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Abstract. We rederive some results about F -isocrystals on perfect schemes by interpreting
these objects in terms of vector bundles on relative Fargues–Fontaine curves. This amounts
to the notion of “isoshtukas” introduced by Gleason–Ivanov, specifically isoshtukas for GLn

with no legs.

1. Introduction

Throughout, fix a prime number p. We associate to every perfect Fp-schemeX the category
of convergent F -isocrystals on X; when X = SpecR is affine this is simply the category of
finite projective modules over W (R)[p−1], where W denotes the functor of p-typical Witt
vectors, equipped with isomorphisms with their pullbacks by the Witt vector Frobenius
which must be respected by morphisms.

In connection with the study of crystalline cohomology for schemes of finite type over a
perfect field of characteristic p, the category of convergent F -isocrystals has been studied
classically by numerous authors. In recent years, a new link has emerged with the modern
perspective on p-adic Hodge theory provided by the development of perfectoid spaces and
relative Fargues–Fontaine curves. In particular, the convergent F -isocrystals on X of a given
rank n are given a new interpretation in the work of Gleason–Ivanov [6], as isoshtukas for
the group GLn with no legs.
The purpose of this paper is to rederive some of the basic properties of F -isocrystals from

the point of view of relative Fargues–Fontaine curves. As previously observed by Ivanov [8],
this process is greatly simplified by the use of descent for the arc-topology [1]; in particular,
most of the work is done in the case where X is the spectrum of a valuation ring which is
absolutely integrally closed (i.e., it has algebraically closed fraction field). The arguments in
that setting are naturally expressed in the language of vector bundles on Fargues–Fontaine
curves [4].

It would be natural to transfer further results from the theory of F -isocrystals on smooth
schemes over a perfect field, such as Drinfeld’s lemma [17, 20], to perfect schemes and
then further to isoshtukas (for other groups and adding legs). However, some caution is
required: for example, in the smooth setting the restriction functor induced by an open
immersion with dense image is fully faithful [15, Theorem 5.3], but this fails for perfect
schemes (Example 8.4). See Theorem 10.17 for a sample positive result, an adaptation of
the relative Dieudonné–Manin decomposition from smooth schemes [17, Theorem 7.3] to
perfect schemes.
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2. F -isocrystals over perfect rings

Definition 2.1. For R a perfect Fp-algebra, let W (R) be the ring of p-typical Witt vec-
tors over R; let φ : W (R) → W (R) be the functorial lift of absolute Frobenius. By an
F -isocrystal on R, we mean a finite projective W (R)[p−1]-module M equipped with an iso-
morphism φ∗M ∼= M ; we interpret the latter as a semilinear action of φ on M . These form
a tensor category F-Isoc(R) in which the morphisms are φ-equivariant W (R)[p−1]-module
morphisms.

The categories F-Isoc(R) form a stack for the Zariski topology, the étale topology, and
even the arc-topology of Bhatt–Mathew [1]; the latter statement is a consequence of arc-
descent for finite projective W (R)[p−1]-modules [8, Proposition 5.9]. In particular, we im-
mediately also obtain a category F-Isoc(X) for every perfect Fp-scheme X in such a way
that F-Isoc(SpecR) is canonically identified with F-Isoc(R).

Definition 2.2. For M ∈ F-Isoc(R), define

H0
φ(M) = ker(φ− 1,M), H1

φ(M) = coker(φ− 1,M);

we then have canonical isomorphisms

HomF-Isoc(M1,M2) ∼= H0
φ(M

∨
1 ⊗M2), Ext1F-Isoc(M1,M2) ∼= H1

φ(M
∨
1 ⊗M2).

Definition 2.3. For s ∈ Q with denominator d, let O(s) denote the isocrystal (over any
base) which is free on the generators e1, . . . , ed and satisfies

φ(e1) = e2, . . . , φ(ed−1) = ed, φ(ed) = p−dse1.

Note the sign convention, which is consistent with the literature on Fargues–Fontaine curves
but not with the literature on isocrystals.

Lemma 2.4 (Dieudonné–Manin decomposition). For k an algebraically closed field, every
object of F-Isoc(k) decomposes as a direct sum in which each term is isomorphic to O(s) for
some s ∈ Q. This decomposition is not unique, but the associated isotypical decomposition
is unique.

Proof. References to follow. This can also be deduced via arc-descent from the classifi-
cation of vector bundles on Fargues–Fontaine curves (Lemma 4.5); see the proof of [11,
Theorem 4.5.7(a)]. □

Definition 2.5. For R an algebraically closed field, we define the Newton polygon of M ∈
F-Isoc(R) to be the graph of the convex piecewise linear function on [0, rank(M)] with the
property that for each s ∈ Q, the total width (or multiplicity) of the segment of the graph
with slope s equals the rank of the isotypical summand of M corresponding to O(s). By the
uniqueness aspect of Lemma 2.4, this definition is invariant under base change.

For X a perfect Fp-scheme, using the previous paragraph we may associate a Newton
polygon to an object of F-Isoc(X) and a point of X. We say that the object is isoclinic if all
of the slopes of its Newton polygon equal a single value, and étale or unit-root if moreover
that common value is 0.

Remark 2.6. The notion of a convergent F -isocrystal is more usually associated to a smooth
scheme over a perfect field of characteristic p, where it manifests as a vector bundle with
connection on a certain rigid analytic space. In particular, the presence of the connection
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ensures that the resulting category is abelian. This is not true over perfect schemes; see
Example 8.1.

3. Geometry of Witt vectors

We recall some key points about the geometry of Fargues–Fontaine curves and some closely
related spaces.

Definition 3.1. For the remainder of the paper, let K be an algebraically closed nonar-
chimedean field of characteristic p. Let oK be the valuation ring of K. Let k be the residue
field of oK . Fix a pseudouniformizer ϖ in oK . Let η and z denote the generic point and
closed point of Spec oK , respectively.

Definition 3.2. The ring W (oK) is complete with respect to the adic topology defined by
the ideal (p, [ϖ]) (which does not depend on the choice of ϖ). Following Huber, we may
construct its associated adic spectrum Spa(W (oK),W (oK)), whose points are equivalence
classes of continuous valuations on W (oK). By construction, elements of W (oK) define
global sections on the adic spectrum, so there is a natural morphism of locally ringed spaces
Spa(W (oK),W (oK)) → SpecW (oK).

The space Spa(W (oK),W (oK)) contains a single point whose residue field is trivially
valued, namely the point corresponding to the trivial valuation on k. Removing this point
leaves the analytic locus of Spa(W (oK),W (oK)), denoted YK . Let xp, xϖ be the points of
YK cut out by p and by [ϖ], respectively.

The geometry of YK is developed carefully in [4]; we summarize the key points here.

• The space YK is quasicompact: it can be covered by two affinoid subspaces.
• The space YK \{xϖ} is covered by the adic spectra of principal ideal domains. More-
over, the latter are strongly noetherian in the sense that every Tate algebra over one
of them is noetherian [13]; hence YK \ {xϖ} is locally noetherian.

• The space YK is a genuine adic space (that is, the structure presheaf is a sheaf).
Away from xϖ this follows from the locally noetherian property (reference to follow);
at xϖ we may use the fact that YK is sousperfectoid in the sense of [7].

• The natural map W (oK) → Γ(YK ,OYK
) is an isomorphism. See Definition 3.3.

Definition 3.3. Define the ring of overconvergent Witt vectors overK as the stalkW †(K) :=
OYK ,xp . It is p-adically separated, so we may view it naturally as a dense subring of W (K).
Although we will not need this, we note that the image ofW †(K) inW (K) can be described

concretely: it consists of those f =
∑∞

n=0 p
n[fn] ∈ W (K) for which for some positive integer

a, fnϖ
an ∈ oK for all n > 0. See [12] for an algebraic development of the properties of

W †(K) from this point of view.

Lemma 3.4. Let U be an affinoid subspace of YK \ {xp}. For each affinoid subspace V of
U \{xϖ}, equip O(V ) with the absolute value normalized with |ϖ| = p−1. Then the restriction
map O(U) → O(U \ {xϖ}) identifies O(U) with the ring of bounded analytic functions on
U \ {xϖ}.

Proof. This can be deduced from either the log-convexity of Gauss norms [19, Lemma 4.2.3]
or, using the fact that base extension of YK \ {xp} from Qp to a perfectoid field gives a
perfectoid space, the perfectoid Riemann extension theorem [21, Proposition 2.3.2]. □
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Definition 3.5. Let U be an open subspace of YK . By ameromorphic vector bundle on U , we
will mean an object of the isogeny category of vector bundles on U , in which the morphisms
are allowed to have poles at xp (but nowhere else). If xp /∈ U then this is just the same as
the category of vector bundles on U , so we will usually omit the word “meromorphic”.

Lemma 3.6. The pullback functor from the category of finite free W (oK)[p
−1]-modules to

the category of meromorphic vector bundles on YK is an equivalence.

Proof. This follows from the corresponding statement for ordinary vector bundles, for which
see [16, Theorem 2.7]. □

Remark 3.7. An important subtlety in [16, Theorem 2.7] is that the pullback functor is
not an exact equivalence, but Lemma 3.6 is an exact equivalence because we are inverting
p. On the other hand, see Remark 4.11 for a similar but distinct issue.

Remark 3.8. The ring W (oK) is commonly denoted Ainf(K), but we will not use this
notation here.

4. Equivariant vector bundles and Fargues–Fontaine curves

We next consider categories of φ-equivariant (meromorphic) vector bundles on various
subspaces of YK .

Definition 4.1. Let x̂p denote the completion of YK along xp. The action of φ on W (oK)
induces an action on YK fixing only xp and xϖ; more precisely, xϖ is an attracting fixed point
of φ whereas xp is an attracting fixed point of φ−1. Even more precisely, in the following
diagram, every space on or above the diagonal inherits an action of φ from YK , while every
space on or below the diagonal inherits an action of φ−1 from YK .

(4.2) xϖ

��
YK \ {xp}

��

YK \ {xp, xϖ}oo

��
YK YK \ {xϖ}oo x̂p

oo

The quotient XK := (YK \ {xp, xϖ})/φ is the (adic) Fargues–Fontaine curve associated to
K (with coefficients in Qp).

Definition 4.3. For each space U in (4.2), we may consider the category of φ-equivariant
meromorphic vector bundles on U , which we denote by F-Vec(U). In particular, we can
interpret the bundles O(s) as objects of F-Vec(U).

We may interpret the category F-Vec(U) as follows.

• For U = YK , we obtain the category F-Isoc(oK) thanks to Lemma 3.6.
• For U = YK\{xϖ}, we obtain the category F-Isoc†(K) of finite projectiveW †(K)[p−1]-
modules equipped with isomorphisms with their φ-pullbacks (i.e., overconvergent F -
isocrystals on K).

• For U = YK \ {xp, xϖ}, we obtain the category Vec(XK) of vector bundles on XK ,
which are classified by Lemma 4.5.
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• For U = YK \ {xp}, we obtain an as yet unidentified category admitting a restric-
tion functor to vector bundles on XK . We will show below that this is in fact an
equivalence (Proposition 4.8).

• For U = xϖ, we recover the category F-Isoc(k).
• For U = x̂p, we recover the category F-Isoc(K), to which Lemma 2.4 applies.

In particular, once Proposition 4.8 is available, we obtain geometric restriction functors
corresponding to the arrows in the following 2-commutative diagram:

(4.4) F-Isoc(k)

F-Vec(YK \ {xp}) //

OO

Vec(XK)

F-Isoc(oK) //

OO

F-Isoc†(K) //

OO

F-Isoc(K).

Lemma 4.5. Every object of F-Vec(YK \ {xp, xϖ}) splits as a direct sum in which each
term is isomorphic to O(s) for some s ∈ Q. The associated isotypical decomposition is
not necessarily unique, but the associated slope filtration is unique and coincides with the
Harder–Narasimhan (HN) filtration. In particular, the first step of the filtration is the max-
imal subbundle of maximal slope.

Proof. This is the classification of vector bundles on Fargues–Fontaine curves, which in this
form first appears in [4, §8]. For further historical background, see [14, Theorem 3.6.13] and
associated remarks. □

Remark 4.6. The functor F-Isoc†(K) → F-Isoc(K) is essentially surjective by Lemma 2.4,
but not fully faithful (see however Corollary 5.3 below). For instance, take M to be free of

rank 2 with the action of Frobenius on some basis given by

(
p x
0 1

)
for some x ∈ W †(K)[p−1].

By construction, there is an exact sequence

0 → M †
1 → M † → M †

2 → 0

in which M †
1 and M †

2 are objects of rank 1, and this sequence splits in F-Isoc(K) by
Lemma 2.4, but need not split in F-Isoc†(K). Namely, this sequence represents a class

in H1
φ(M

†
1), which explicitly is the cokernel of pφ− 1 on W †(K)[p−1], and this cokernel can

be shown to be nonzero in general.
One particularly tractable example is when K is the field k((tQ)) of Mal’cev–Neumann

series over an algebraically closed field k of characteristic p, in which case we can write x

as a formal sum
∑

i∈Q cit
i and for any j > 0, the map x 7→

∑
n∈Z p

−ncp
−n

jpn is a well-defined
functional on the cokernel.

Lemma 4.7. For E ∈ F-Vec(YK \{xp}), the natural map E(YK \{xp})φ → E(YK \{xp, xϖ})φ
is an isomorphism.

Proof. Let U be an affinoid neighborhood of xϖ in YK on which E admits a basis e1, . . . , en;
it will suffice to check that E(U \ {xp})φ = E(U \ {xp, xϖ})φ. Define the n × n matrix A
over O(YK \ {xp}) by φ(ej) =

∑
i Aijei. For v ∈ E(U \ {xp, xϖ})φ, we can write v =

∑
i ciei
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for some column vector c over O(U \ {xp, xϖ}) and then compute that φ(c) = A−1c. By
pulling back repeatedly along φ, we see that the vector c has bounded entries in the sense
of Lemma 3.4, so these entries extend across xϖ. □

Proposition 4.8. The functor F-Vec(YK \{xp}) → F-Vec(YK \{xp, xϖ}) is an equivalence
of categories. In particular, both categories are equivalent to Vec(XK).

Proof. Full faithfulness follows from Lemma 4.7 by taking internal Homs. Essential surjec-
tivity follows from Lemma 4.5 because O(s) can be extended over xϖ. □

Corollary 4.9. The functor F-Isoc(oK) → F-Isoc†(K) is a left exact equivalence of cate-
gories (but not right exact; see Example 8.1).

Proof. From the interpretations given in Definition 4.3, we obtain a chain of equivalences

F-Isoc(oK) → F-Vec(YK)

→ F-Vec(YK \ {xϖ})×F-Vec(YK\{xp,xϖ}) F-Vec(YK \ {xp})
→ F-Isoc†(K)×Vec(XK) F-Vec(YK \ {xp}).

We may thus deduce the equivalence from Proposition 4.8. □

Lemma 4.10. Let M → N be an inclusion in F-Isoc(oK) whose restriction to F-Vec(YK \
{xϖ}) splits. Then M/N is a finite projective W (oK)[p

−1]-module, and hence an object of
F-Isoc(oK).

Proof. Let F → E be the inclusion in F-Vec(YK \ {xϖ}) corresponding to M → N . The
splitting ensures that E/F is itself a vector bundle and hence an object of F-Vec(YK \{xϖ}).
We thus deduce the claim from Proposition 4.8 as in Corollary 4.9. □

Remark 4.11. By Corollary 4.9, F-Isoc(oK) is an abelian category. However, this does
not itself imply that the formation of kernels and cokernels in F-Isoc(oK) is compatible
with the forgetful functor to W (oK)[p

−1]-modules. In fact this is only true for kernels; see
Example 8.1.

5. The reverse slope filtration

We next introduce another filtration, this time on objects of F-Isoc†(K).

Lemma 5.1. Let M † be a finite projective W †(K)-module equipped with a semilinear action
of φ−d for some positive integer d. Equip MK := M † ⊗W †(K) W (K) with the induced action

of φ−d. Then the natural map coker(φ−d − 1,M †) → coker(φ−d − 1,MK) is surjective.

Proof. Choose a basis e1, . . . , en of M †. Given an element v of MK representing a class in
coker(φ−d − 1,MK), write v =

∑
i ciei with ci ∈ W (K). We may in turn write each ci

as a convergent sum
∑∞

j=0 p
jcij where each cij belongs to W †(K); we may then write v as∑∞

j=0 p
jvj with vj =

∑
i cijei. For any sequence of nonnegative integers {mj}∞j=0, the sum

w :=
∑∞

j=0 p
jφ−mjd(vj) represents the same class as v in coker(φ−d−1,MK). By taking the

mj sufficiently large, we may ensure that w ∈ M †. □

Lemma 5.2. Suppose that M † ∈ F-Isoc†(K) restricts to MK ∈ F-Isoc(K) and has smallest
Newton slope s = r

d
in lowest terms. Then every v ∈ MK with φd(v) = p−rv belongs to M †.
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Proof. The slope condition means that we can choose a basis e1, . . . , en of M † on which
p−rφ−d acts via a matrix A over W †(K) whose reduction modulo p has rank equal to the
Qp-dimension of the p−rφ−d-fixed subspace ofMK . Write v = v0+pv1 with v0 in theW †(K)-
span of e1, . . . , en; then by Lemma 5.1, we can write (p−rφ−d − 1)(v1) = (p−rφ−d − 1)(v′

1)
for some v′

1 in the W †(K)-span of e1, . . . , en. Put v
′ = v0 + pv′

1 ∈ M †; then

(p−rφ−d − 1)(v′) = (p−rφ−d − 1)(v0) + p(p−rφ−d − 1)(v′
1)

= (φ−1 − 1)(v0) + p(p−rφ−d − 1)(v1)

= (φ−1 − 1)(v) = 0.

This means that the p−rφ−d-fixed subspace of MK contains a Qp-subspace of the same
dimension generated by elements of M †. This proves the claim. □

Corollary 5.3. For each s ∈ Q, the functor F-Isoc†(K) → F-Isoc(K) induces an equiva-
lence of categories of objects which are isoclinic of slope s.

Proof. Full faithfulness follows from Lemma 5.2. Essential surjectivity follows from Lemma 2.4.
□

We recover [2, Proposition 5.5].

Corollary 5.4. For M † ∈ F-Isoc†(K), there exists a unique filtration

0 = M †
0 ⊂ · · · ⊂ M †

l = M †

with the property that each successive quotient M †
i /M

†
i−1 is isoclinic (as an object of F-Isoc(K))

of some slope si, and s1 < · · · < sl (this being the reverse of the HN filtration).

Proof. This follows by repeated application of Lemma 5.2. □

Corollary 5.5. For M † ∈ F-Isoc†(K) restricting to MK ∈ F-Isoc(K), the natural map
H1

φ(M
†) → H1

φ(MK) is surjective.

Proof. Using Corollary 5.4 and the five lemma, we may reduce to the case where M † is
isoclinic of some slope s. If s ̸= 0, then H1

φ(MK) = 0 and there is nothing to check. If s = 0,

then M † admits a basis on which φ−1 acts via an invertible matrix over W †(K); we may
thus apply Lemma 5.1 to conclude. □

Corollary 5.6. For M ∈ F-Isoc(oK), the Newton polygon of M at z lies on or above the
Newton polygon of M at η, with the same endpoint.

Proof. By Proposition 4.8, the Newton polygon of M at z agrees with the HN polygon of
the restriction of M to Vec(XK). The claim thus follows by comparing the HN filtration of
M in Vec(XK) with the filtration given by Corollary 5.4. □

The following is a form of [2, Corollary 5.7].

Corollary 5.7. For M † ∈ F-Isoc†(K) restricting to MK ∈ F-Isoc(K) and v ∈ H0
φ(MK),

let N † ∈ F-Isoc†(K) be the smallest subobject of M † such that v belongs to the restriction
NK ∈ F-Isoc(K). Then the Newton polygon of N † has one slope equal to 0 and the others
all negative.
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Proof. We may assume that N † = M †. Set notation as in Corollary 5.4 and let Mi,K ∈
F-Isoc(K) be the restriction of M †

i . Since N † = M †, v /∈ Ml−1,K and so sl = 0. By

Corollary 5.3, the image of v in Ml,K/Ml−1,K is the restriction of a subobject of M †
l /M

†
l−1;

since N † = M †, this is only possible if rank(M †
l /M

†
l−1) = 1. □

Remark 5.8. With notation as in Corollary 5.7, suppose that M † = M †∨
1 ⊗M †

2 . For each

µ ∈ Q, for i ∈ {1, 2}, let P †
i,µ be the step of the filtration of M †

i provided by Corollary 5.4

with the property that every slope of P †
i,µ is ≤ µ whereas every slope of M †

i /P
†
i,µ is > µ.

Then the submodule N † is contained in the image of
⊕

µ∈Q P †∨
1,µ ⊗ P †

2,µ in M †.

6. Extending the slope filtration

Lemma 6.1. For all s > 0, the map H1
φ(YK \ {xϖ},O(s)) → H1

φ(YK \ {xp, xϖ},O(s)) is
injective.

Proof. We follow [11, Proposition 3.3.7(b1)]. Write s = r
d
in lowest terms; then the claim is

equivalent to showing that

coker(1− prφd, H0(YK \ {xϖ}),O) → coker(1− prφd, H0(YK \ {xp, xϖ}),O)

is surjective. This follows by observing that

H0(YK \ {xϖ},O) + [ϖ]H0(YK \ {xp},O) → H0(YK \ {xp, xϖ},O)

is surjective, 1 − prφd acts on [ϖ]H0(YK \ {xp},O), and the latter map admits a section
given by

x 7→
∞∑
i=0

pirφid(x).

This proves the claim. □

Proposition 6.2. Suppose that (r, s) ∈ Z × Z is a vertex of the Newton polygon of M ∈
F-Isoc(oK) at both η and z. Then M splits uniquely as M1 ⊕ M2 in such a way that the
right endpoint of the Newton polygon of M2 at every point of X equals (r, s).

Proof. In light of Lemma 3.6, this can be deduced using results of [9] (again keeping in mind
the discrepancy in sign conventions): namely, we obtain (a) from [9, Theorem 2.3.1] and
(b) from [9, Theorem 2.4.2, Theorem 2.5.1]. We instead give a self-contained proof in our
present setup.

LetM † ∈ F-Isoc†(K) be the restriction ofM . By Corollary 5.4, we have an exact sequence

0 → M †
2 → M † → M †/M †

2 → 0

where the right endpoint of the Newton polygon of M †
2 equals (r, s). We may then restrict

M †
2 to Vec(XK), apply Proposition 4.8 to promote to F-Vec(YK \ {xp}), and glue with M †

2

to obtain M2 ∈ F-Isoc(oK) of the desired form.
Let

0 → E2 → E → E/E2 → 0

be the corresponding exact sequence in F-Vec(YK \ {xϖ}). The condition on (r, s) ensures
that E2 → E remains saturated when this morphism is extended across xϖ; consequently,
the sequence remains exact when taking global sections. That is, M/M2 ∈ F-Isoc(oK).
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Meanwhile, by Lemma 4.5 and Proposition 4.8, in F-Vec(YK \{xp}) we also have an exact
sequence

0 → E1 → E → E/E1 → 0

where the right endpoint of the HN polygon of E/E1 equals (r, s). Consequently, the surjec-
tion M → M/M2 in F-Isoc(oK) admits a splitting in F-Vec(YK \ {xp}).
It remains to show that this splitting extends across xp. For this, we may check the claim

after replacing M with an exterior power so as to reduce to the case where rank E1 = 1. We
may then restrict to YK \ {xϖ}, filter as per Corollary 5.4, and repeatedly apply Lemma 6.1
to conclude. □

Definition 6.3. We say that an object M of F-Isoc(oK) has constant Newton polygon if
the Newton polygons of M at η and z coincide. Note that this does not imply that M is
isoclinic.

Corollary 6.4. The restriction functor from objects to F-Isoc(oK) with constant Newton
polygon to objects of F-Isoc(K) is an equivalence. In particular, by Lemma 2.4, every object
in either category splits uniquely as a direct sum of isoclinic objects.

Proof. Essential surjectivity follows from Lemma 2.4, so it suffices to check full faithfulness.
It suffices to check that for M ∈ F-Isoc(oK) with the same Newton polygons at η and z, the
natural map H0

φ(M) → H0
φ(M

†) is an isomorphism. By Proposition 6.2, this further reduces
to the case where M is isoclinic of some slope s; in fact both spaces are zero unless s = 0,
in which case we may apply Corollary 5.3. □

7. Extension of morphisms

We now follow the approach of [2] to give a criterion for descending morphisms from
F-Isoc(K) to F-Isoc(oK).

Proposition 7.1. Choose M ∈ F-Isoc(oK) restricting to M † ∈ F-Isoc†(K) and MK ∈
F-Isoc(K). Choose v ∈ H0

φ(MK) and define N † as in Corollary 5.7. Then the following are
equivalent.

(a) We have v ∈ H0
φ(M).

(b) We have v ∈ H0
φ(M

†).

(c) The unique object N ∈ F-Isoc(oK) restricting to N † ∈ F-Isoc†(K) (Corollary 4.9)
has the property that 0 occurs as a slope of M at z.

(d) The exact sequence

(7.2) 0 → N †
0 → N † → O → 0

provided by Corollary 5.4 and Corollary 5.7 splits in F-Isoc†(K).

Proof. The equivalence of (a) and (b) is given by Corollary 4.9. If (a) or (b) holds, then
rank(N †) = 1 and so (c) is evident.

Let

0 → E0 → E → O → 0

be the exact sequence in F-Vec(YK \ {xϖ}) corresponding to (7.2). By Corollary 4.9 and
Corollary 5.6, the HN polygon of E0 also has all slopes negative.
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Now suppose that (c) holds. Then the map E → O is split canonically by the HN filtration
of E over YK \ {xp, xϖ}, and hence over YK \ {xp} by Lemma 4.7. By this plus Lemma 4.10,
(7.2) is the restriction of a sequence

0 → N0 → N → O → 0

in F-Isoc(oK); by Corollary 4.9, the canonical splitting of (7.2) also promotes to F-Isoc(oK),
so we have N ∼= N0 ⊕O in F-Isoc(oK), yielding (d).

Finally, suppose that (d) holds. Then the image of v under the projection N †
0 → N0,K

must vanish because 0 does not occur as a slope of N0,K over η, so v belongs to the other
summand. By Corollary 6.4, we deduce (b). □

8. Counterexamples

We describe some counterexamples that limit our ability to prove stronger results than
what we have already described.

Example 8.1. Choose M ∈ F-Isoc(oK) of rank 2 with the action of φ on some basis given

by

(
0 1
p−1 [ϖ]

)
. Then the Newton polygon of M at η has slopes 0, 1 whereas the Newton

polygon at z has slopes 1/2, 1/2.
Let M † ∈ F-Isoc†(K) be the restriction of M . By Corollary 5.4, M † admits a submodule

N † of rank 1 and slope 0, which by Corollary 5.3 and Lemma 2.4 is isomorphic to O; by the
same token, M †/O is isomorphic to O(1). We thus have an exact sequence

(8.2) 0 → O → M † → O(1) → 0

which by Corollary 4.9 is the restriction of a sequence

(8.3) 0 → O → M → O(1) 99K 0.

It will follow from that the latter sequence is exact at the left, but it cannot be exact as the
right as this would contradict the computation of the Newton polygon at z. More concretely,
the map O → M restricts to zero at xϖ, so its cokernel is not projective.

A concrete consequence of this is that the category F-Isoc(oK) is abelian (because it is
equivalent to F-Isoc†(K)), but the formation of kernel and cokernels does not commute with
the forgetful functor to W (oK)[p

−1]-modules.

Example 8.4. With notation as in Example 8.1, let MK ∈ F-Isoc(K) be the restriction
of M . By Lemma 2.4, there exists a nonzero morphism O(1) → MK , but this morphism
does not lift to F-Isoc(oK) or F-Isoc

†(K). Otherwise, the sequence (8.2) would split, which
by Lemma 4.10 would yield a splitting of (8.3). In other words, the map H0

φ(M
†(−1)) →

H0
φ(MK(−1)) is not surjective.

Example 8.5. With notation as in Example 8.1, put N := O⊕O(1) ∈ F-Isoc(oK) and let
NK ∈ F-Isoc(oK) be the restriction of N . Then Example 8.1 and Example 8.4 together yield
an isomorphism MK

∼= NK which does not come from an isomorphism M ∼= N . Similarly,
there exist automorphisms of MK , and idempotent endomorphisms of MK , which do not
preserve M .

By the same token, the sequence (8.2) is not split in F-Isoc(oK) or F-Isoc†(K), but
it becomes split in F-Isoc(K). That is, for N := O(−1) ∈ F-Isoc(oK) restricting to

10



N † ∈ F-Isoc†(K) and NK ∈ F-Isoc(K), the map H1
φ(N) = H1

φ(N
†) → H1

φ(NK) is not
injective.

Remark 8.6. Choose M0 ∈ F-Isoc(oK) of rank 6 whose Newton polygon at η has slopes
0(×2), 1

2
(×2), 1(×2) and whose Newton polygon at z has slopes 1

3
(×3), 2

3
(×3). For example,

there exists an abelian scheme A over oK whose crystalline Dieudonné module has this form.
Now putM = M0(−1

2
). Then the Newton polygon ofM at η has slopes−1

2
(×4), 0(×4), 1

2
(×4)

while the Newton polygon at z has slopes −1
6
(×6), 1

6
(×6).

By Lemma 2.4, we can find a nonzero v ∈ H0
φ(MK). Let M † ∈ F-Isoc†(K) be the

restriction of M and define N † ∈ F-Isoc†(K) as in Corollary 5.7. Then the Newton polygon
ofN † has the slope 0 with multiplicity 1 and the slope−1

2
with some multiplicity in {0, . . . , 4};

in particular, 1 ≤ rank(N †) ≤ 5.
By Corollary 4.9, N † → M † descends to an inclusion N → M in F-Isoc(oK), but we

cannot have N/M ∈ F-Isoc(oK) because the restriction of M to F-Isoc(k) has no subobject
with rank in {1, . . . , 5}.

9. Global consequences

We next translate some of our preceding results into global statements using arc-descent.
The key geometric tool is the following lemma.

Lemma 9.1. Every affine scheme admits an arc-covering of the form Spec
∏

i∈I Ri where
each Ri is a complete height-1 AIC valuation ring.

Proof. We follow the proof of [1, Proposition 3.30]. Let SpecR be an affine scheme. We are
looking for a homomorphism R →

∏
i∈I Ri, in which each Ri is a complete height-1 valuation

ring, such that for every homomorphism R → V to a valuation ring of height ≤ 1, there
exists a valuation ring V ′ containing V such that R → V → V ′ factors through

∏
i∈I Ri. By

[1, Lemma 3.29], we can choose a set S of morphisms R → W to AIC valuation rings such
that any morphism R → V as above factors through some W . Let I be the subset of S
consisting of morphisms R → W in which W has height ≤ 1. For each i = (R → W ) ∈ I, if
W is of height 1, let Ri be the completion of W ; otherwise, let Ri be a completed algebraic
closure of W ((t)).
We claim that R →

∏
i Ri has the desired effect. To see this, start with any morphism

R → V as above. By construction, there is an index i = (R → W ) ∈ I such that R → V
factors through W . If V is of height 1, then the completion V ′ of V has the property that
R → V ′ factors through Ri. Otherwise, let V ′ be a completed algebraic closure of V ((t));
then R → V ′ factors through Ri via a map sending t to t. □

Theorem 9.2. For X a perfect Fp-scheme and M ∈ F-Isoc(X), the function taking x ∈ X
to the Newton polygon of M at x is upper semicontinuous. Moreover, each level set is a
locally closed subspace whose Zariski closure is locally the zero set of a finitely generated
ideal.

Proof. We may assume at once that X = SpecR is affine. In this case, we may deduce
the claim from [9, Theorem 2.3.1] provided that the underlying module of M is free. By
Lemma 3.6, the latter holds locally on X, which suffices. □

Remark 9.3. Using Proposition 6.2, we can recover a weaker form of Proposition 9.2: the
Newton polygon increases under specialization.
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Theorem 9.4. Let X be a perfect Fp-scheme. Suppose that M ∈ F-Isoc(X) has the property
that some point (r, s) ∈ Z×Z occurs as a vertex of the Newton polygon of M at every point
of X. Then M splits uniquely as M1 ⊕ M2 in such a way that the right endpoint of the
Newton polygon of M2 at every point of X equals (r, s).

Proof. By arc-descent plus Lemma 9.1, we may reduce to the case where X = SpecR and
R =

∏
i∈I Ri is a product of complete height-1 AIC valuation rings. The claim then reduces

immediately to the case R = oK . Following [17, Lemma 6.9], this can again be deduced from
[9, Theorem 2.4.2] (for the filtration) and [9, Theorem 2.5.1] (for the splitting); alternatively,
we may apply Proposition 6.2(b). □

Remark 9.5. Let U → X be an open immersion of perfect Fp-schemes with dense image.
On account of Example 8.4, we cannot show that the restriction functor F-Isoc(X) →
F-Isoc(U) is fully faithful.

This has a consequence for replacing smooth schemes over a perfect field with perfect
Fp-schemes in the analogue of Drinfeld’s lemma for isocrystals [17]: some arguments must
be modified, notably the proof of the relative Dieudonné–Manin decomposition [17, Theo-
rem 7.3] (for which see Theorem 10.17) and numerous arguments in [17, §10] (which we do
not treat here).

10. Relative Dieudonné–Manin

We give an analogue for perfect schemes of the relative Dieudonné–Manin decomposition
stated in [17, Theorem 7.3] for smooth schemes. To simplify notation, we only treat the case
of two-term products; this is sufficient to recover the corresponding results for longer (finite)
products.

Definition 10.1. Let X1 = SpecR1, X2 = SpecR2 be perfect affine Fp-schemes; put X :=
X1 ×X2 = SpecR for R := R1 ⊗Fp R2; and let φ1, φ2 : X → X be the morphisms induced
by absolute Frobenius on X1 and X2, respectively. We then have φ1 ◦φ2 = φ2 ◦φ1 = φ (the
absolute Frobenius on X).

By a Φ-isocrystal on X, we mean a finite projective W (R)[p−1]-module equipped with
isomorphisms φ∗

1M
∼= M , φ∗

2M
∼= M which “commute” in the sense that composing them

both ways yields the same isomorphism of (φ1 ◦ φ2)
∗M ∼= (φ2 ◦ φ1)

∗M with M . These form
a tensor category Φ-Isoc(X) in which the morphisms are ⟨φ1, φ2⟩-equivariant W (R)[p−1]-
module morphisms.

The categoriesΦ-Isoc(X) form a stack for the Zariski topology, the étale topology, and the
arc-topology; we thus obtain corresponding categories when X1 and X2 are not necessarily
affine. By forgetting the separate actions of φ1, φ2 and retain only the action of φ, we obtain
a natural functor Φ-Isoc(X) → F-Isoc(X).
Given objects Ei ∈ F-Isoc(Xi) for i = 1, 2, the external product E1 ⊠ E2 belongs to

Φ-Isoc(X). In case E2 is the unit object, we refer to this external product as the pullback
of E1.

We start with the following “double Dieudonné–Manin decomposition” result.
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Proposition 10.2. For X1 := Spec k1, X2 := Spec k2 with k1, k2 algebraically closed fields,
every object of Φ-Isoc(X) decomposes uniquely as a direct sum⊕

d1,d2∈Q

Ed1,d2

in which for d1, d2 ∈ Q with least common denominator s, Ed1,d2 is obtained by pulling back
a finite-dimensional Qp-vector space equipped with commuting endomorphisms F1, F2 such
that F s

i = p−dis, which then give the actions of φ1, φ2 on the pullback. (This vector space
may be recovered from Ed1,d2 as the joint kernel of φs

i − p−dis.)

Proof. Apply [17, Corollary 7.4]. □

Corollary 10.3. For E ∈ Φ-Isoc(X) and x ∈ X a point, the Newton polygon of the image
of E under Φ-Isoc(X) → F-Isoc(X) → F-Isoc(x) depends only on the images of x in X1

and X2.

Proof. This immediately reduces to the case where both X1 and X2 are geometric points,
in which case we may read off the claim from Proposition 10.2. Alternatively, see [17,
Theorem 6.6]. □

Remark 10.4. The reader interested in pursuing the relationship between F -isocrystals and
isoshtukas is hereby warned that there is no analogue of Proposition 10.2 for vector bundles
onXK : not every vector bundle onXK×QpXK can be expressed in terms of external products
O(s1)⊠O(s2). See [18] for further discussion.

Definition 10.5. For X1, X2 affine and M ∈ Φ-Isoc(X), define the groups H i
Φ(M) for

i = 0, 1, 2 as the cohomology groups of the totalization of the complex

M
φ1−1 //

φ2−1
��

M

φ2−1
��

M
φ1−1 // M.

The groups H0 and H1 again compute internal Homs and Ext groups in the category
Φ-Isoc(X). (The group H2 computes a higher Yoneda extension group, but we will not
use this.)

Lemma 10.6. Let R be a perfect Fp-algebra and let ℓ be an algebraically closed field of
characteristic p. Then the sequence

0 → W (R) → W (R⊗ ℓ)
φ2−1→ W (R⊗ ℓ) → 0

is exact.

Proof. For R = Fp this is the standard Artin–Schreier exact sequence. The general case
follows by identifying W (R⊗ ℓ) with the p-adic completion of the tensor product W (R)⊗Zp

W (ℓ). □

Lemma 10.7. For X1 := Spec oK and X2 := Spec ℓ with ℓ algebraically closed, for M ∈
F-Isoc(oK) pulling back to MΦ ∈ Φ-Isoc(X), the natural maps H i

φ(M) → H i
Φ(MΦ) are

isomorphisms for i = 0, 1 and H2
Φ(MΦ) = 0.
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Proof. By Lemma 10.6, the sequence

0 → M → MΦ
φ2−1→ MΦ → 0

is exact; this immediately yields the claim. □

We next introduce an analogue of the category F-Isoc†(K).

Definition 10.8. Take X1 := oK and X2 := Spec ℓ with ℓ algebraically closed. Set L :=
W (ℓ)[p−1] and YK,ℓ := YK ×Qp L. Put XK := (SpecK) × X2 and let W †(K ⊗ ℓ) be the
stalk of OYK,ℓ

at the zero locus of p (identified with a subring of W (K ⊗ ℓ)). We define the

category F-Isoc†(XK) to consist of finite projective W †(K ⊗ ℓ)[p−1]-modules equipped with
isomorphisms with their pullbacks along φ. We define the category Φ-Isoc†(XK) to consist
of finite projective W †(K ⊗ ℓ)[p−1]-modules equipped with commuting isomorphisms with
their pullbacks along φ1 and φ2 (in the same sense as in Definition 10.1). There is then a
natural functor Φ-Isoc†(XK) → F-Isoc†(XK).

Remark 10.9. In the following discussion, we will study the situation of Definition 10.8 in
parallel with our earlier development of properties of F-Isoc(oK) in terms of the Fargues–
Fontaine curve XK . However, there is one key difference that complicates the analogy: there
is no counterpart of Lemma 4.5 for vector bundles on XK ×Qp L.

We have the following partial analogue of Corollary 4.9. See also Corollary 10.16.

Lemma 10.10. With notation as in Definition 10.8, the restriction functor Φ-Isoc(X) →
Φ-Isoc†(XK) is fully faithful.

Proof. This follows by adapting the proof of Corollary 4.9. Further details to follow. □

We have the following analogue of Lemma 5.1.

Lemma 10.11. Let M † be a finite projective W †(K ⊗ ℓ)-module equipped with a semilinear
action of φ−d for some positive integer d. Equip MK := M † ⊗W †(K⊗ℓ) W (K ⊗ ℓ) with the

induced action of φ−d. Then the natural map coker(φ−d − 1,M †) → coker(φ−d − 1,MK) is
surjective.

Proof. By adding a complementary summand, we may reduce to the case where the under-
lying module of M † is free. Then the proof of Lemma 5.1 carries over. □

This yields the following analogue of Lemma 5.2.

Lemma 10.12. With notation as in Definition 10.8, suppose that M † ∈ Φ-Isoc†(XK) re-
stricts to MK ∈ Φ-Isoc(XK) and that its image in F-Isoc(XK) has smallest Newton slope
s = r

d
in lowest terms. Then every v ∈ MK with φd(v) = p−rv belongs to M †.

Proof. The slope condition means that we can choose module generators e1, . . . , en of M †

on which p−rφ−d acts via a matrix A over W †(K ⊗ ℓ) whose reduction modulo p has rank
equal to the Qp-dimension of the p−rφ−d-fixed subspace of MK . By adding a complementary
summand, we may reduce to the case where e1, . . . , en form a basis of M †. Then the proof
of Lemma 5.2 carries over, using Lemma 10.11 in place of Lemma 5.1. □

This in turn yields the following analogue of Corollary 5.3.
14



Corollary 10.13. For each s ∈ Q, the functor Φ-Isoc†(XK) → Φ-Isoc(XK) induces an
equivalence of categories of objects which, as objects of F-Isoc(XK), are isoclinic of slope s.

Proof. Full faithfulness follows from Lemma 10.12. Essential surjectivity follows from Propo-
sition 10.2. □

We also obtain an analogue of Corollary 5.4.

Corollary 10.14. With notation as in Definition 10.8, for M † ∈ Φ-Isoc†(XK), there exists
a unique filtration

0 = M †
0 ⊂ · · · ⊂ M †

l = M †

with the property that each successive quotient M †
i /M

†
i−1, as an object of F-Isoc(XK), is

isoclinic of some slope si, and s1 < · · · < sl.

Proof. This follows by repeated application of Lemma 10.12. □

We can now establish a relative Dieudonné–Manin decomposition in the local setting.

Lemma 10.15. With notation as in Definition 10.8, every object M † ∈ Φ-Isoc†(XK) de-

composes uniquely as a direct sum
⊕

d∈Q M †
d in which for d = r

s
in lowest terms, M †

d is

obtained by pulling back an object of F-Isoc†(K) equipped with an endomorphism F2 such
that F s

2 = p−r, which then gives the action of φ2 on the pullback. (The latter may be recovered

from M †
d as the kernel of φs − p−r.)

Proof. Let MK be the image of M † in Φ-Isoc(XK) By applying Proposition 10.2, we obtain
a corresponding direct sum decomposition MK =

⊕
d∈Q MK,d. We first check that this

decomposition descends to M .
Consider the filtration of M † given by Corollary 10.14, and let Mi,K ∈ Φ-Isoc(XK) be

the restriction of M †
i . Then the decomposition of MK must preserve each Mi,K , so we

get an induced decomposition of Mi,K/Mi−1,K . This decomposition preserves M †
i /M

†
i−1 by

Corollary 10.13, so by induction on i it also preserves M †
i for each i. The case i = l

yields the conclusion that the decomposition MK =
⊕

d∈Q MK,d induces a decomposition

M † =
⊕

d∈Q M †
d .

For the remainder of the proof, we may assume that M † = M †
d for some d ∈ Q. It

remains to check that M † arises by pulling back an object of F-Isoc†(K) equipped with an
endomorphism F2 such that F s

2 = p−r. We first treat the case d = 0. Again, we know that
MK arises by pulling back an object NK of F-Isoc(K) equipped with an endomorphism
F2 such that F s

2 = p−r, which we may recover from MK as the kernel of φs
2 − p−r. By

Corollary 10.14 again, we have a filtration of M † which is stable under φ2; the corresponding
filtration of MK induces a filtration 0 = N0,K ⊂ · · · ⊂ Nl,K = NK of NK . For each i, by
Corollary 10.13, Ni,K/Ni−1,K is the restriction of an object of F-Isoc†(K) equipped with

an endomorphism F2 such that F s
2 = p−r which pulls back to M †

i /M
†
i−1. By Corollary 4.9

(to replace F-Isoc†(K) with F-Isoc(oK)) and Lemma 10.7 (with i = 1), we may deduce

by induction on i that M †
i is the pullback of an object of F-Isoc†(K) equipped with an

endomorphism F2 such that F s
2 = p−r. The case i = l yields the claim.

Suppose now that M † = M †
d for some arbitrary d ∈ Q. By the previous paragraph,

M † ⊗O(−d) is the pullback of an object of F-Isoc†(K); from this we recover the claim. □
15



As a byproduct, we obtain a full analogue of Corollary 4.9.

Corollary 10.16. With notation as in Definition 10.8, the restriction functor Φ-Isoc(X) →
Φ-Isoc†(XK) is an equivalence of categories.

Proof. With notation as in Definition 10.8, the functor is fully faithful by Lemma 10.10. It
is essentially surjective by Lemma 10.15 plus Corollary 4.9. □

We finally end up with an analogue of [17, Theorem 7.3].

Theorem 10.17. For X1 arbitrary, take X2 := Spec ℓ with ℓ algebraically closed. Then
every object E ∈ Φ-Isoc(X) decomposes uniquely as a direct sum

⊕
d∈Q Ed in which for

d = r
s
in lowest terms, Ed is obtained by pulling back an object of F-Isoc(X1) equipped with

an endomorphism F2 such that F s
2 = p−r, which then gives the action of φ2 on the pullback.

(The latter may be recovered from Ed as the kernel of φs − p−r.)

Proof. By arc-descent plus Lemma 9.1, we may reduce to the case X1 = Spec oK . This is
covered by Lemma 10.15. □
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