ERRATUM FOR "FROBENIUS MODULES AND DE JONG'S THEOREM"

KIRAN S. KEDLAYA

Laurent Berger has pointed that out that [1, Lemma 5.6] is incorrect as stated, and is in fact contradicted by the first example at the end of $[1, \S 5]$: for $\sigma(t)=(1+t)^{p}-1$, one may take $g=1, x=1, y=\log (1+t)$ to obtain an example of elements $x, y \in \mathcal{R}$ with $x^{\sigma}=g x$, $y^{\sigma}=g p x$. In the rest of this document, we explain the error in the proof of [1, Lemma 5.6], give a corrected statement and proof, and correct the proof of [1, Theorem 3.4]; the upshot is that all other results of [1] remain unaffected.

The error in the proof of [1, Lemma 5.6] is in the equation $a / c=h u(r / s)$ just above [1, (5.7)]. Here, a / c is a rational function of t times a unit of Ω, and the erroneous claim is that it can be factored as $h u(r / s)$ where $h \in W[1 / p], u$ is a principal unit of Ω, and r, s are polynomials in t with constant coefficient. The correct formula should be $a / c=h u(r / s) t^{e}$ where h, u, r, s are as before and e is an integer; this changes [1, (5.7)] to

$$
\begin{equation*}
b s^{\sigma} r=p^{\ell}\left(d r^{\sigma} s\right) \frac{(h u)^{\sigma}}{h u}\left(\frac{t^{\sigma}}{t}\right)^{e} . \tag{1}
\end{equation*}
$$

This equation no longer implies that $\ell=0$; rather, we have $\ell=-e v$ where v is the p-adic valuation of the constant coefficient of t^{σ} / t. (In particular, if σ is a Frobenius lift for which $v=0$, such as the standard lift, then the lemma remains correct as stated.)

We now give a corrected statement.
Lemma. Choose $x, y \in \mathcal{R}$ nonzero such that $x^{\sigma}=g x, y^{\sigma}=g p^{\ell} y$ for some $g \in \Gamma_{c}\left[\frac{1}{p}\right]$ and some nonnegative integer ℓ. Then y is divisible by x in \mathcal{R}.

Proof. If $\ell=0$, then the proof of $\left[1\right.$, Lemma 5.6] as written suffices to show that $y / x \in W\left[\frac{1}{p}\right]^{*}$. We thus assume that $\ell>0$ hereafter; this forces $v>0$.

Rewrite (1) as

$$
\frac{d}{b}=\left(\frac{u}{u^{\sigma}}\right)\left(\frac{r / s}{(r / s)^{\sigma}}\right) w, \quad w=p^{-\ell} \frac{h^{\sigma}}{h}\left(\frac{t^{\sigma}}{t}\right)^{\ell / v}
$$

noting that $w \in \Omega\left[\frac{1}{p}\right]$ has constant coefficient 1 . Then apply σ repeatedly to obtain, for each nonnegative integer n,

$$
\prod_{i=0}^{n-1} \frac{d^{\sigma^{i}}}{b^{\sigma^{i}}}=\frac{u}{u^{\sigma^{n}}} \frac{r / s}{(r / s)^{\sigma^{n}}} \prod_{i=0}^{n-1} w^{\sigma^{i}}
$$

By Remark 4.5, we may take limits to obtain

$$
\frac{y / c}{x / a}=u \frac{r}{s} z, \quad z=\prod_{i=0}^{\infty} w^{\sigma^{i}} \in \mathcal{R}
$$

this proves the claim.

We now correct the proof of [1, Theorem 3.4], starting from the sentence "Assume without loss of generality that $h_{1} \neq 0$." Here, we further assume that ℓ_{1} is maximal among indices i for which $h_{i} \neq 0$. As in the original text, we have $F \mathbf{w}=g \mathbf{w}$ for some $g \in \Gamma_{c}$ and $h_{i}^{\sigma^{m}}=g p^{-\ell_{i}} h_{i}$ for each i for which $h_{i} \neq 0$; we also have that the h_{i} generate the unit ideal in \mathcal{R}. Comparing h_{i} with h_{1} using the new lemma, we deduce that h_{i} is divisible by h_{1} in \mathcal{R}; consequently, h_{1} is a unit in \mathcal{R}, and the proof continues as in the original text.

References

[1] K.S. Kedlaya, Frobenius modules and de Jong's theorem, Math. Res. Lett. 12 (2005), 303-320.

