}_{\mathrm{rig}, K, \Delta}^{\dagger}$ is the quotient of some object in the essential image of \boxtimes.

Remark 5.3. It follows from [2, Theorem 1.1] that Conjecture 5.2 holds in the case of an étale $\left(\varphi_{\Delta}, \Gamma_{\Delta}\right)$-module. It is also possible to prove it for rank 1 modules and for de Rham objects; the latter uses the results of [5, §3] to obtain a form of Drinfeld's lemma for multivariate connections with partial Frobenius structures.

One subtlety inherent in Conjecture 5.2 is that the natural analogue for vector bundles on a product of Fargues-Fontaine curves is known to be false, even for bundles of rank 2. In particular, one cannot directly reduce to the étale case using slope filtrations. See [6] for further discussion.

References

[1] O. Brinon, B. Chiarellotto, and N. Mazzari, Multivariable de Rham representations, Sen theory and p-adic differential equations, arXiv:2111.11563v1 (2021).
[2] A. Carter, K.S. Kedlaya, and G. Zábrádi, Drinfeld's lemma for perfectoid spaces and overconvergence of multivariate (φ, Γ)-modules, Doc. Math. 26 (2021), 1329-1393.
[3] F. Cherbonnier and P. Colmez, Réprésentations p-adiques surconvergentes, Invent. Math. 133 (1998), 581-611.
[4] K.S. Kedlaya, New methods for (φ, Γ)-modules, Res. Math. Sci. 2 (2015) (Robert Coleman memorial issue).
[5] K.S. Kedlaya, Monodromy representations of p-adic differential equations in families, arXiv:2209.00593v1 (2022).
[6] K.S. Kedlaya, Vector bundles on products of Fargues-Fontaine curves, preprint.

