ERRATUM FOR "FROBENIUS MODULES AND DE JONG'S THEOREM"

KIRAN S. KEDLAYA

Laurent Berger has pointed that out that [1, Lemma 5.6] is incorrect as stated, and is in fact contradicted by the first example at the end of [1, §5]: for $\sigma(t) = (1+t)^p - 1$, one may take $g = 1, x = 1, y = \log(1+t)$ to obtain an example of elements $x, y \in \mathcal{R}$ with $x^{\sigma} = gx$, $y^{\sigma} = gpx$. In the rest of this document, we explain the error in the proof of [1, Lemma 5.6], give a corrected statement and proof, and correct the proof of [1, Theorem 3.4]; the upshot is that all other results of [1] remain unaffected.

The error in the proof of [1, Lemma 5.6] is in the equation a/c = hu(r/s) just above [1, (5.7)]. Here, a/c is a rational function of t times a unit of Ω , and the erroneous claim is that it can be factored as hu(r/s) where $h \in W[1/p]$, u is a principal unit of Ω , and r, s are polynomials in t with constant coefficient. The correct formula should be $a/c = hu(r/s)t^e$ where h, u, r, s are as before and e is an integer; this changes [1, (5.7)] to

(1)
$$bs^{\sigma}r = p^{\ell}(dr^{\sigma}s)\frac{(hu)^{\sigma}}{hu}\left(\frac{t^{\sigma}}{t}\right)^{e}$$

This equation no longer implies that $\ell = 0$; rather, we have $\ell = -ev$ where v is the p-adic valuation of the constant coefficient of t^{σ}/t . (In particular, if σ is a Frobenius lift for which v = 0, such as the standard lift, then the lemma remains correct as stated.)

We now give a corrected statement.

Lemma. Choose $x, y \in \mathcal{R}$ nonzero such that $x^{\sigma} = gx$, $y^{\sigma} = gp^{\ell}y$ for some $g \in \Gamma_{c}[\frac{1}{p}]$ and some nonnegative integer ℓ . Then y is divisible by x in \mathcal{R} .

Proof. If $\ell = 0$, then the proof of [1, Lemma 5.6] as written suffices to show that $y/x \in W[\frac{1}{p}]^*$. We thus assume that $\ell > 0$ hereafter; this forces v > 0.

Rewrite (1) as

$$\frac{d}{b} = \left(\frac{u}{u^{\sigma}}\right) \left(\frac{r/s}{(r/s)^{\sigma}}\right) w, \qquad w = p^{-\ell} \frac{h^{\sigma}}{h} \left(\frac{t^{\sigma}}{t}\right)^{\ell/\nu},$$

noting that $w \in \Omega[\frac{1}{p}]$ has constant coefficient 1. Then apply σ repeatedly to obtain, for each nonnegative integer n,

$$\prod_{i=0}^{n-1} \frac{d^{\sigma^{i}}}{b^{\sigma^{i}}} = \frac{u}{u^{\sigma^{n}}} \frac{r/s}{(r/s)^{\sigma^{n}}} \prod_{i=0}^{n-1} w^{\sigma^{i}}.$$

By Remark 4.5, we may take limits to obtain

$$\frac{y/c}{x/a} = u\frac{r}{s}z, \qquad z = \prod_{i=0}^{\infty} w^{\sigma^i} \in \mathcal{R};$$

1

this proves the claim.

We now correct the proof of [1, Theorem 3.4], starting from the sentence "Assume without loss of generality that $h_1 \neq 0$." Here, we further assume that ℓ_1 is maximal among indices i for which $h_i \neq 0$. As in the original text, we have $F\mathbf{w} = g\mathbf{w}$ for some $g \in \Gamma_c$ and $h_i^{\sigma^m} = gp^{-\ell_i}h_i$ for each i for which $h_i \neq 0$; we also have that the h_i generate the unit ideal in \mathcal{R} . Comparing h_i with h_1 using the new lemma, we deduce that h_i is divisible by h_1 in \mathcal{R} ; consequently, h_1 is a unit in \mathcal{R} , and the proof continues as in the original text.

References

[1] K.S. Kedlaya, Frobenius modules and de Jong's theorem, Math. Res. Lett. 12 (2005), 303–320.