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Effective p-adic cohomology for cyclic cubic threefolds

Kiran S. Kedlaya

This paper is an updated form of notes from a series of six lectures given at
a summer school on p-adic cohomology held in Mainz in the fall of 2008. (They
may be viewed as a sequel to the author’s notes from the Arizona Winter School
in 2007 [51].) The goal of the notes is to describe how to use p-adic cohomology
to make effective, provably correct numerical computations of zeta functions. More
specifically, we discuss three techniques in detail:

• use of the Hodge filtration to infer the zeta function from point counts;
• the “direct cohomological method” of computing the Frobenius action on

the p-adic cohomology of a single variety;
• the “deformation method” of computing the Frobenius structure on the
p-adic cohomologies of a one-parameter family of varieties, using the as-
sociated Picard-Fuchs differential equation.

We demonstrate the effective nature of these methods by describing how to make
them explicit for cyclic cubic threefolds, i.e., smooth cubic threefolds in P4 ad-
mitting an automorphism of order 3. This example has the features of being rich
enough to allow us to illustrate some useful features of p-adic cohomology (e.g.,
behavior with respect to automorphisms, and effect of the Hodge filtration) while
simple enough that the final computations are still tractable.

A number of references will be made to computations that can be made using
the Sage open-source computer algebra system, including a numerical example
over the field F7 to which we return frequently. We have prepared a worksheet
containing all of these computations in the form of a Sage notebook available at
the author’s web site [54]; however, one key calculation requires the additional
nonfree system Magma [67] to be installed. (It is also worth noting that our Sage

code depends implicitly upon the commutative algebra package Singular [89],
which Sage incorporates.) Timings quoted are based on executions on an AMD
Opteron 246 (64-bit, 2 GHz) with 2 GB of RAM.

The structure of the six lectures is as follows. (Note that subsections marked
“Optional” were not intended for presentation in the lectures.) In lecture 1, we
recall some generalities about zeta functions of varieties over finite fields, special-
ize to the case of cyclic cubic threefolds, then demonstrate with the Fermat cubic
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and with a more generic example over F7. In lecture 2, we recall the formalism of
algebraic de Rham cohomology, then make it explicit for cyclic cubic threefolds. In
lecture 3, we recall the formalism of p-adic cohomology, including the divisibilities
imposed on the zeta function by the Hodge filtration; we then apply this knowledge
to our generic example of a cyclic cubic threefold, and fully recover the zeta func-
tion. In lecture 4, we describe how to directly compute the Frobenius action on the
p-adic cohomology of a variety, and illustrate using our generic example; however,
we do not include a computational demonstration because the method we had in
mind at the time of preparation of these notes appears to be infeasible. (It subse-
quently became clear that this difficulty is not insurmountable; see Remark 4.4.8.)
In lecture 5, we introduce relative de Rham cohomology and Picard-Fuchs-Manin
(Gauss-Manin) connections, and compute an example for a pencil of cyclic cubic
threefolds including our generic example. In lecture 6, we describe Frobenius struc-
tures on Picard-Fuchs-Manin connections, compute the Frobenius structure for the
connection from the previous lecture, and recover the zeta function of our generic
example. The appendix contains many references and remarks omitted from the
main text in order to streamline the exposition.

Acknowledgments. Thanks to Duco van Straten, Ralf Gerkmann, and Kira
Samol for organizing the summer school in Mainz, supported by SFB/TR 45 “Peri-
ods, Moduli Spaces, and Arithmetic of Algebraic Varieties”. Thanks to Jim Carlson
for the suggestion to consider cyclic cubic threefolds, to Alan Lauder for helpful
discussions about Frobenius structures on connections, and to Jan Tuitman for
pointing out an error in our original analysis of t-adic precision (now resolved in
[56]).

1. Zeta functions: generalities

In this lecture, we recall the notion of the zeta function of an algebraic variety,
and the formalism of Weil cohomology theories which can be used to interpret the
Weil conjectures on zeta functions. We illustrate by computing the zeta function of
the Fermat cubic threefold over F7; this example will be needed later as an initial
condition for solving a Picard-Fuchs-Manin connection.

1.1. Zeta functions of algebraic varieties.

Definition 1.1.1. Let X be a variety (reduced separated scheme of finite type)
over the finite field Fq. The zeta function of X is the formal power series

ζX(T ) = exp

( ∞∑
n=1

Tn

n
#X(Fqn)

)
;

we can also write ζX(T ) as an Euler product

ζX(T ) =
∏
x∈X

(1− T [κx:Fq ])−1

over closed points x of X (where κx denotes the residue field of x), so ζX(T ) ∈ ZJT K.

Remark 1.1.2. One motivation for computing zeta functions of varieties over
finite fields is that they can be used to compute L-functions of varieties over num-
ber fields, which carry enormous amounts of global arithmetic information. For
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instance, for E an elliptic curve over Q, for p a prime of good reduction, we have

ζEFp
(T ) =

Lp(T )

(1− T )(1− pT )

for Lp(T ) a polynomial of the form 1− apT + pT 2. (Note that ap can be computed
as p + 1 − #E(Fp).) For an appropriate definition of Lp(T ) for p not of good
reduction, the L-function of an elliptic curve over Q is defined as the product

L(E, s) =
∏
p

Lp(p
−s).

This product converges absolutely for Real(s) > 3/2, but is now known to extend
to an analytic function on all of C. The conjecture of Birch and Swinnerton-Dyer
predicts that the order of vanishing of L(E, s) at s = 1 equals the rank of the group
E(Q) of rational points of E.

The methods developed in this paper can be used in particular to compute
zeta functions for cyclic cubic threefolds. In subsequent work, we plan to use these
techniques to gather some data concerning L-functions of cyclic cubic threefolds
over Q.

1.2. The Weil conjectures. The following theorem encompasses what were
formerly (and still commonly) called the Weil conjectures. For historical details,
see the references in the appendix.

Theorem 1.2.1. Let X be a variety (separated scheme of finite type) over the
finite field Fq. Then the zeta function of X is the power series representation of a
rational function in T . Moreover, if X is smooth and proper over Fq, then there is
a unique way to write

(1.2.1.1) ζX(T ) =

2 dim(X)∏
i=0

Pi(T )(−1)
i+1

for some polynomials Pi(T ) ∈ Z[T ] with Pi(0) = 1, satisfying the following condi-
tions.

(i) We have

Pi(1/(q
iT )) = ±q−i deg(Pi)/2T− deg(Pi)Pi(T ),

with the sign being + whenever i is odd. In other words, the roots of Pi are
invariant under the map r 7→ q−i/r, and if i is odd then the multiplicities
of ±q−i/2 are even.

(ii) The roots of Pi in C all have complex absolute value q−i/2. (This is
commonly called the Riemann hypothesis for zeta functions of varieties
over finite fields.)

(iii) If X ∼= XFq
for some smooth proper scheme X over the local ring R = oK,p

for some number field K and some prime ideal p of oK with residue field
Fq, then for any embedding K ↪→ C,

deg(Pi) = dimCH
i((X×R C)an,C).

In other words, deg(Pi) equals the i-th Betti number of X×R C.

Remark 1.2.2. Using p-adic cohomology, one can refine assertion (iii) of The-
orem 1.2.1 to take into account the Hodge numbers of X in addition to the Betti
numbers. See Theorem 3.3.1.
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When computing zeta functions, it will be helpful to account for the Riemann
hypothesis using the following lemma from [50] (applied to the reverse of one of
the Pi).

Lemma 1.2.3. Given positive integers q, d, j, and complex numbers a1, . . . , aj−1,

there exists a certain explicit disc of radius d
j q
j/2 which contains every aj for which

we can choose aj+1, . . . , ad ∈ C so that the polynomial

R(T ) = 1 +

d∑
j=1

ajT
j

has all roots on the circle |T | = q−1/2.

By contrast, bounding ad−j directly gives the far inferior bound

|ad−j | ≤
(
d

j

)
qj/2.

Proof. Let sj denote the sum of the (−j)-th powers of the roots of R. From
the Newton-Girard identities,

sj + jaj = −
j−1∑
h=1

sj−hah;

given a1, . . . , aj−1, we may explicitly compute s1, . . . , sj−1. Since |sj | ≤ dqj/2, this

limits aj to an explicit disc of radius d
j q
j/2. �

Remark 1.2.4. The bound in Lemma 1.2.3 is typically not very tight except
when j is very small. See Remark 4.3.3 for an example in the context of these
lectures, and [50] for additional examples.

1.3. Weil cohomology. We now recall Weil’s proposed cohomological inter-
pretation of Theorem 1.2.1. Our discussion is quite incomplete; see the references
in the appendix for further details.

Definition 1.3.1. Fix a finite field Fq and a field F of characteristic zero. A
Weil cohomology over F consists of a collection of contravariant functors Hi(·) from
smooth proper varieties X over Fq to finite dimensional F -vector spaces, satisfying
a number of additional conditions which we will not list completely (see [57] for a
full account). Instead, we will simply enumerate the ones we need as we use them.

For one, Hi(X) is canonically isomorphic to Hi(XFqn
) for any n. For another,

if we let Fq : X → X denote the q-power Frobenius, and put

Pi(T ) = det(1− TFq, Hi(X)) (i = 0, . . . , 2 dim(X)),

then we must have that Pi(T ) ∈ Z[T ] and (1.2.1.1) holds. This last claim is equiv-
alent to the Lefschetz trace formula: for any positive integer n,

(1.3.1.1) #X(Fqn) =

2 dim(X)∑
i=0

(−1)i Trace(Fnq , H
i(X)).

(This equivalence requires the coefficient field to have characteristic zero.)
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We will make extensive use of a slightly stronger form of (1.3.1.1): for any
automorphism ι of X,

(1.3.1.2) #{x ∈ X(Fq) : (Fq ◦ ι)(x) = x} =

2 dim(X)∑
i=0

(−1)i Trace(Fq ◦ ι,Hi(X)).

Remark 1.3.2. The existence of a Weil cohomology, plus the Lefschetz trace
formula (1.3.1.1), together imply the rationality of ζX(T ). To deduce property (i) in
Theorem 1.2.1, one needs Poincaré duality for Weil cohomology. For property (iii),
one needs a comparison theorem between the given Weil cohomology and singular
cohomology over C. Property (ii) lies somewhat deeper; we will not discuss its
proof here.

Remark 1.3.3. The Lefschetz trace formula (1.3.1.2) can be extended to more
general endomorphisms, and even to correspondences, but the counting function on
the left side must be replaced by a more complicated sum of local terms. In the case
of Fq ◦ ι, the graph of the morphism has transverse intersection with the diagonal
inside X ×Fq

X, so the fixed points are isolated and occur with multiplicity 1. One
other case in which one can describe the trace formula is for an automorphism of
order prime to the characteristic of Fq; in that case, the left side of the Lefschetz
formula becomes the Euler characteristic of the fixed locus.

Remark 1.3.4. The first Weil cohomology to be constructed was étale coho-
mology, in which the coefficient field may be taken to be the `-adic numbers Q` for
any prime ` distinct from the characteristic of K. See appendix for references.

1.4. Cyclic cubic threefolds. We now specialize the discussion to the par-
ticular class of varieties we will be using as examples in this paper.

Definition 1.4.1. Let K be a field of characteristic not equal to 3. A cyclic
cubic threefold over K is a hypersurface of degree 3 in P4

K invariant under the action
of a cyclic group of order 3. Throughout these notes, when discussing cyclic cubic
threefolds, we will take homogeneous coordinates w, x, y, z, a on P4

K and restrict
to cyclic cubic threefolds defined by polynomials of the form S = a3 − Q with
Q ∈ K[w, x, y, z] homogeneous of degree 3. (This is the most general form for K
algebraically closed.)

Lemma 1.4.2. The cyclic cubic threefold defined by S = a3 − Q is smooth if
and only if the cubic surface in P3

K defined by Q is smooth.

Proof. Let Sw denote the partial derivative of the polynomial S with respect
to the variable w, and so forth. Then

(S, Sw, Sx, Sy, Sz, Sa) = (a3 −Q,Qw, Qx, Qy, Qz, 3a2),

so the saturation of this ideal contains a and hence Q. Consequently, this ideal
contains a power of (w, x, y, z, a) if and only if (Q,Qw, Qx, Qy, Qz) contains a power
of (w, x, y, z). In other words, (S, Sw, Sx, Sy, Sz, Sa) defines the empty subscheme of
ProjK[w, x, y, z, a] if and only if (Q,Qw, Qx, Qy, Qz) defines the empty subscheme
of ProjK[w, x, y, z]; this is the desired result. �

Observation 1.4.3. Let X be a cyclic cubic threefold over Fq. By the Lefschetz
hyperplane section property of a Weil cohomology, for i = 0, 1, 2, 4, 5, 6, we have
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a canonical isomorphism Hi(X) ∼= Hi(P3
Fq

). Thus the zeta function of X has the

form

ζX(T ) =
P (T )

(1− T )(1− qT )(1− q2T )(1− q3T )

for P (T ) = det(1− TFq, H3(X)). We will show using algebraic de Rham cohomol-
ogy (see Observation 2.3.1) that the middle Betti number of any lift of X is 10, so
dimH3(X) = deg(P ) = 10. It will then follow that

P (1/(q3T )) = q−15T−10P (T ),

and the complex roots of P lie on the circle |T | = q−3/2.

Definition 1.4.4. Given a choice of a primitive cube root ζ3 ∈ K, we write
[ζ3] for the automorphism

[ζ3]([w : x : y : z : a]) = [w : x : y : z : ζ3a]

on any cyclic cubic threefold X over K. In case K = Fq with q ≡ 1 (mod 3),
[ζ3] splits H3(X) into two eigenspaces of dimension 5, on which [ζ3] acts by mul-
tiplication by the two primitive cube roots of 1 in the coefficient field. (This will
be apparent for rigid cohomology from the explicit description we will give; for an
arbitrary Weil cohomology, this can be deduced from the Lefschetz trace formula
for the automorphisms [ζ3] and [ζ3]2, as described in Remark 1.3.3.) Consequently,
P (T ) factors over Z[ζ3] into two factors of degree 5.

In case K = Fq with q ≡ 2 (mod 3), [ζ3] is not defined over Fq, so it does not
commute with Fq; rather, we have Fq◦[ζ3] = [ζ3]2◦Fq. In fact, we may see explicitly
that #X(Fq) = #P3(Fq): for each w, x, y, z, the equation a3 = Q(w, x, y, z) has
exactly one solution a ∈ Fq. Hence Trace(Fq, H

3(X)) = 0, and similarly for any
odd power of Fq. This forces P (T ) to be a polynomial of degree 5 in T 2, which
we can recover by computing the zeta function of XFq2

. We will thus concentrate

mainly on the case q ≡ 1 (mod 3) hereafter.

Remark 1.4.5. The dichotomy we have just encountered is analogous to the
situation of an elliptic curve with complex multiplication. In that case, whether the
curve has ordinary or supersingular reduction is determined by whether the prime
of reduction is split or inert in the CM field.

1.5. A special example: the Fermat cubic threefold. As an explicit
illustration of the properties of zeta functions, we compute the action of Frobenius
on the Weil cohomology of a very special cubic threefold.

Definition 1.5.1. Let K be a field of characteristic not equal to 3. The
Fermat cubic threefold over K is the threefold X in P4

K defined by the polynomial
w3 +x3 +y3 +z3 +a3 = 0; we will identify it with the cyclic cubic threefold defined
by S = a3 −Q for Q = w3 + x3 + y3 + z3.

If K contains a primitive cube root ζ3, the analysis of the Fermat cubic threefold
is aided greatly by the action of the group G = µ5

3 acting by

(ζc03 , . . . , ζ
c4
3 )[w : x : y : z : a] = [ζc03 w : · · · : ζc43 a].

This action on X factors through the quotient by the diagonal subgroup generated
by (ζ3, . . . ζ3). However, we prefer to use G instead of the quotient so we can have
also an action on homogeneous polynomials.
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Procedure 1.5.2. Consider the Fermat cubic threefold X over Fq with q ≡ 1
(mod 3); then the action of G is defined over Fq, so it commutes with Fq. We can
then compute the trace of Fq on each of the eigenspaces of H3(X) for G using the
Lefschetz trace formula (1.3.1.2), as follows.

Choose a cubic nonresidue r in Fq with ζ3 = r(q−1)/3. Fix also a cube root r1/3

of r in Fq. For c = (ζc03 , . . . , ζ
c4
3 ) ∈ G with c4 = 0, put

P̃c = r−c0w3 + r−c1x3 + r−c2y3 + r−c3z3

and let X̃c denote the corresponding cyclic cubic threefold.
The variety X̃c is a twist ofX; that is, it is isomorphic toX over Fq. Specifically,

we may identify the Fq-points of X with those of X̃c via the map

[w : x : y : z : a] 7→ [rc0/3w : rc1/3x : rc2/3y : rc3/3z : a].

Under this identification, the fixed points of Fq ◦ c on X are identified with the

fixed points of Fq on X̃c. Thus (1.3.1.2) may be rewritten in this case as

#X̃c(Fq) =

6∑
i=0

(−1)i Trace(Fq ◦ c,Hi(X))

= 1 + q + q2 + q3 − Trace(Fq ◦ c,H3(X)).

We can thus compute Trace(Fq ◦ c,H3(X)) by counting the points of #X̃c(Fq).
For q small, we may as well do this by enumerating the points themselves; for
some procedures that make more sense when q is large, see Procedure 1.7.1 and
Remark 1.7.3.

We may describe the character group Ĝ of G as (Z/3Z)5, where the character
(d0, . . . , d4) : G→ µ3 acts as

(d0, . . . , d4)(ζc03 , . . . , ζ
c4
3 ) = ζc0d0+···+c4d43 .

Given a primitive cube root of unity ζ3,F ∈ F , we may embed µ3 into F and
separate H3(X) into eigenspaces for the characters of G. In particular, for the
eigenspace corresponding to the character d = (d0, . . . , d4) ∈ (Z/3Z)5, we compute
the trace on that eigenspace as

1

34

2∑
c0,c1,c2,c3=0

ζ−c0d0−c1d1−c2d2−c3d33 Trace(Fq ◦ c,H3(X)).

Example 1.5.3. For q = 7, we may carry out Procedure 1.5.2 by explicitly
counting the F7-points of all of the X̃c (see worksheet). We fix the cube root ζ3 = 2
in F7. For the eigenspaces corresponding to the characters

(2, 1, 1, 1, 1), (1, 2, 1, 1, 1), (1, 1, 2, 1, 1), (1, 1, 1, 2, 1), (2, 2, 2, 2, 1),(1.5.3.1)

(1, 1, 1, 1, 2), (1, 2, 2, 2, 2), (2, 1, 2, 2, 2), (2, 2, 1, 2, 2), (2, 2, 2, 1, 2),(1.5.3.2)

we obtain the traces

21ζ3,F + 7, 21ζ3,F + 7, 21ζ3,F + 7, 21ζ3,F + 7, −21ζ3,F − 14,(1.5.3.3)

21ζ23,F + 7, 21ζ23,F + 7, 21ζ23,F + 7, 21ζ23,F + 7, −21ζ23,F − 14,(1.5.3.4)

respectively. It follows that each of these eigenspaces is one-dimensional, there are
no other eigenspaces, and the polynomial P (T ) in the zeta function of X equals
the product of 1− αT for α running over the values in (1.5.3.3) and (1.5.3.4).
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Remark 1.5.4. One has the same eigenspace decomposition, with the same
characters, for any q ≡ 1 (mod 3). For a general Weil cohomology, this can be
proved using the Lefschetz trace formula for the elements of G (Remark 1.3.3;
compare Definition 1.4.4). For rigid cohomology, this will follow from an explicit
description using algebraic de Rham cohomology (Example 2.3.2) and the compar-
ison theorem with rigid cohomology (Theorem 3.2.1).

Remark 1.5.5. The general formalism of Weil cohomologies does not provide
a specific way to match up the primitive cube roots of unity in Fq and F . We will
see later that the formalism of p-adic cohomology does provide such a matching.

1.6. A generic example. We now introduce a less special example, to which
we will return throughout the lectures.

Example 1.6.1. Consider the polynomial

Q = w3 + x3 + y3 + z3 + (w + x)(w + 2y)(w + 3z) + 3xy(w + x+ z)

over F7. One computes (see worksheet) that the Jacobian ideal (Qw, Qx, Qy, Qz)
of Q is zero-dimensional, so Q is nonsingular. Consequently, we have a cyclic cubic
threefold X over F7 with defining equation S = a3 −Q.

We fix the choice ζ3 = 2 in F7, and let ζ3,F be a primitive cube root of 1 in the
coefficient field F . Let H1, H2 be the eigenspaces of [ζ3] on H3(X) with eigenvalues
ζ3,F , ζ

2
3,F , respectively. Let b ∈ F7 be a cubic nonresidue with b(7−1)/3 = 2, and fix

a cube root b1/3 of b in Fq. As in Procedure 1.5.2, for k = 0, 1, 2, we identify the
Fq-rational points of the cubic threefold Xq,k defined by b−ka3 −Q with the fixed
points of Fq ◦ [ζ3]k, via the map

[w : x : y : z : a] 7→ [w : x : y : z : b−k/3a].

Using the extended Lefschetz trace formula (1.3.1.2), we find that for j = 1, 2,

Trace(Fq, Hj) = −1

3

2∑
k=0

ζ−jk3,F #Xq,k(Fq).

By enumerating points (see worksheet), we obtain the following table after about
15 minutes of computation. (Note that we infer the counts for k = 2 from the other
two columns, using the fact that each row must sum to 3(q3 + q2 + q + 1).)

#Xq,k(Fq) k = 0 k = 1 k = 2
q = 7 407 365 428
q = 72 120933 118728 120639
q = 73 40464740 40484291 40465769

We thus obtain the series approximations

det(1− TFq, H1) = 1 + (3ζ3,F + 2)(7T ) + (8ζ3,F + 5)(7T )2 + (7ζ3,F − 14)(7T )3 +O(T 4)

det(1− TFq, H2) = 1 + (3ζ23,F + 2)(7T ) + (8ζ23,F + 5)(7T )2 + (7ζ23,F − 14)(7T )3 +O(T 4).

Since each of these is a polynomial of degree 5, we do not have enough data from
the point counts alone to determine ζX(T ). This would remain true even if we
computed a fourth row of the table; we estimate that this would have taken us
about one week of computation. (We did not attempt to combine this data with
the Riemann hypothesis bound using Lemma 1.2.3; see appendix for discussion.)
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1.7. Optional: Counting points on diagonal threefolds. For complete-
ness, we describe some more intelligent procedures for counting points on diagonal
cubic threefolds. We start with a procedure that is still simple but improves greatly
upon counting points directly for q of moderate size.

Procedure 1.7.1. Recall that we wish to count the Fq-points of the twisted

Fermat cubic threefold X̃c corresponding to the polynomial

P̃ = r−c0w3 + r−c1x3 + r−c2y3 + r−c3z3,

for q ≡ 1 (mod 3). For j, j′ ∈ Z, let aj,j′ be the number of x ∈ F×q such that

rjx3 + 1 equals rj
′

times a nonzero cubic residue; this only depends on j, j′ modulo
3. The aj,j′ can be computed using cubic Jacobi sums (see Remark 1.7.3 for the
case q = p); for now, we instead compute a0,1, a0,2 by iterating over all x ∈ Fq,
then use the identities

aj,j′ = aj′,j

aj,j′ = a−j,j′−j∑
j′

aj,j′ =

{
q − 4 j ≡ 0 (mod 3)

q − 1 j 6≡ 0 (mod 3)

to infer the other aj,j′ .
For i ∈ {0, 1, 2, 3, 4} and j ∈ {0, 1, 2} ∪ {∗}, put

Ci,j = #

{
(u0, . . . , ui) ∈ Fi+1

q : r−c0u30 + · · ·+ r−ciu3i ∈

{
r−j(F×q )3 j = 0, 1, 2

{0} j = ∗

}
.

For i = 0, 1, 2, 3, 4 in succession, we compute the Ci,j for all j as follows. For i = 0,
we have

C0,∗ = 1, C0,j =
q − 1

3
(j = 0, 1, 2).

Given the Ci−1,j for some i > 0, we compute

Ci,j = Ci−1,j +
∑

k=0,1,2

Ci−1,kaci−k,ci−j +

{
(q − 1)Ci−1,∗ j ≡ ci (mod 3)

0 j 6= ci (mod 3)

Ci,∗ = Ci−1,∗ + 3Ci−1,ci .

Then we have

X̃(Fq) =
1

q − 1
(C4,0 − 1).

Observation 1.7.2. If q ≡ 2 (mod 3), there is no need to count anything
over Fq because all diagonal cubics have as many points as projective space itself.
However, one may wish to carry out Procedure 1.7.1 over Fq2 . In this case, the base
calculation of aj,j′ is made somewhat easier by the fact that a0,1 = a0,2. Hence it
suffices to calculate a0,0, but this is also easy: since the elliptic curve x3 + 1 = y3

over Fq has zeta function

1 + qT 2

(1− T )(1− qT )
(q ≡ 2 (mod 3)),

we have

a0,0 =
q2 + 2q − 8

3
, a0,1 = a0,2 =

q2 − q − 4

3
.
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We next describe a computation of the aj,j′ based on cubic Jacobi sums in the
case q = p ≡ 1 (mod 3).

Remark 1.7.3. For two Dirichlet characters χ1, χ2 on Fp, define the Jacobi
sum

J(χ1, χ2) =
∑

u,v∈Fp:u+v=1

χ1(u)χ2(v)

We may interpret 3aj,j′ as the number of pairs (x, y) ∈ (F×p )2 for which rjx3 +

rj
′
y3 = 1. Let χ be the cubic Dirichlet character on Fp sending r to ζ3. Then

#{(x, y) ∈ F2
p : rjx3 + rj

′
y3 = 1}

=
∑

u+v=1

2∑
i=0

ζ−ij3 χi(u)

2∑
i′=0

ζ−i
′j′

3 χi
′
(v)

=
∑
i,i′

ζ−ij−i
′j′

3 J(χi, χi
′
)

= q − ζ−j−2j
′

3 − ζ−2j−j
′

3 + ζ−j−j
′

3 J(χ, χ) + ζ−2j−2j
′

3 J(χ2, χ2),

where the last line follows from the one before by standard identities [42, §8.3,
Theorem 1]. By [3, Theorem 3.1.3], we have

J(χ, χ) =
1

2
(α+ iβ

√
3)

where α, β are uniquely determined by the requirements

α2 + 3β2 = 4p

α ≡ 1 (mod 3)

β ≡ 0 (mod 3)

3β ≡ (2r(p−1)/3 + 1)α (mod p).

These α and β can be found in time polylogarithmic in p, e.g., by performing the
Euclidean algorithm on p and r̃(p−1)/3 − ζ3 in Z[ζ3] for any r̃ ∈ Z lifting r.

Remark 1.7.4. In the case q = p, an explicit (but complicated) formula to
compute the Ci,j directly can be found in [3, Theorem 10.6.1].

2. Algebraic de Rham cohomology

We next describe the formalism of algebraic de Rham cohomology, then spe-
cialize to the case of cyclic cubic threefolds. This will be used for our explicit
descriptions of p-adic cohomology in the next lecture.

2.1. Cohomology of smooth varieties. We first recall the definition of al-
gebraic de Rham cohomology for smooth varieties.

Definition 2.1.1. Let X be a smooth variety over a field K of characteristic 0.
Let ΩX/K be the sheaf of Kähler differentials; since X is smooth, by the Jacobian

criterion ΩX/K is coherent and locally free of rank dim(X/K). Let ΩiX/K be the i-

th exterior power of ΩX/K over the structure sheaf OX/K , so in particular Ω0
X/K =

OX/K and Ω1
X/K = ΩX/K . There is a universal derivation d : OX/K → ΩX/K ,
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using which we obtain maps d : ΩiX/K → Ωi+1
X/K satisfying d◦d = 0. We thus obtain

the de Rham complex of sheaves

0→ Ω0
X/K → Ω1

X/K → · · · .

The algebraic de Rham cohomology Hi
dR(X) of X is defined to be the hypercohomol-

ogy Hi(Ω·X/K) of this complex. If X is affine, this coincides with the cohomology of

the complex of global sections (so in particular Hi
dR(X) vanishes for i > dim(X));

otherwise the coherent cohomology of each Ω·X/K intervenes, so we only have the

weaker vanishing result that Hi
dR(X) = 0 for i > 2 dim(X).

By recalling how to compute hypercohomology, we identify an important extra
structure on de Rham cohomology.

Definition 2.1.2. Let {Ul} be a finite cover of X by affine open subschemes.
Let Ci,j be the j-th term of the Čech complex (with differentials ď) associated to
the sheaf ΩiX/K and the cover {Ul}. We may view Ci,j as a double complex with

differentials d and ď; the total complex with differential on Ci,j given by d+(−1)iď
computes the hypercohomology Hi(Ω·X/K) = Hi

dR(X).

More precisely, Hi
dR(X) consists of classes supported on Cs,i−s for s = 0, . . . , i.

We may define a descending filtration Filj Hi
dR(X) by taking classes supported

only on Cs,i−s for s = j, . . . , i; this defines the Hodge filtration on Hi
dR(X), which

turns out to be independent of the choice of the affine covering. For instance,
FiliHi

dR(X) consists of classes represented by holomorphic i-forms on X. More

generally, Filj Hi
dR(X) is the image in Hi

dR(X) of the hypercohomology of the
truncated de Rham complex

0→ ΩjX/K → · · · → Ω
dim(X)
X/K → 0

in which ΩhX/K is still placed in degree h.

Theorem 2.1.3 (Grothendieck). Given an embedding K ↪→ C, we obtain
canonical isomorphisms from Hi

dR(X)⊗K C to the following:

• the singular cohomology of X with coefficients in C;
• the smooth de Rham cohomology of X with coefficients in C;
• the holomorphic de Rham cohomology (Dolbeaut cohomology) of X.

Moreover, the Hodge filtration on algebraic de Rham cohomology coincides with
Hodge’s filtration on smooth de Rham cohomology (defined using harmonic forms).

Remark 2.1.4. Hodge actually defined a decomposition, not just a filtration,
on smooth de Rham cohomology. However, only the filtration admits an algebraic
description.

2.2. The Griffiths-Dwork construction. In general, computing the alge-
braic de Rham cohomology of a nonaffine variety can be awkward, due to the need
to consider hypercohomology. In the case of a smooth hypersurface in projective
space, one can get around this awkwardness by passing to a related affine variety.

Definition 2.2.1. Again, let K be a field of characteristic 0. Let S be a
homogeneous polynomial of degree d in K[u0, . . . , un] which is nonsingular (i.e., the
ideal generated by S and its partial derivatives contains a power of (u0, . . . , un)).
Then S defines a smooth hypersurface X in the projective space PnK . Put U =



12 KIRAN S. KEDLAYA

PnK \X, so that U is affine with coordinate ring equal to the degree 0 part of the
localization K[u0, . . . , un, S

−1].

Theorem 2.2.2. There is a canonical map Hn−1(X) → Hn(U); if n is even,
then this map is an isomorphism, otherwise it is surjective with one-dimensional
kernel spanned by the Lefschetz class c(O(1))(n−1)/2, where c denotes the first Chern
class. (In other words, Hn(U) computes the primitive part of Hn−1(X).)

Proof. This follows from the excision property for algebraic de Rham coho-
mology. �

Definition 2.2.3. Put

Ω =

n∑
i=0

(−1)iui du0 ∧ · · · ∧ d̂ui ∧ · · · ∧ dun,

where the hat denotes omission. It is straightforward to check that Hn(U) may be
identified with the quotient of the group of n-forms AΩ/Si, where i is an arbitrary
positive integer and A ∈ K[u0, . . . , un] is homogeneous of degree id− n− 1, by the
subgroup generated by

(2.2.3.1)
(∂jA)Ω

Si
− iA(∂jS)Ω

Si+1

for all nonnegative integers i, all j ∈ {0, . . . , n}, and all homogeneous polynomials
A ∈ K[u0, . . . , un] of degree id− n. (Here ∂j is shorthand for ∂

∂uj
.)

Besides giving an explicit description of the cohomology of X, this construction
also makes the Hodge filtration readily apparent.

Theorem 2.2.4 (Griffiths). Define Filn−1−iHn(U) as the image in Hn(U) of
the set of forms AΩ/Si+1 with A homogeneous of degree id−n−1. Then Fil·Hn(U)
corresponds to the Hodge filtration on the primitive part of Hn−1(X).

Remark 2.2.5. More generally, there is a similar recipe for computing the
algebraic de Rham cohomology of a smooth complete intersection inside any toric
variety.

2.3. Cyclic cubic threefolds. We now use the Griffiths-Dwork recipe to
study the de Rham cohomology of a cyclic cubic threefold.

Observation 2.3.1. Suppose that X is a cyclic cubic threefold as in Defini-
tion 1.4.1. Using Griffiths’s theorem, we recover the Hodge numbers

(2.3.1.1) h0,3 = h3,0 = 0, h1,2 = h2,1 = 5.

In particular, dimK H
3(X) = 10. We also see that the action of [ζ3] splits H3

dR(X)
into two subspaces H1 ⊕ H2, where H1 transforms like a and has dimK(H1 ∩
Fil2H3

dR(X)) = 4, while H2 transforms like a2 and has dimK(H2 ∩Fil2H3
dR(X)) =

1. More explicitly, if b is a generator of the degree 4 subspace of the Jacobian ring

JX = K[w, x, y, z]/(Qw, Qx, Qy, Qz),

then a basis for H1 is given by

wΩ

S2
,
xΩ

S2
,
yΩ

S2
,
zΩ

S2
,
bΩ

S3
,
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with the first four basis elements spanning Fil2H1. Similarly, if b1, b2, b3, b4 form a
basis of the degree 3 subspace of JX , then a basis for H2 is given by

aΩ

S2
,
ab1Ω

S3
,
ab2Ω

S3
,
ab3Ω

S3
,
ab4Ω

S3
,

with the first basis element spanning Fil2H2.

In this light, let us consider our special and generic examples.

Example 2.3.2. For the Fermat cubic, we may make particularly convenient
choices of b, b1, b2, b3, b4 in Observation 2.3.1: we take

b = wxyz, b1 = xyz, b2 = wyz, b3 = wxz, b4 = wxy.

Using the chosen bases, H1 and H2 split into eigenspaces for the G-action with
characters

H1 : (2, 1, 1, 1, 1), (1, 2, 1, 1, 1), (1, 1, 2, 1, 1), (1, 1, 1, 2, 1), (2, 2, 2, 2, 1)

H2 : (1, 1, 1, 1, 2), (1, 2, 2, 2, 2), (2, 1, 2, 2, 2), (2, 2, 1, 2, 2), (2, 2, 2, 1, 2),

as predicted by Example 1.5.3.

Example 2.3.3. In Example 1.6.1, one checks (see worksheet) that b = wxyz
and b = wxyz + w4 have nonzero images in the Jacobian ring, so give rise to good
bases of H1. Similarly, one checks (see worksheet) that b1 = xyz, b2 = wyz, b3 =
wxz, b4 = wxy are linearly independent in the Jacobian ring, so give rise to a good
basis of H2.

2.4. Optional: Intermediate Jacobians. We recall a construction of Clemens
and Griffiths [15].

Definition 2.4.1. For X any smooth cubic threefold in P4 (not necessarily
cyclic), there exists a canonical abelian variety A and a canonical isomorphism
H3(X) ∼= H1(A)(1) respecting all extra structures, e.g., the Hodge filtration if K
is of characteristic zero, or the action of Frobenius if K is a p-adic field and X has
good reduction (see next section). We call A the intermediate Jacobian of X.

Remark 2.4.2. We amplify Remark 1.1.2 slightly: our intended application of
the calculation of p-adic cohomology of cyclic cubic threefolds is to compute the
L-function of the intermediate Jacobian of a cyclic cubic threefold over Q. Note
that the intermediate Jacobian inherits the action of ζ3 on X.

3. de Rham cohomology and p-adic cohomology

We now give a brief description of one particular Weil cohomology theory,
Berthelot’s theory of p-adic rigid cohomology, then explain how it can be computed
in many cases using algebraic de Rham cohomology. This comparison leads to a
relationship between the Hodge filtration of a variety and its zeta function; we will
use this to finish the computation of the zeta function of our generic example of a
cyclic cubic threefold, as initiated in Example 1.6.1.
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3.1. Rigid cohomology.

Definition 3.1.1. For q a power of the prime p, we write Qq for the unramified
extension of the p-adic field Qp having residue field Fq. We write Zq for the integral
closure of Zp in Qq.

Definition 3.1.2. For X a variety over the finite field Fq, let Hi
rig(X) denote

the i-th rigid cohomology of X. This is a Weil cohomology which we will not
construct explicitly in general; instead, we will describe some special cases in detail,
and refer for the rest to the book of le Stum [66] (and to additional references
discussed in the appendix). The construction of rigid cohomology is contravariantly
functorial, so in particular the p-power Frobenius morphism Fp : X → X induces
an endomorphism of Hi

rig(X). This endomorphism on cohomology is σp-semilinear

for σp the Witt vector Frobenius on Qq; raising to the power logp(q) gives a q-power
Frobenius morphism Fq which on cohomology is Qq-linear.

Remark 3.1.3. In these notes, we will mostly consider the case q = p in
examples. However, in some applications (notably, in the use of hyperelliptic curves
in cryptography) one wishes to take q to be a large power of p. In these cases, it is
much more efficient to compute with the p-power Frobenius first, then extrapolate
results for the q-power Frobenius, than to work with the q-power Frobenius directly.

3.2. Comparison theorems. In the computations described in these lec-
tures, we access rigid cohomology via the following comparison theorem.

Theorem 3.2.1 (Berthelot, Baldassarri-Chiarellotto). Let (X,Z) be a smooth
proper pair over Zq (i.e., X is smooth proper over Zq and Z is a relative normal
crossings divisor). Then there is a canonical isomorphism

Hi
dR(XQq

\ ZQq
) ∼= Hi

rig(XFq
\ ZFq

).

In order to control p-adic precision in computations, we need also an integral
comparison theorem.

Theorem 3.2.2 (Berthelot, Shiho). Let (X,Z) be a smooth proper pair over
Zq. Then there is a canonical isomorphism

Hi
dR(X,Z) ∼= Hi

crys(XFq
, ZFq

),

where the left side denotes the hypercohomology of the logarithmic de Rham complex,
while the right side denotes logarithmic crystalline cohomology.

Again, the right side in this isomorphism carries an action of Frobenius, so
the image of the map Hi

dR(X,Z) → Hi
dR(XQq

\ ZQq
) is a lattice stable under the

Frobenius action.

3.3. p-adic divisibility and the Hodge filtration. When computing zeta
functions, it is often helpful to account for the following theorem of Mazur, which
relates the Hodge filtration to p-adic divisibility of the Frobenius matrix.

Theorem 3.3.1. Let X be a smooth proper scheme over Zq. Assume that p > i.

Then for j = 0, . . . , i, the image of Filj Hi
dR(X) under the action of the p-power

Frobenius on Hi
crys(XFq

) is divisible by pj.
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Corollary 3.3.2. Let X be a smooth proper scheme over Zq. Assume that
p > i. Let pe1 ≤ · · · ≤ ped denote the elementary divisors of the matrix of the
q-power Frobenius acting on some basis of Hi

crys(XFq ). Then for j = 1, . . . , d, ej is

at least the j-th partial sum of the sequence consisting of h0,i copies of 0 · logp(q),

h1,i−1 copies of 1 · logp(q), and so on. Moreover, equality holds for j = d.

Corollary 3.3.3. Let X be a smooth proper scheme over Zq. Assume that
p > i. Then the Newton polygon of the characteristic polynomial of the q-power
Frobenius on Hi

rig(XFq
) lies on or above the Hodge polygon, with the same endpoints.

(The Hodge polygon is defined to have slope j logp(q) with multiplicity hj,i−j.)

Remark 3.3.4. Beware that the analogue of Theorem 3.3.1 for the q-power
Frobenius is false for q 6= p. However, Corollary 3.3.2 is nonetheless correct as
written: the relationship between the Hodge polygon and the elementary divisors
of the q-power Frobenius matrix can be deduced from the p-power case, but this
does not say anything about the action of Frobenius relative to the Hodge filtration.

We will later use the following lemma to take into account the Hodge divisibility
in the Frobenius matrix.

Lemma 3.3.5. Let Φ be a d× d matrix over Zq whose reduction modulo q has
rank e. Then for any matrix ∆ ∈ qmZq, the coefficients of T i in det(1− TΦ) and

det(1− T (Φ + ∆)) differ by a multiple of qmax{m,m+i−e−1}.

Proof. See [53, Theorem 4.4.2] or [1, Proposition 1.6.3]. �

3.4. p-adic cohomology of cyclic cubic threefolds. We make the previous
discussion explicit for cyclic cubic threefolds over finite fields, including our special
and generic examples.

Observation 3.4.1. Suppose q ≡ 1 (mod 3) and that Fq has characteristic
p ≥ 5. Let X be a cyclic cubic threefold over Fq defined by the polynomial Q. By
Theorem 3.2.1, the rigid cohomology of X is isomorphic to the de Rham cohomology
of the cyclic cubic threefold defined by any cubic polynomial Q̃ ∈ Zq[w, x, y, z] lifting
Q. By Theorem 3.2.2, the matrix Φ of action of Fq on our chosen basis has entries
in Zq. (This requires p ≥ 5 to ensure that the basis we wrote down is indeed a basis
of the integral de Rham cohomology module.) Moreover, since h0,3 = h3,0 = 0
(Observation 2.3.1), Φ is divisible by q.

Since the cyclic automorphism lifts, we see that the spaces H1 and H2 of Ob-
servation 2.3.1 are stable under Fq. We may thus use Theorem 3.3.1 to deduce
divisibilities in det(1 − TFq, Hi) for i = 1, 2, provided that we correctly match up
the cube roots of unity in Fq and Qq. The correct matching is to match a cube root
r of 1 in Fq with its Teichmüller lift r̃ in Qq; this has the effect of distinguishing
one of the two prime ideals p in Z[ζ3] above p. Put a = logp q and q = pa.

With this in mind, write

det(1− q−1TFq, H1) = 1 + a1T + · · ·+ a5T
5

det(1− q−1TFq, H2) = 1 + b1T + · · ·+ b5T
5,

so that aj , bj ∈ Z[ζ3] are conjugates for j = 1, . . . , 5. Taking into account the

intersection of Fil2H3
rig(X) with H1 and H2, we see that aj is divisible by the ideal

qj−1 for j = 2, 3, 4, 5, while b5 is divisible by q (so a5 is divisible by q).
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Example 3.4.2. In the case of the Fermat cubic threefold over F7, we may
check the consistency of Theorem 3.3.1 with the computation of Example 1.5.3.
In (1.5.3.1), the first four entries correspond to the eigenspaces in H1 belonging
to Fil2H3

rig(X); correspondingly, the first four eigenvalues in (1.5.3.3) are divisible

by 7(ζ3 − 2) (see worksheet). Similarly, in (1.5.3.2), the fifth entry corresponds
to the single eigenspace of H2 belonging to Fil2H3

rig(X); correspondingly, the fifth

eigenvalue in (1.5.3.4) is divisible by 7(ζ3 − 2) (see worksheet).

Example 3.4.3. In the case of our generic example (Example 1.6.1), we can
use Observation 3.4.1 to completely determine the zeta function. What we know
so far from the computation in Example 1.6.1 is that

det(1− 7−1TFq, H1) = 1 + (3ζ3 + 2)T + (8ζ3 + 5)T 2 + (7ζ3 − 14)T 3 + a4T
4 + a5T

5

det(1− 7−1TFq, H2) = 1 + (3ζ23 + 2)T + (8ζ23 + 5)T 2 + (7ζ23 − 14)T 3 + a4T
4 + a5T

5

for some a4, a5 ∈ Z[ζ3]. From Observation 3.4.1, we get the additional information
that a4 is divisible by (ζ3 − 2)3 while a5 is divisible by 7(ζ3 − 2)3.

Using the symmetry of the zeta function, we also have

P (T/7) = 1+T+9T 2+2T 3+?T 4+?T 5+?T 6+98T 7+3087T 8+2401T 9+16807T 10.

This gives us the equations

16807 = a5a5

2401 = a4a5 + a5a4

3087 = a4a4 + (7ζ23 − 14)a5 + (7ζ3 − 14)a5.

Since 7(ζ3 − 2)3 already has norm 16807 = 75, the first equation only has the
solutions

a5 = (−ζ3)k7(ζ3 − 2)3 (k = 0, . . . , 5).

The second and third equations can be viewed as computing the trace and norm of
a4a5/7

4 ∈ Z[ζ3]; namely,

Trace(a4a5/7
4) = 1

Norm(a4a5/7
4) = −2, 11, 22, 20, 7,−4 (k = 0, . . . , 5)

(see worksheet for the second computation). We thus have

a4a5/7
4 ∈

{
1

2
± i
√
x− 1

4
: x = −2, 11, 22, 20, 7,−4

}
,

but only the value x = 7 leads to an element of Z[ζ3]. We thus must take k = 4,
yielding a5 = −133ζ3− 126 and a4 ∈ {16ζ3− 39,−35ζ3 + 21}. Only the first choice
is consistent with the equation

98 = (8ζ3 + 5)a5 + (7ζ3 − 14)a4 + (7ζ23 − 14)a4 + (8ζ23 + 5)a5

(see worksheet) so we compute

det(1− 7−1TFq, H1) = 1 + (3ζ3 + 2)T + (8ζ3 + 5)T 2 + (7ζ3 − 14)T 3

+ (16ζ3 − 39)T 4 + (−133ζ3 − 126)T 5

det(1− 7−1TFq, H2) = 1 + (3ζ23 + 2)T + (8ζ23 + 5)T 2 + (7ζ23 − 14)T 3

+ (16ζ23 − 39)T 4 + (−133ζ23 − 126)T 5
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and

P (T/7) = 1 + T + 9T 2 + 2T 3 − 31T 4 − 45T 5

− 217T 6 + 98T 7 + 3087T 8 + 2401T 9 + 16807T 10

(see worksheet). One checks that P (T/7) indeed has all complex roots of norm
7−1/2 (see worksheet).

4. The direct method for cyclic cubic threefolds

In this lecture, we describe one application of the direct method for using p-adic
cohomology to compute zeta functions, in the case of cyclic cubic threefolds. This
will be only a theoretical discussion, however; we will see that the direct method
is rather impractical for cyclic cubic threefolds, at least in the form given here.
(Recent work of David Harvey suggests that the direct method may ultimately be
practical in cases like this; see Remark 4.4.8 and the appendix for discussion.)

4.1. Frobenius actions on affine varieties. The direct method is based on
an explicit description of the Frobenius action on the rigid cohomology of an affine
variety, via the interpretation of rigid cohomology in terms of Monsky-Washnitzer
cohomology.

Definition 4.1.1. Let (X,Z) be a smooth proper pair over Zq such that U =

X \Z is affine. Let A = Γ(U,OU ) be the coordinate ring of U . Let Â be the p-adic

completion of A. Let A† be the subring of Â defined by the following condition:
we have x ∈ A† if and only if there exists some a > 0 such that for each positive
integer n, the reduction of x modulo pn has poles of order at most an along each
component of Z. (The ring A† is also known as the weak p-adic completion of A.)

Theorem 4.1.2 (Berthelot). There is a canonical isomorphism between Hi
rig(UFq

)

and the cohomology of the de Rham complex of A†⊗Zq Qq. Moreover, if (X ′, Z ′) is

another smooth proper pair, and we define (A′)† similarly, then any ring homomor-
phism f : A† → (A′)† induces the functoriality morphism Hi

rig(UFq ) → Hi
rig(U ′Fq

)

corresponding to the map X ′Fq
→ XFq

given by reducing f mod p. (Note that the

morphism A† → (A′)† need not be induced by a map X ′ → X; even if such a map
exists, that map need not carry Z ′ into Z.)

4.2. The direct method. We now describe how to execute the direct method
for computing the zeta function of a cyclic cubic threefold. This is a summary of
the approach described in more detail (and in more generality) in [1].

Procedure 4.2.1. Suppose q is a power of a prime p ≥ 5. Let X be the cyclic
cubic threefold over Fq associated to the nonsingular polynomial Q ∈ Fq[w, x, y, z].
Let o be the ring of integers in some number field, such that there exists an ideal p
of o unramified above p with residue field Fq; we identify the p-adic completion of

o with Zq. Choose a homogeneous cubic polynomial Q̃ ∈ o[w, x, y, z] lifting Q, and

put S̃ = a3 − Q̃ ∈ o[w, x, y, z, a]. Let X̃ be the cyclic cubic threefold over the local

ring op associated to Q̃.

To compute the numerator P (T ) of the zeta function of X ∼= X̃Fq
, we use the

comparisons

H3
rig(X̃Fq

) ∼= H3
dR(X̃Qq

) ∼= H4
dR(ŨQq

) ∼= H4
rig(ŨFq

)
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for Ũ = P4
Zq
\ X̃. Note however that the Frobenius action on H4

rig(U) is not quite

the same as the one on H4
rig(XFq

); rather, it is twisted by an extra factor of q.

Consequently, we compute the action of q−1Fq on H4
rig(U) rather than that of Fq.

We split the integral de Rham cohomology H3
dR(X) as a direct sum H1 ⊕H2

of eigenspaces for the action of [ζ3]. We obtain integral bases of both H1 and H2

by applying the recipes from Observation 2.3.1 modulo p and lifting to elements of
the same degree. (This succeeds in giving integral bases because p ≥ 5.)

We apply Theorem 4.1.2 to the map induced by the algebraic map Fq on P4
Zq

acting on the variables by

∗ 7→ ∗q (∗ = w, x, y, z, a).

The induced action on S̃−1 carries it to
(4.2.1.1)

S̃−q

(
1 +

Fq(S̃)− S̃q

S̃q

)−1
=

∞∑
i=0

(
−1

i

)
(a3q−Q̃(wq, xq, yq, zq)−(a3−Q̃)q)iS̃−q(i+1).

Note that this map does not carry X̃ into itself, but Theorem 4.1.2 requires no
such hypothesis. All that matters is that the powers of p in the numerator of the
summand accrue at a linear rate compared to the powers of S̃ in the denominator.

To compute the Frobenius matrix, apply the map Fq formally to each basis
vector, using the formula

q−1Fq(Ω) = q3(wxyza)q−1Ω.

The result is an infinite series, so we cannot compute it exactly; we must neglect
those terms divisible by a sufficiently large power of p. This has the effect of
eliminating terms with sufficiently many factors of S̃ in the denominator, so we
obtain an algebraic differential; we use the relations (2.2.3.1) to rewrite the resulting
algebraic differential as an exact differential plus a Q-linear combination of basis
vectors. For instance, this can be done by first eliminating the poles of highest
order, then the next highest order, and so on.

The end result is a p-adic approximation of the matrix of Frobenius onH3
rig(XFq

);
we must make some side analysis to determine exactly how accurate this matrix is.
This gives a p-adic approximation of the characteristic polynomial of this matrix,
again with some known precision; if this precision is sufficient, there will be a unique
monic polynomial with coefficients in Z and complex roots of absolute value q3/2

agreeing with this approximation. The reverse of this polynomial must then equal
P (T ).

This completes the description aside from the analysis of the initial and final
precision needed for the computation. We address these issues later in this lecture.

Remark 4.2.2. When q 6= p, one normally computes the p-power Frobenius
first and then recovers the q-power Frobenius. The most important thing to re-
member is that the p-power Frobenius is not linear on scalars; it acts via the Witt
vector Frobenius map. See [1] for more details.

4.3. Final precision. Of the two precision questions in Procedure 4.2.1, the
easier one to answer is how much p-adic precision is needed in an approximation of
the Frobenius matrix in order to uniquely determine its characteristic polynomial;
we answer this using the Riemann hypothesis condition.
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Observation 4.3.1. Retain notation as in Procedure 4.2.1. Let Φ denote the
matrix of action of Frobenius on an integral basis of H3

rig(X). We have noted earlier

(Observation 3.4.1) that Φ is divisible by q, so we work with q−1Φ instead.
We are trying to determine the degree 10 polynomial P (T/q) = det(1−q−1TΦ).

Thanks to the symmetry P (1/(q3T )) = q−15T−10P (T ), it is enough to determine
the coefficients of T j in P (T/q) for j = 1, 2, 3, 4, 5. Lemma 1.2.3 implies that once
we determine the coefficients of T k for k < j, the possible coefficients of T j lie in
a disc of radius 10

j q
j/2. It thus suffices to determine T j modulo an integer strictly

greater than twice this radius.
Suppose we have carried enough precision in Procedure 4.2.1 to compute Φ

modulo qm, or equivalently q−1Φ modulo qm−1. In case

qm−1 >
20

j
qj/2 (j = 1, 2, 3, 4, 5),

then we can uniquely reconstruct P (T/q). For q > 16, this occurs as soon as m ≥ 4
(see worksheet); for q = 7, we instead must take m = 5.

Observation 4.3.2. In case q ≡ 1 (mod 3), we can do better by computing
the matrix Φ1 via which Fq acts on the chosen basis of H1, as follows. Let q be
the ideal defined in Observation 3.4.1; in particular, q has norm q, and ζ3 reduces
modulo q to the chosen cube root of 1 in Fq.

Suppose we have computed Φ1 modulo qm, or equivalently q−1Φ1 modulo qm−1.
By Lemma 3.3.5, the coefficient of T j in det(1− q−1TΦ1) is determined modulo

qm−1, qm−1, qm, qm+1, qm+2 (j = 1, 2, 3, 4, 5).

On the other hand, the entries of q−1Φ1 have relative precision at least qm−2; that is,
each is known to be a particular power of p times a unit in Zq which is known modulo

qm−2. It follows that the same is true of the entries of q(q−1Φ1)−1 = q2Φ−11 . Since
this matrix has entries in Zq, it is known modulo qm−2. Hence by Lemma 1.2.3,

the coefficient of T j in det(1− q2TΦ−11 ) is determined modulo

qm−2, qm−2, qm−2, qm−2, qm−1 (j = 1, 2, 3, 4, 5).

However, these coefficients are the complex conjugates of the coefficients of det(1−
q−1TΦ1). Hence the latter are determined modulo

qm−2q, qm−2q, qm−2q2, qm−2q3, qm−1q3 (j = 1, 2, 3, 4, 5).

The minimum complex norm of a nonzero element of one of these ideals is the
square root of the norm of the ideal. Hence if we have the five inequalities

qm−3/2 > 10q1/2

qm−3/2 > 5q

qm−1 >
10

3
q3/2

qm−1/2 >
5

2
q2

qm+1/2 > 2q5/2

then we can reconstruct det(1− q−1TΦ1) and hence all of the zeta function.
For q sufficiently large, these five inequalities hold for m = 3; for q = 7, they

hold for m = 4 (see worksheet). These are each one less than the bounds obtained
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in Observation 4.3.1; this will lead to significant runtime improvements in our
calculations.

Remark 4.3.3. As noted in Remark 1.2.4, one can sometimes compute zeta
functions using less p-adic precision than one might initially predict, by accounting
for the Riemann hypothesis condition. We can see this explicitly for the zeta
function computed in Example 3.4.3, using the Sage package associated to the
paper [50]. For example, we find that the polynomial P (T/7) is already determined
uniquely when m = 4 (i.e, by its reduction modulo 73; see worksheet), whereas
Observation 4.3.1 only predicts this for m = 5. For another example, if we take
m = 3, then P (T/7) is determined within a list of 7 possibilities, but six of these
have irreducible factors over Q(ζ3) of degree greater than 5 (see worksheet). So
again P (T/7) is uniquely determined.

4.4. Initial precision. It remains to specify how much initial precision is
needed in the calculation of the Frobenius action on forms in Procedure 4.2.1, in
order to obtain a specific precision on the resulting Frobenius matrix. This analysis
of precision loss is one of the trickiest aspects of the direct method.

Remark 4.4.1. The analysis of precision loss serves two functions. On one
hand, it is needed in order to make provably correct calculations. On the other hand,
even if one is merely interested in experimental results which are probably correct,
one would like to generate these efficiently; analysis of precision loss suggests how
to balance speed against precision in order to avoid generating garbage data.

In the case of cyclic cubic threefolds, we first recast the precision loss problem
as follows.

Problem 4.4.2. Given a form AΩ/S̃i for A a polynomial with coefficients
in Zp, bound the denominators appearing when this form is written as an exact
differential plus a Qq-linear combination of basis forms.

Given a good enough solution of Problem 4.4.2, we can bound the precision of
the error term created by omitting terms with S̃j for j ≥ i in the denominator. We
can then determine where this truncation may be made to achieve the desired final
precision.

Example 4.4.3. In the case of cyclic cubic threefolds, simply counting divisions
by p gives a bound on the denominator in Problem 4.4.2 which is linear in i. This
is not good enough; by a somewhat complicated argument using an analysis of
integral logarithmic de Rham cohomology [1, Proposition 3.4.6], one obtains the
following bound which is logarithmic in i.

Proposition 4.4.4. Any form AΩ/S̃i, with A ∈ Zp[w, x, y, z, a], is cohomol-
ogous to a linear combination of integral basis vectors with coefficients in p−cZp
for

c =

4∑
j=1

blogp max{1, i− j}c.

Example 4.4.5. Suppose that we wish to compute the matrix Φ modulo pm.
We can write each basis differential as AΩ/S̃3 for some polynomial A; by (4.2.1.1),
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its image under Frobenius is
(4.4.5.1)

p3(wxyza)p−1Fp(A)

∞∑
i=0

(
−3

i

)
(a3p − Q̃(wp, xp, yp, zp)− (a3 − Q̃)p)iS̃−p(i+3).

We wish to compute a quantity N such that if if we consider the terms of (4.4.5.1)
for which i ≥ N , then their reductions to the basis vectors have coefficients in
pmZp. The i-th term in the sum is divisible by p3+i, so it would suffice to have

(4.4.5.2) 3 + i−m ≥ 4blogp(p(i+ 3)− 1)c (i = N,N + 1, . . . ).

For p = 7, we know by Observation 4.3.2 that it suffices to take m = 4 to recover
the zeta function. In this case, (4.4.5.2) holds for N = 9 but not for any smaller
value (see worksheet for a check up to i = 75).

Remark 4.4.6. By further accounting for the Frobenius action [1, Proposi-
tion 3.4.9], one gets a bound which is asymptotically 3 logp(i). While this is sus-
pected to be asymptotically optimal, it seems to be suboptimal for small values.
Improving the bound may lead to significant runtime improvements in practice, by
reducing the degrees of the polynomial approximations needed in the truncations
of Frobenius.

In the particular case of Example 1.6.1, taking p = 7 and m = 3 (as in Re-
mark 4.3.3), we may apply [1, Algorithm 3.4.10] (using the associated Magma code
from [1]) to see that we can ignore all terms in the expansion divisible by p9. In
our notation, this means we may take N = 6.

However, even this level of precision is difficult to achieve in practice; we must
work with polynomials in five variables with coefficients in Z/7nZ for n at least 9, of
total degree 3·p·(N−1) = 105. We will thus not carry out any demonstration of the
direct method here. (See the associated Magma code of [1] for a demonstration for
surfaces, where the situation is somewhat less dire. See also Remark 4.4.8 below.)

Remark 4.4.7. The analogous analysis of precision loss in Kedlaya’s algorithm
is [47, Lemmas 2 and 3]; however, note the erratum which corrects the latter. The
erratum also points out that the analysis in [47], while not phrased in terms of
integral de Rham cohomology, can indeed be interpreted this way.

Remark 4.4.8. After the original version of these notes was prepared, David
Harvey proposed an alternate reduction algorithm for de Rham cohomology in this
setting, in which one structures the reduction in order to use only sparse polyno-
mials. This may render the direct cohomological method much more practical than
we had previously anticipated. See the appendix for further discussion.

5. Picard-Fuchs-Manin connections

In this lecture, we discuss the relative version of algebraic de Rham cohomology.
This gives rise to certain special differential systems classically called Picard-Fuchs
systems, and often nowadays called Gauss-Manin connections. We will use these in
the next lecture to execute the deformation method for computing zeta functions.

5.1. Connections on vector bundles. Before describing Picard-Fuchs-Manin
connections, we recall the general notion of a connection on a vector bundle over a
subset of P1.
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Definition 5.1.1. Let K be a field of characteristic zero. Let B be a nonempty
open subscheme of P1

K . Let E be a vector bundle over B. A connection on E is a
bundle map ∇ : E → E ⊗ΩB/K which is additive and satisfies the Leibniz rule: for
V ⊆ B open, s ∈ Γ(V,O), and v ∈ Γ(V, E),

∇(sv) = s∇(v) + v ⊗ ds.

Observation 5.1.2. In order to compute with connections, we will describe
them in terms of matrices as follows. Keep notation as in Definition 5.1.1, but
assume now that ∞ /∈ B and that v1, . . . ,vn is a basis of sections of E . Define the
n× n matrix N over Γ(B,O) by the equation

∇(vj) =

n∑
i=1

Nijvi ⊗ dt (j = 1, . . . , n).

By additivity and the Leibniz rule, we can recover ∇ from N . The simplest way
to express that statement is to use the basis to identify sections of E with column
vectors of functions; then

∇

f1...
fn

 =

d(f1)
...

d(fn)

+N

f1 dt...
fn dt

 .

In other words, ∇ = d+N dt.

Observation 5.1.3. The effect of changing basis in Observation 5.1.2 is as
follows. Let w1, . . . ,wn be a second basis of E . Define the change of basis matrix
U from v1, . . . ,vn to w1, . . . ,wn to be the n× n matrix satisfying

(5.1.3.1) wj =

n∑
i=1

Uijvi (j = 1, . . . , n).

Then the matrix representing the connection in terms of w1, . . . ,wn is

U−1NU + U−1
d

dt
(U).

We will be interested in a special class of connections.

Definition 5.1.4. With notation as in Observation 5.1.2, and z ∈ Kalg, we
say the basis v1, . . . ,vn is regular at z (or Fuchsian at z) if the matrix (t− z)N is
holomorphic in a neighborhood of z. We say that E is regular at z if it admits a
regular basis on some neighborhood of z. Another way to say this is that E can be
extended across z so that the connection has only logarithmic singularities at z.

This definition is invariant under automorphisms of P1. It thus makes sense to
extend it to z =∞ by using any coordinate change moving∞ to a finite point (since
the resulting definition will not depend on the choice of the coordinate change). For
instance, we may use the substitution t 7→ t−1; it then follows that a basis is regular
at ∞ if and only if each entry of the matrix N has a zero at t = ∞. In concrete
terms, for each entry of N , the degree of the numerator must be strictly less than
the degree of the denominator.

Definition 5.1.5. With notation as in Observation 5.1.2, and z ∈ Kalg, sup-
pose that the basis v1, . . . ,vn is regular at z. The residue matrix at z of this basis
is the matrix obtained from (t−z)N by reducing modulo t−z; if z ∈ B, this matrix
is zero. The exponents at z of the basis are the eigenvalues of the residue matrix.
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Note that one can change from one regular basis to another without preserving
the exponents; for instance, changing basis to (t−z)v1, . . . , (t−z)vn replaces N by
N+(t−z)−1In, which increases each exponent by 1. However, it can be shown that
as a multisubset of the quotient group Kalg/Z, the set of exponents of a regular basis
is independent of the choice of the regular basis; we call this the set of exponents
of E at z.

If z = ∞, we may define the residue matrix to be the matrix obtained from
−tN by reducing modulo t−1, and proceeding similarly.

The following lemma demonstrates the use of shearing transformations.

Lemma 5.1.6. With notation as in Definition 5.1.5, suppose that the exponents
of the basis v1, . . . ,vn at some z ∈ Kalg are integers in the range {−a, . . . , b}.
Then there exists an invertible n × n matrix U over K(t) such that (t − z)bU and
(t−z)aU−1 are regular at z, and the basis w1, . . . ,wn of E (over some neighborhood
of z) defined by (5.1.3.1) is regular at z with all exponents equal to 0.

Proof. This reduces to the fact that one can shift the largest exponent down
by 1 using a change of basis matrix U such that (t − z)U and U−1 are regular
at z. We may first use a change of basis defined over K (which acts on N by
simple conjugation, since its derivative vanishes) to ensure that the reduction of
(t − z)N modulo (t − z) is a block matrix with each block corresponding to the
generalized eigenspace of a different eigenvalue. We then change basis by the block
diagonal matrix U which is (t−z)−1 times the identity on the block with the largest
exponent, and the identity on the other blocks. �

Remark 5.1.7. Associated to a connection is a representation of the topological
fundamental group π1(B, x) called the monodromy representation. It is defined
as follows. Construct a basis of local horizontal sections at the base point x of
the fundamental group. For any loop in B, analytically continue these horizontal
sections along the loop. The image of the monodromy representation on this loop
is the linear transformation on the fibre Ex taking the restriction to x of each basis
section to the restriction of x of its analytic continuation.

In general, it is somewhat hard to identify the eigenvalues of a monodromy
transformation. However, if E is regular at z with exponents λ1, . . . , λn, then
the eigenvalues of the monodromy transformation corresponding to a loop going
counterclockwise once around z (and enclosing no other points of P1 \ B) are
e−2πiλ1 , . . . , e−2πiλn .

5.2. Relative de Rham cohomology.

Definition 5.2.1. Let f : X → B be a smooth morphism over a field K of
characteristic zero, for B a nonempty open subscheme of P1

K . The relative de Rham
cohomology of X/B is the collection of sheaves Hq

dR(X/B) whose sections over an
open affine V ⊂ B are the hypercohomology of the relative de Rham complex
Ω·X/V . The fact that this gives a sheaf follows from the preservation of coherent

cohomology under flat base change. For f proper, this construction also commutes
with arbitrary base change; this follows from Grothendieck’s comparison theorem
(Theorem 2.1.3). This fails if f is not proper; consider

SpecK[x, y, z]/((x+ y)(x− y)z − 1) 7→ SpecK[x],

in which the Betti numbers of the fibre x = 0 differ from the generic values.
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Since mixed partial derivatives commute and the computation of relative de
Rham cohomology only involves “vertical” differentiation (along fibres), the result
should carry an action of “horizontal” differentiation (along the base). This is in
fact the case; this is captured by a construction of Katz and Oda.

Definition 5.2.2. Equip the de Rham complex Ω·X/K with the decreasing

filtration

F i = image[Ω·−iX/K ⊗OX
π∗(ΩiB/K)→ Ω.X/K ],

then form the corresponding spectral sequence. The E1 term of the result has

Ep,q1 = ΩpB/K ⊗OB
Hq

dR(X/B);

the algebraic Picard-Fuchs-Manin (Gauss-Manin) connection is the differential d1 :

E0,q
1 → E1,q

1 .

Remark 5.2.3. In practice, we will compute only in the case where X is affine.
In this case, the definition of d1 amounts to the following: lift a relative cohomology
class to an absolute differential form (no longer a cocycle), differentiate, and project
the result back into relative cohomology.

Definition 5.2.4. Suppose that K is a subfield of C. Then the fibration
f : X → B is locally trivial in the category of real differentiable manifolds. On a
contractible open subset of B, we may canonically identify the complex homology
classes of the fibres; this gives a real differentiable connection on Hq

dR(X/B), called
the topological Picard-Fuchs-Manin connection. It turns out that this is holomor-
phic (see [31]), and that it agrees with the algebraic Picard-Fuchs-Manin connection
(see [46]).

Theorem 5.2.5. With notation as in Definition 5.2.2, the algebraic Picard-
Fuchs-Manin connection is regular at every geometric point of P1

K , with all expo-
nents in Q/Z.

5.3. Pencils of cyclic cubic threefolds. We now explain how to compute
the Picard-Fuchs-Manin connection for certain families of cyclic cubic threefolds.

Procedure 5.3.1. Let K be a field of characteristic zero. Take Q0 = w3+x3+
y3 + z3, and let Q ∈ K[w, x, y, z] be a second homogeneous polynomial of degree 3
such that Q1 = Q0 +Q is nonsingular. Put Qt = Q0 + tQ. For t ∈ Kalg, let

Jt = K[w, x, y, z]/(Qt,w, Qt,x, Qt,y, Qt,z)

be the Jacobian ring of Qt. (Here Qt,w denotes the partial derivative with respect
to w of the polynomial Qt, and similarly.)

We wish to consider the pencil π : X → P1
K of cyclic cubic threefolds defined

by S = a3−Qt, as well as the complementary family τ : U → P1
K for U = P3

P1
K
\X.

By Lemma 1.4.2, a fibre Xt is smooth if and only if the cubic surface defined by
Qt is smooth; in particular, the fibres X0, X1 are smooth.

Let B ⊂ P1
K be the open subscheme over which π is smooth; since 0, 1 ∈ B, B

is nonempty. Put E = H3
dR(XB/B), which we will also interpret as H4

dR(UB/B).
Using the order 3 automorphism a 7→ ζ3a, we split E = E1⊕E2 with Ei transforming
like ai. The Picard-Fuchs-Manin connection on E splits into separate connections
for E1 and E2, which we now describe individually.
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Let us start with E1. Choose b ∈ K[w, x, y, z] such that b generates the degree
4 subspace of J0, J1. Let B1 be the open subscheme of B consisting of those t for
which b spans the degree 4 subspace of Jt; by construction, 0, 1 ∈ B1.

Now differentiate each of the basis elements

wΩ

S2
,
xΩ

S2
,
yΩ

S2
,
zΩ

S2
,
bΩ

S3

with respect to t, obtaining

2wQΩ

S3
,

2xQΩ

S3
,

2yQΩ

S3
,

2zQΩ

S3
,

3bQΩ

S4
,

then reduce each of these back into the desired form using the relations

(5.3.1.1)
AiΩ

Sj
≡ −j (3i2 + tQi)AΩ

Sj+1
(i ∈ {w, x, y, z}).

This amounts to a large linear algebra calculation over K(t), and for best results it
may be preferable to implement it that way. However, we found it easiest to imple-
ment this using Gröbner basis methods to express a form as a linear combination
of terms amenable to (5.3.1.1). In any case, the entries of the resulting matrix N1

will belong to the coordinate ring of B1.
Let us now consider E2. Choose b1, b2, b3, b4 ∈ K[w, x, y, z] which span the

degree 3 subspace of J0, J1. Let B2 be the open subscheme of B of those t for which
b1, b2, b3, b4 span the degree 3 subspace of Jt; again by construction, 0, 1 ∈ B2.

Again, differentiate each of the basis elements

aΩ

S2
,
ab1Ω

S3
,
ab2Ω

S3
,
ab3Ω

S3
,
ab4Ω

S3

with respect to t, obtaining

2aQΩ

S3
,

3ab1QΩ

S4
,

3ab2QΩ

S4
,

3ab3QΩ

S4
,

3ab4QΩ

S4
,

then reduce each of these back into the desired form using the relations

(5.3.1.2)
aAiΩ

Sj
≡ −j a(3i2 + tQi)AΩ

Sj+1
(i ∈ {w, x, y, z}).

This time, the entries of the resulting matrix N2 will belong to the coordinate ring
of B2.

Example 5.3.2. We calculate the matrix N1 for K = Q,

Q1 = w3 + x3 + y3 + z3 + (w + x)(w + 2y)(w + 3z) + 3xy(w + x+ z)

(as in Example 1.6.1), and b = wxyz (see worksheet). This computation was carried
out using Gröbner basis methods over the coefficient field Q(t), as implemented in
Magma (see Remark 5.3.4 for the reason why); it required about twenty seconds to
complete.

We then analyze the singular points of the connection as follows. The matrix
N1 has entries in Q(t), and the least common denominator ∆ ∈ Z[t] of the entries
factors as ∆ = ∆1∆2∆3 where ∆1 = t + 3, ∆2 is a polynomial of degree 23, and
∆3 is a polynomial of degree 26 (see worksheet). In particular, ∆ is squarefree, so
our chosen basis is regular at all finite points.
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We next compute the exponents at each of these singular points. For i = 1, 2, 3,
we compute the characteristic polynomial of N1∆/∆′(t) in Q[t]/(∆i); we get

x3 (x+ 1)

(
x+

1

2

)
(i = 1)

x4 (x− 1) (i = 2)

x4
(
x+

7

6

)
(i = 3)

(see worksheet). In particular, the points of ∆1,∆3 have a nonintegral exponent
and so must be true singularities of the connection, whereas we cannot tell about
∆2. We will see below (Example 5.3.3) that in fact the singularities at ∆2 can be
eliminated by a change of basis.

Finally, we analyze the situation at infinity. The given basis is not regular here,
because the last row contains entries which are regular but nonvanishing at t =∞
(see worksheet). However, if we change basis using the matrix

U =


1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 t

 ,

then we get a regular basis (see worksheet). Computing the characteristic polyno-
mial of the residue matrix yields(

x− 3

2

)(
x− 4

3

)(
x− 5

3

)3

(see worksheet).

Example 5.3.3. We calculate the connection matrix again as in Example 5.3.2,
but this time with b = wxyz + w4 (see worksheet). Let Ñ1 be the new connection

matrix, and let ∆̃ be the least common denominator of the entries of Ñ1. Then we
compute that gcd(∆, ∆̃) = ∆1∆3 (see worksheet); we deduce that the singularities
of N1 at ∆2 can be removed by changing basis (i.e., they are so-called apparent
singularities).

Remark 5.3.4. The reason that we used Magma instead of Sage for this calcu-
lation is that we use Gröbner bases for polynomials over the field Q(t), which are
well supported in Magma. By contrast, Sage does not support such polynomials di-
rectly; one can directly call Singular to work with such polynomials, but this does
not work well in the version of Sage that we tried, as even basic operations take
an unacceptably long time to complete. (By contrast, working over Fq(t) causes no
such problems.)

5.4. Optional: Exponents in a pencil of cyclic cubic threefolds. We
include some discussion of the possible exponents of a Picard-Fuchs-Manin connec-
tion associated to a pencil of cyclic cubic threefolds.

Observation 5.4.1. By Theorem 5.2.5, the exponents of the Picard-Fuchs-
Manin connection associated to a family of cyclic cubic threefolds at any (necessarily
regular) singular point are rational numbers. We may bound the lowest common
denominator of these numbers as follows. The exponents of the full connection are
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the union of the exponents of E1 and E2. The corresponding sets of local monodromy
eigenvalues are interchanged by any automorphism in Gal(Q/Q) which does not fix
ζ3.

Hence, any ζn with n not divisible by 3, if it occurs at all, occurs together with
all of its conjugates in each of E1 and E2. This can only happen if φ(n) ≤ 5, i.e., if
n ∈ {1, 2, 4, 5, 8, 10}. If n is divisible by 3, then ζn and its conjugates split between
E1 and E2; we must still have φ(n) ≤ 10, so n ∈ {3, 6, 9, 12, 15, 18, 24, 30}.

Definition 5.4.2. A Lefschetz pencil is a pencil of hypersurfaces in which each
singular fibre contains a single rational double point and no other singularities.
Unfortunately, a pencil of cyclic cubic threefolds can never be a Lefschetz pencil,
because the generic degeneration is a rational triple point. However, we can ask
for the underlying pencil of cubic surfaces to be a Lefschetz pencil; in that case,
a Hodge-theoretic argument shows that the denominators of the exponents (in the
Picard-Fuchs-Manin connection for the family of cyclic cubic threefolds) in fact
always divide 6. (Thanks to Jim Carlson for pointing this out.)

6. The deformation method for cyclic cubic threefolds

In this lecture, we describe the Frobenius actions on Picard-Fuchs-Manin con-
nections obtained by relating relative de Rham cohomology to relative rigid coho-
mology. We then execute the deformation method for computing the zeta function
for our generic example of a cyclic cubic threefold. This amounts to solving the dif-
ferential equation imposed on the Frobenius structure by its compatibility with the
connection, using the Frobenius matrix of the Fermat cubic as an initial condition.

6.1. Frobenius structures.

Definition 6.1.1. Let q be a prime power. Let σ : P1
Qq
→ P1

Qq
denote the

map induced by the σq-semilinear map carrying t to tq, for σq the Witt vector
q-Frobenius. That is, if x =

∑
i cit

i with ci ∈ Qq, then the pullback σ∗(x) equals∑
i σq(ci)t

qi. We will normally use the case q = p, in which case σq is the identity
map and σ is just the substitution t 7→ tp.

Definition 6.1.2. Let V be a rigid (or Berkovich) analytic subspace of P1
Qq

such that σ−1(V ) ⊆ V . Let E be a vector bundle with connection on V . A Frobenius
structure on E is an isomorphism F : σ∗E ∼= E of vector bundles with connection on
σ−1(V ). We typically view F as a σ-semilinear map on E ; that is, for f a section
of O and s a section of E , F (fs) = σ(f)F (s).

Most Frobenius structures arise from the following construction.

Theorem 6.1.3 (Berthelot). Let B be an open formal subscheme of the com-
pletion of P1

Zq
along its special fibre. Let Π : X→ B be a smooth proper morphism

of formal schemes over Spf Zq. Let X,B be the Raynaud generic fibres of X,B, in
the category of rigid analytic spaces. Let V be the subspace of B consisting of points
with reduction in BFq

. Then the restriction of Hi
dR(X/B) to V admits a Frobenius

structure with the property that for any t ∈ BFq
, for [t] ∈ Ban the Teichmüller lift

of t, the restriction of F to Π[t] gives the Frobenius action on Hi
rig(Xt).

Observation 6.1.4. In order to compute with a Frobenius structure, we need
to make explicit how it acts in terms of differential systems. Let us do this now.
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Suppose v1, . . . ,vn is a basis of E , and that N is the matrix of action of d
dt as

in Observation 5.1.2. Define the n× n matrix Φ by setting

F (vj) =

5∑
i=1

Φijvi (j = 1, . . . , 5).

The matrix Φ will have entries in the p-adic completion of Qq(t) for the Gauss norm
(that is, the norm of a polynomial is the maximum norm of any of its coefficients).
More precisely, modulo any power of p, the entries of Φ will be congruent to rational
functions with no poles in V .

The action of Φ on column vectors is given by

F

f1...
fn

 = Φ

σ(f1)
...

σ(fn)

 .

Hence the effect of changing basis by a matrix U is to replace Φ by

U−1Φσ(U).

The fact that Φ is an isomorphism of vector bundles with connection, not just
an isomorphism of vector bundles, is expressed by the compatibility equation

(6.1.4.1) NΦ +
d

dt
(Φ) = qtq−1Φσ(N).

Given N , this expresses Φ as the solution of a differential system; that observation
is the basis of the deformation method.

Example 6.1.5. In the case of cyclic cubic threefolds, the Frobenius structure
and the cyclic automorphisms interact via the commutation relation

F ◦ [ζ3] = [ζ3]q ◦ F.

(compare Definition 1.4.4). If q ≡ 1 (mod 3), this means that the Frobenius struc-
ture acts separately on E1 and E2. That is, when written in terms of a basis as
in Procedure 5.3.1, the matrix Φ splits as a block diagonal matrix in which the
diagonal blocks Φ1,Φ2 describe the Frobenius structures on the chosen bases of
E1, E2.

If q ≡ 2 (mod 3), then E1 and E2 are interchanged rather than preserved by the
Frobenius structure. Thus Φ is again a block matrix, but now it is the off-diagonal
blocks which are nonzero.

6.2. Solving for the Frobenius structure. As noted above, the compati-
bility equation (6.1.4.1) imposes a differential equation on the entries of the matrix
describing a Frobenius structure on a connection. To solve this equation, it is
convenient to first solve the connection itself; we may do this using power series
expansions around a point.

Lemma 6.2.1. Let N =
∑∞
i=0Nit

i be an n× n matrix over QqJtK. Then there
is a unique n× n matrix U =

∑∞
i=0 Uit

i over QqJtK with U0 = In satisfying

(6.2.1.1) NU +
d

dt
(U) = 0.
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Proof. (Compare [53, Proposition 7.3.6].) Extracting the coefficient of ti−1

on the left side of (6.2.1.1) gives the equation

iUi = −
i−1∑
j=0

Ni−jUj ,

which determines Ui in terms of U0, . . . , Ui−1. �

Definition 6.2.2. With notation as in Lemma 6.2.1, we call U the fundamental
solution matrix of N .

Remark 6.2.3. One can give a quadratically convergent algorithm to com-
pute U , in the manner of the Newton-Raphson method of approximating roots of
polynomials. Start with U = In, then repeatedly replace U with

U

(
In −

∫
(U−1NU + U−1

d

dt
(U)) dt

)
.

After i iterations, U will agree with the fundamental solution matrix modulo t2
i

.
However, if one is working with p-adic approximate numbers rather than exact
rationals, one must be careful about p-adic numerical precision; see Remark 6.4.6
below.

We can now compute the Frobenius matrix given the initial condition of its
value at t = 0, as follows.

Lemma 6.2.4. Let N =
∑∞
i=0Nit

i and Φ =
∑∞
i=0 Φit

i be n × n matrices over
QqJtK satisfying (6.1.4.1). Let U be the fundamental solution matrix for N . Then

(6.2.4.1) Φ = UΦ0σ(U)−1.

Proof. The compatibility equation (6.1.4.1) is preserved by the change of basis
N 7→ U−1NU+U−1 ddt (U), Φ 7→ U−1Φσ(U). This implies d

dt (U
−1Φσ(U)) = 0; since

U ≡ In (mod t), we must have U−1Φσ(U) = Φ0. This proves the claim. �

6.3. The deformation method. We can now describe the deformation method
in the case of cyclic cubic threefolds.

Procedure 6.3.1. Retain notation as in Procedure 4.2.1, but assume that q ≡
1 (mod 3). Use Procedure 5.3.1 to compute the Picard-Fuchs-Manin connection
associated to the pencil of cyclic cubic threefolds in which the fibre at t = 0 is the
Fermat cubic, while the fibre at t = 1 is the cyclic cubic threefold associated to the
polynomial Q̃. Let N1 denote the matrix of action of d

dt on the chosen basis of E1.
Let Φ1 denote the matrix of action of the Frobenius structure constructed using
Theorem 6.1.3 on the chosen basis of E1.

At t = 0, each basis vector is an eigenvector for the group action on the Fermat
cubic given in Procedure 1.5.2. Hence we may read off the matrix Φ1(0) as the di-
agonal matrix with eigenvalues computed as in Procedure 1.5.2, once we remember
our choice of the identification of Z[ζ3] with a subring of Zq (see Observation 3.4.1).

We now compute a t-adic approximation to the fundamental solution matrix U
of N1, to a precision to be specified later (Subsection 6.5). In QqJtK, we may thus
write Φ1 = UΦ1(0)σ(U)−1 by Lemma 6.2.4.

By Theorem 3.3.1 applied at the generic point, Φ1 has entries in ZqJtK. Modulo
qm, we may identify the reduction of Φ1 as the series expansion of a rational function
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with all poles congruent modulo p to poles of N1. (This requires having a bound on
the number of these poles, so we can be sure to have carried enough t-adic precision.
See Subsection 6.5.)

With this done, we can evaluate this rational function at t = 1 to obtain the
Frobenius matrix on H3

rig(X) modulo qm. For m as in Observation 4.3.2, this
suffices to determine the zeta function of X.

Let us now carry out this computation for our chosen example of a cyclic cubic
threefold over F7 (Example 1.6.1). For this computation, we take m = 3; while this
is not quite enough to be sure a priori of uniquely determining the zeta function
(Observation 4.3.2 only guarantees this for m = 4), we know from our previous
computation that it suffices in this case (Remark 4.3.3). (Note that we also need
to know that we have an integral basis of each of E1, E2; this follows from the fact
that the basis conditions in Observation 2.3.1 are satisfied over F7.)

Example 6.3.2. We first compute an approximation modulo t500 to the funda-
mental solution matrix U for N1 (see worksheet), using a quadratically convergent
algorithm (Remark 6.2.3). It is somewhat time-consuming to compute this series
with exact rational coefficients; since we will end up reducing modulo a small power
of 7 later, we work with 7-adic coefficients with maximum relative precision 150.
Even so, this requires about 15 minutes; however, it should be possible to speed
this up substantially. See Remark 6.4.6.

Note that the minimum 7-adic valuation of any coefficient appearing in our ap-
proximation of U is only −3 (see worksheet). By contrast, the proof of Lemma 6.2.1
only guarantees that the entries of U modulo t500 have coefficients with 7-adic val-
uation at least

−
⌊

500

7

⌋
−
⌊

500

72

⌋
−
⌊

500

73

⌋
= −82.

This discrepancy is explained qualitatively by the fact that the existence of a Frobe-
nius structure forces the entries of U to converge for t in the whole open unit disc.
It is explained more quantitatively by certain explicit convergence bounds for p-adic
differential equations; see Theorem 6.4.3.

Example 6.3.3. We next compute the matrix Φ1 of action of the Frobenius
structure on the chosen basis of E1, using the formula (6.2.4.1). In this equation,
U is as computed in the previous example, while Φ1(0) is the Frobenius matrix for
the Fermat cubic threefold. By Proposition 1.5.2, the latter matrix is diagonal with
diagonal entries

21ζ3 + 7, 21ζ3 + 7, 21ζ3 + 7, 21ζ3 + 7,−21ζ3 − 14

as computed in Example 1.5.3. Here we identify ζ3 with the Teichmüller lift of 2
in Q7.

After computing Φ1, we check (see worksheet) that 7−1Φ1 has entries in Z7JtK,
and all of the columns except the rightmost one have entries in 7Z7JtK.

Example 6.3.4. We next reduce 7−1Φ1 modulo 72 and multiply by the degree
218 polynomial ∆13

1 ∆2∆7
3. In the resulting matrix, each entry is congruent modulo

t500 to a polynomial of degree at most 211 (see worksheet). This suggests that we
have carried enough t-adic precision to identify these series as rational functions
with divisors no less than

−13(∆1)− (∆2)− 7(∆3) + 7(∞).
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We will prove that this is the case in Subsection 6.5.

Example 6.3.5. Finally, we evaluate these polynomials at t = 1, then divide
by (∆13

1 ∆2∆7
3)(1) to get a 7-adic matrix which is congruent to 7−1Φ1 modulo 72.

Let A be a lift of this matrix to Z. Then the coefficient of T j in det(1−TA) agrees
with the expected answer

1 + (3ζ3 + 2)T + (8ζ3 + 5)T 2 + (7ζ3 − 14)T 3 + (16ζ3 − 39)T 4 + (−133ζ3 − 126)T 5

from Example 3.4.3 modulo

p3, p2, p3, p4, p5 (j = 1, 2, 3, 4, 5)

(see worksheet). Here as before, p is the prime ideal (ζ3 − 2) of Z[ζ3], which has
norm 7. This is consistent with Observation 4.3.2, which predicts this agreement
modulo

p2, p2, p3, p4, p5 (j = 1, 2, 3, 4, 5)

Meanwhile, the coefficient of T j in det(1−7TA−1) agrees with the expected answer

1 + (3ζ23 + 2)T + (8ζ23 + 5)T 2 + (7ζ23 − 14)T 3 + (16ζ23 − 39)T 4 + (−133ζ23 − 126)T 5

from Example 3.4.3 modulo

p, p, p, p, p2 (j = 1, 2, 3, 4, 5)

(see worksheet). This is also consistent with Observation 4.3.2.

6.4. p-adic precision. One can significantly reduce the p-adic precision re-
quired for computing Frobenius structures by using effective bounds for convergence
of solutions of fundamental solution matrices.

Notation 6.4.1. Let QqJtK0 be the subring of QqJtK consisting of series with
bounded coefficient; that is,

QqJtK0 = ZqJtK⊗Zq Qq

Let | · | denote the supremum norm.

Even without accounting for Frobenius structures, one obtains an extremely
strong effective convergence bound for convergent solutions of bounded nonsingular
differential equations on the unit disc.

Theorem 6.4.2 (Dwork-Robba). For i ≥ 0, define

f(i) =

i∑
j=i−n+2

blogp max{1, j}c.

Let N =
∑∞
i=0Nit

i be an n × n matrix over QqJtK0. Let U =
∑∞
i=0 Uit

i be the
fundamental solution matrix of N . Suppose that the entries of U and U−1 are
convergent on the open unit disc (but not necessarily bounded). Then

|Ui| ≤ pf(i) max{1, |N |n−1} (i ≥ 0).

However, it is better in general to account for Frobenius structures when pos-
sible, as follows.
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Theorem 6.4.3. For i ≥ 0, define

g(i) = f(biq−blogq icc),

for f(i) as in Theorem 6.4.3. Let σ denote the σq-semilinear substitution t 7→ tq

on QqJtK. Let N =
∑∞
i=0Nit

i be an n× n matrix over QqJtK0. Let A =
∑∞
i=0Ait

i

be a matrix over QqJtK0 with A0 invertible, and suppose that

NA+
d

dt
(A) = qtq−1Aσ(N).

Then:

(a) the fundamental solution matrix U of N satisfies

U−1Aσ(U) = A0;

(b) we have

|Ui| ≤ |N |n−1pg(i)(|A−10 ||A|)blogq ic;

in particular, U converges on the open unit disc.

Example 6.4.4. In Example 6.3.2, the matrix N1 has supremum norm bounded
by 1. Theorem 6.4.2 predicts that the fundamental solution matrix modulo t500

has coefficients of valuation at least −4blog7(500)c = −12. On the other hand,
we have a Frobenius structure given by a matrix A with |A| = 1 and |A−1| = 7,
so Theorem 6.4.3 implies that the fundamental solution matrix modulo t500 has
coefficients of valuation at least −3. The latter agrees with the computed value
from Example 6.3.2.

Remark 6.4.5. The quantity |A−10 ||A| in Theorem 6.4.3 is determined by the
difference between the greatest and least Hodge slopes of A. In case the Newton
polygon of A lies strictly above the Hodge polygon, one can refine the bounds by
replacing the Frobenius structure by a power of itself, whose Hodge slopes are closer
to the Newton slopes (as in [44, Corollary 1.4.4]). We will not take advantage of
this refinement here.

Remark 6.4.6. In the situation of Theorem 6.4.2, one would like to able to
compute U in a manner which is p-adically numerically stable, i.e., which does not
require as much intermediate p-adic precision as is needed in the case when the
entries of U really do have fast-growing denominators. The best one can hope for,
in case |N | = 1, is to compute U modulo (pm, tN ) given N modulo (ph+m, tN ),
where h is the number of factors of p appearing in the denominators of U modulo
tN . The algorithm of Remark 6.2.3 is quite far from this; one can do slightly
better by taking p into account in a limited fashion. For instance, one can proceed
as in Remark 6.2.3 but first eliminating only terms ti with i not divisible by p,
then with i not divisible by p2, and so on. A much better algorithm would be to
directly imitate a proof of Theorem 6.4.3 (see references in the appendix), but this
is somewhat more complicated to implement.

In the context of Picard-Fuchs-Manin connections, one can usually maintain
p-adic numerical stability by writing the differential equation as a linear recursion
of finite length (with matrix coefficients). That way, one can control the p-adic
precision loss rather directly; for instance, see [61, Theorem 5.1] or [40, Theorem 2].
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6.5. t-adic precision. To complete the description of the deformation method,
we must explain how to bound the degree of a rational function given by reducing a
Frobenius matrix modulo a power of p, so that we can provably recover this rational
function by computing some specific number of coefficients of its Taylor expansion
around t = 0. We start with a qualitative result.

Definition 6.5.1. Set notation as in Theorem 6.1.3. A strict neighborhood of
V is a rigid analytic subspace W of P1

Qq
containing V , consisting of a closed disc

of radius strictly greater than 1 around the origin, minus finitely many open discs
of discs of radius strictly less than 1 centered at points in the closed unit disc. In
more geometric terms, W is a neighborhood of V within P1

Qq
containing V in its

relative interior.

Theorem 6.5.2 (Berthelot). Set notation as in Theorem 6.1.3. Then the Frobe-
nius structure F extends over some strict neighborhood of V .

Remark 6.5.3. This implies that the reduction of the matrix Φ modulo pn is
a rational function of total degree bounded by some linear function of n. However,
we do not obtain an effective bound either on the slope or the constant term of this
linear function. For this, we need the quantitative Theorem 6.5.10 below.

Remark 6.5.4. In the language of p-adic cohomology, Theorem 6.5.2 asserts
that the relative rigid cohomology in this setting forms an overconvergent F -isocrystal
on the smooth locus of the family. For more discussion of this concept, see the ap-
pendix.

To obtain a quantitative refinement of Theorem 6.5.10, one could apply known
precision bounds for the direct method (Subsection 4.4) to the generic fibre. How-
ever, since these bounds are known experimentally to be suboptimal, this will result
is a suboptimal refinement. One can do much better by making a careful analysis
of Frobenius structures on connections over a p-adic disc, as follows.

We first observe that we can convert the Frobenius structure from one Frobenius
lift to another, using Taylor series.

Theorem 6.5.5. With notation as in Theorems 6.1.3 and 6.5.2, let σ′ : P1
Qq
→

P1
Qq

be any σq-semilinear map carrying t to something congruent to tq mod p. Then

Hi
dR(X/B) also admits a Frobenius structure F ′ on a strict neighborhood of V with

respect to σ′, defined by

(6.5.5.1) F ′(v) =

∞∑
i=0

1

i!
(σ′(t)− σ(t))iF

(
di

dti
(v)

)
.

This computes the Frobenius matrix on a fibre Xt by specialization to the unique lift
of t carried to its σq-image by σ′.

Proof. The series converges on a strict neighborhood because the presence of
the Frobenius structure forces the generic radius of convergence of the connection
to equal 1 [53, Proposition 17.2.3]. Given that, the Leibniz rule implies first that
on the trivial connection module (i.e., functions on P1

Qq
),

F ′(t) = t+ (σ′(t)− σ(t))F (t) = σ′(t).

(This observation is a good way to remember the formula (6.5.5.1).) The Leibniz
rule then implies that on any connection module, F is semilinear for σ′. For more
details, see references in the appendix. �
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Example 6.5.6. In the situation of Example 6.3.2, we compute the Frobenius
structure with respect to the map σ′ given by

σ′(t) = (t+ 3)7 − 3,

modulo 73. Let Φ′1 be the matrix of action on our chosen basis. Given the series
representation of the matrix 7−1Φ1 modulo 73, we compute by (6.5.5.1)

7−1Φ′1 ≡ 7−1Φ1 + ((t+ 3)7 − 3− t7)7−1Φ1σ(N1)

+
1

2
((t+ 3)7 − 3− t7)27−1Φ1σ

(
N2

1 +
d

dt
(N1)

)
(mod 73).

To recover the characteristic polynomial of the fibre of XF7
above t = 1, we must

specialize Φ′1 to the unique point in that residue disc which is fixed by the map
t 7→ (t+3)7−3. This point is none other than ζ23−3 ≡ 15 (mod 73) (see worksheet).
Clearing denominators and then evaluating at this point, we obtain another char-
acteristic polynomial with the same accuracy as in Example 6.3.5 (see worksheet).

The point of converting the Frobenius structure is to be able to take advantage
of the following fact [53, Proposition 17.5.1].

Lemma 6.5.7. Let N =
∑∞
i=−1Nit

i be an n×n matrix such that the entries of
tN are power series over Qq convergent on the open unit disc, and N−1 is a nilpotent
matrix. Let Φ =

∑∞
i=−∞ Φit

i be an n× n matrix whose entries are Laurent series
over Qq convergent on some open annulus with outer radius 1. Suppose that N,Φ
satisfy (6.1.4.1). Then Φi = 0 for i < 0, so Φ converges on the whole open unit
disc.

Corollary 6.5.8. Retain notation as in Lemma 6.5.7, except now assume
only that the eigenvalues λ1, . . . , λn of N−1 are rational numbers with denominators
coprime to p. Then Φi = 0 whenever

i < qmin
j
{λj} −max

j
{λj}.

Proof. We may adjoin t1/m for m coprime to p if necessary, to reduce to the
case where λ1, . . . , λn ∈ Z. In that case, by Lemma 5.1.6, we can find an invertible
n × n matrix U over Qq(t) such that U−1tNU + U−1t ddt (U) is holomorphic at

t = 0 and its reduction modulo t is nilpotent; we can moreover ensure that tbU and
t−aU−1 are holomorphic at t = 0, for a = mini{λi} and b = maxi{λi}. Under this
change of basis, Φ is replaced by U−1Φσ(U), which by Lemma 6.5.7 is holomorphic
at t = 0. The claim follows. �

Example 6.5.9. In Example 6.5.6, the new Frobenius lift sends t+3 to (t+3)7,
so we may apply Corollary 6.5.8 by translating the point −3 to the origin. By so
doing, we deduce that the new Frobenius structure has a pole of order at worst

b7 · 1− 0c = 7.

In fact, if we compute modulo 73, we only see a pole of order 6 (see worksheet).

We can now state a quantitative refinement of Theorem 6.5.2. This result is
not best possible; see Remark 6.5.12 and the optional part of this lecture.

Theorem 6.5.10. Assume p > 2. Fix a positive integer m. Let B be an
open dense subscheme of P1

Qq
whose complement Z consists of points with distinct

reductions modulo p, one of which is the point ∞. Let E be a vector bundle with
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connection on B which is everywhere regular, with all exponents in Q ∩ Zp. Let

v1, . . . ,vn be a basis of E, and let N be the matrix of action of d
dt on this basis.

For z ∈ Z, define the quantities f(z) and g(z) as follows. Choose a matrix U
over Qq(t) such that the basis wj =

∑
i Uijvi is regular at z. Let λz,1, . . . , λz,n be

the exponents of this basis at z. Put

f(z) = b−qvt(U−1)− vt(U)− qmin
j
{λj}+ max

j
{λj}c,

where vt denotes the (t−z)-adic valuation, and vt(U) = mini,j{vt(Uij)}. Put g(z) =
0 if the residue matrix of w1, . . . ,wn vanishes at z, or if z ∈ {0,∞}; otherwise, let
g(z) be the least nonnegative integer i for which i− b(i− 1)/(p− 1)c ≥ m− 1.

Let V be the rigid analytic subspace of P1
Qq

given as the complement of the

residue discs containing points of Z. Suppose that E admits a Frobenius structure
F on a strict neighborhood of V , and that the matrix Φ of action of F on v1, . . . ,vn
has nonnegative Gauss valuation. Then Φ is congruent modulo pm to a rational
function with divisor bounded below by∑

z∈Z
−(f(z) + qg(z))(z).

Proof. It suffices to check that the contribution of each z ∈ Z to the divisor is
at least −(f(z) + qg(z))(z). To see this, we see that using a Frobenius lift carrying
(t − z) to (t − z)q, we get a pole of order at most f(z) at z by Corollary 6.5.8.
We then apply Theorem 6.5.5 to convert back to the original Frobenius (this step
being unnecessary if z = 0,∞), noting that the p-adic valuation of the term (σ′(t)−
σ(t))i/i! is at least i− b(i− 1)/(p− 1)c. �

Example 6.5.11. In Example 6.3.4, we use Theorem 6.5.10 to bound the pole
divisor of 7−1Φ1 modulo 72; this is valid because the poles are distinct mod 7. In
concrete terms, the roots of ∆1∆3 in an algebraic closure of Q7 lie in the integral
closure of Z7 and are distinct modulo 7 (see worksheet).

For z a root of ∆1,∆2,∆3 or the value ∞, using the computation of exponents
in Example 5.3.2, we compute respectively

f(z) = 7, 1, 8,−7

g(z) = 1, 0, 1, 0.

The values of g are clear, but it is worth explaining where the values of f came
from.

For z = −3 the unique root of ∆1, we computed f(z) = 7 in Example 6.5.9.
For z a root of ∆2, we have f(z) = 1− 7 · 0 = 1 because the exponents are 0, 1. For
z a root of ∆3, we have

f(z) =

⌊
0− 7 ·

(
−7

6

)⌋
=

⌊
49

6

⌋
= 8.

For z = ∞, we get a contribution of 1 from the change of basis matrix U to a
regular basis, and a contribution of⌊

5

3
− 7 · 4

3

⌋
=

⌊
−23

3

⌋
= −8

from the exponents.
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We thus get a lower bound of

−14(∆1)− (∆2)− 15(∆3) + 7(∞)

for the pole divisor. In particular, this divisor has degree −14 · 1 − 1 · 23 − 15 ·
26 + 8 · 1 = −419, so we need the Taylor series expansions around t = 0 within
O(t420) to guarantee that we have correctly identified the rational functions. Since
we computed to order O(t500) in Example 6.3.4, the computation is validated.

Remark 6.5.12. Note the discrepancy between the lower bound

−14(∆1)− (∆2)− 15(∆3) + 7(∞)

given in Example 6.5.11 and the computed divisor

−13(∆1)− (∆2)− 7(∆3) + 7(∞).

This correctly suggests that there is a lot more work to be done in the area of ana-
lyzing the pole orders of Frobenius structures of Picard-Fuchs-Manin connections.
We make a few remarks in the optional addendum to this lecture, but otherwise
the subject is very much open.

Remark 6.5.13. By making the substitution t1 = t2−3 and changing basis on
the Frobenius matrix in Example 6.5.9, we can get a matrix which is holomorphic
at t1 = 0. The reduction modulo t1 has eigenvalues congruent to

21, 161, 35, 14, 324 (mod 73)

(see worksheet). The last of these is the reduction of ζ3 modulo p. The other four
are supposed to appear in the zeta function of the singular cubic threefold defined
by a3 = Q−3 over F7. (To prove this relationship requires either an appeal to
Dwork’s deformation theory for singular hypersurfaces, or a comparison theorem
between de Rham cohomology and Hyodo-Kato cohomology which does not seem
to have been written down yet.)

6.6. Optional: Further analysis of t-adic precision. In some cases, the
following refinement of Corollary 6.5.8 may be useful.

Lemma 6.6.1. With notation as in Corollary 6.5.8, for each α ∈ Q, put

Sα = {λ1, . . . , λn} ∩ (α+ Z).

If

i < pminSα −maxSα

for all α, then Φi = 0.

Proof. We first check that there exists a matrix V =
∑∞
i=0 Vit

i with entries

in QqJtK such that N ′ = V −1NV + V −1 ddt (V ) =
∑∞
i=−1N

′
it
i is block diagonal,

any two eigenvalues of N ′−1 in the same block differ by an integer, and no two
eigenvalues of N ′−1 occurring in different blocks differ by an integer. To show this,

we first choose V0 so that V −10 N−1V0 is block diagonal with blocks corresponding to
different classes in Q/Z. Next suppose V0, . . . , Vj−1 have been chosen to put N into

the right form modulo tj−1. Put NW = W−1NW+W−1 ddt (W ) for W =
∑j−1
i=0 Vit

i,

and write NW =
∑∞
i=0NW,it

i.
If we change basis on NW using In + tjX, modulo tj we get

NW + tj−1(−XN−1 +N−1X + jX).
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For X concentrated in a single off-diagonal block corresponding to the congruence
classes α + Z, β + Z, the operation X 7→ −XN−1 + N−1X + jX has eigenvalues
in the set ±{α − β + Z}, which does not contain zero. We can thus choose X so
that changing basis using W (In + tjX) puts N into the correct form modulo tj .
We may thus proceed by induction to deduce the claim.

If we apply Lemma 6.5.7 to the result of changing basis by a suitably t-adically
close approximation of V , we may now deduce the desired result. �

Remark 6.6.2. If one has a family of pencils of varieties, one gets a family
of Picard-Fuchs-Manin connections admitting Frobenius structures. If one can use
Theorem 6.5.10 to bound the pole orders of the Frobenius modulo pn for a generic
member of this family, the same bound will apply to each special member, even if
it does not have all of its poles in distinct residue classes mod p. In practice, this
may significantly improve the range of applicability of the deformation method.

Remark 6.6.3. In light of Remark 6.6.2, it would be useful to have a completely
general analogue of Theorem 6.5.10 that makes no hypothesis on the poles of the
connection being distinct mod p. Some more experimentation may be necessary in
order to correctly formulate an appropriate conjecture.

Remark 6.6.4. One can improve the bound in Theorem 6.5.10 so that g(z)−m
is only logarithmic in m, rather than linear in m, by using effective convergence
bounds for p-adic differential equations, as in Theorem 6.4.3. (This would allow
allow for the use of p = 2, which is impossible with a bound of the form given in
Theorem 6.5.10.) See [56].

Appendix A. Notes and further reading

In this appendix, we provide references omitted in the main text, in a sequence
of subsections keyed to the six lectures. We finish with suggestions for further
reading.

A.1. Zeta functions: generalities. There is a useful, if brief, introduction
to zeta functions and the Weil conjectures in Hartshorne’s algebraic geometry text-
book [35, Appendix C]. See also the survey by Osserman [78].

The analytic continuation of the L-function of an elliptic curve over Q was
proved by Breuil, Conrad, Diamond, and Taylor [8] following the method introduced
by Wiles [95] and Taylor-Wiles [91].

Lemma 1.2.3 is taken from [50], where it is used to give an algorithm (imple-
mented in Sage) for searching for Weil polynomials subject to congruence condi-
tions. However, this algorithm is only designed to handle polynomials over Z; we
are not aware of any algorithms designed to handle situations where a Weil poly-
nomial is known to have a factorization over a larger field, as happens for cyclic
cubic threefolds.

The strongest notion of a Weil cohomology theory includes Poincaré duality,
cycle class maps, the Künneth decomposition theorem, a Lefschetz hyperplane the-
orem, plus additional compatibilities. See [57] for more details.

For a development of étale cohomology, see the books of Freitag and Kiehl [27],
Milne [73], and Tamme [90]. The course notes of Milne [74] may also be helpful.

The computation of the zeta function of diagonal hypersurfaces is originally
due to Weil. It was one of the two main justifications for his original assertion
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of the Weil conjectures, the other being his proof of the conjectures for curves
(generalizing Hasse’s theorem bounding the number of points on an elliptic curve
over a finite field).

For further discussion of Jacobi sums, including the case q 6= p, the definitive
reference is [3].

A.2. Algebraic de Rham cohomology. The standard development of al-
gebraic de Rham cohomology is that of Hartshorne [34]. However, it might be
helpful to become acquainted with the complex-analytic situation first, by read-
ing about it in Griffiths and Harris [31]. For Grothendieck’s comparison theorem
(Theorem 2.1.3), see [32].

To compute the algebraic de Rham cohomology of a smooth complete intersec-
tion inside a toric variety, one has a generalization of the Griffiths-Dwork method;
this calculation has become fashionable of late because it can be used to generate
putative instances of mirror symmetry. See Cox and Katz [17].

A.3. de Rham cohomology and p-adic cohomology. A useful overview
of p-adic cohomologies is the survey of Illusie [41]. The subject has developed
considerably since that survey was written; a more recent but more advanced survey
is [52].

Before the book of le Stum [66] appeared, there was no proper foundational
treatise on rigid cohomology; instead, one was forced to infer much of the the-
ory from the articles of Berthelot. Fortunately, these are quite readable, and even
now may prove helpful; we suggest in particular the introductory article [4] for
the general construction, and the later article [5] for details on the comparisons
between rigid cohomology, Monsky-Washnitzer cohomology, and crystalline coho-
mology. Theorem 3.2.1 is a logarithmic version of Berthelot’s original comparison
theorem, given by Baldassarri and Chiarellotto [2]. The integral version (Theo-
rem 3.2.2) is due in the logarithmic case to Shiho [84, 85].

The fact that p-adic cohomology is a Weil cohomology includes a great many
assertions, some of which were only proved quite recently. For example, finite di-
mensionality was established by Berthelot in [5], while Poincaré duality and the
Künneth formula were established by Berthelot [6]. The Riemann hypothesis com-
ponent of the Weil conjectures in p-adic cohomology was originally proved by Katz
and Messing [45] by reducing to Deligne’s `-adic version [19]; see [12] for a similar
argument. Purely p-adic proofs were later given by Faltings [26] and Kedlaya [49].
The construction of cycle classes is due to Petrequin [79]; this is needed for the full
Lefschetz trace formula (Remark 1.3.3).

Mazur’s theorem comparing the Hodge filtration with divisibility in the Frobe-
nius matrix (originally a conjecture of Katz) was originally announced in [69] and
proved in [70]. Another treatment is given by Berthelot and Ogus in [7]. See also
the discussion in [41].

A.4. The direct method for cyclic cubic threefolds. The Frobenius ac-
tion on affine varieties comes from the comparison between rigid and Monsky-
Washnitzer cohomology. The original development of the latter occurs in the three
papers [77, 75, 76]; compare also [94]. One may also use this comparison to de-
duce the cases of the Lefschetz trace formula in rigid cohomology that we need, as
the proof for the Frobenius map given in [76] extends to cover the composition of
Frobenius with an automorphism. (This only applies to affine varieties; to deduce
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the general case, one must first apply Poincaré duality to switch to cohomology
with compact supports, then use the excision property there.)

The original use of p-adic methods for computing zeta functions arose in the
context of finding suitable curves for elliptic curve cryptography, namely those for
which the group of rational points has order equal to a prime number times a
very small cofactor. Methods introduced in this setting include the canonical lift
method of Satoh [82] and the AGM iteration of Mestre [72]. These can in principle
be extended to higher genus (see for example [65] for a higher genus version of
Mestre’s method), but the dependence on the genus is quite poor; most practical
interest has concentrated on genera 2 and 3, which also have some relevance for
cryptography. (See [16] for a survey of elliptic and hyperelliptic curve cryptography
circa 2005.)

The first attempt to use p-adic methods to give more general algorithms for
computing zeta functions was given by Lauder and Wan [64]. They gave a gen-
eral algorithm based on Dwork’s proof of the rationality of the zeta function. This
can be interpreted as an application of p-adic cohomology, but where one com-
putes not in the cohomology but in the chain complex, in which the the terms are
infinite-dimensional vector spaces which must be truncated appropriately. The first
algorithm involving a calculation on p-adic cohomology itself was Kedlaya’s algo-
rithm for hyperelliptic curves in odd characteristic [47]; see also the exposition by
Edixhoven [25], and note the correction to the precision bound given in the errata
to [47]). An analogous algorithm for characteristic 2 was given by Denef and Ver-
cauteren [21]. The method has been generalized to rather general families of curves
(nondegenerate curves in toric surfaces) by Castryck, Denef, and Vercauteren [10].
(See [48] for a survey of this subject circa 2004.)

Less work has been carried out in higher dimensions, partly because the case
of curves carried some external interest from cryptography, and partly because in
higher dimensions the deformation method has better asymptotic complexity. The
approach we describe here was given by Abbott, Kedlaya, and Roe in [1], but that
paper only gives experimental results for surfaces. A closer analogue of Kedlaya’s
original algorithm, for cyclic covers of projective spaces, has been implemented by
de Jong [18] but currently lacks rigorous error bounds. (We expect that one can
adapt the analysis of [1] to de Jong’s situation, but to our best knowledge no one
has attempted to do so.) It might be feasible to use de Jong’s method to compute
zeta functions of cyclic cubic threefolds, but we did not investigate this thoroughly;
we used the approach from [1] instead so that we could reuse the setup to derive
the Picard-Fuchs-Manin connection.

It is also worth mentioning the work of Harvey [36], who found a restructuring
of Kedlaya’s algorithm for hyperelliptic curve that reduces the complexity in the
characteristic p of the finite field from linear to square-root. This has had the
effect of making p-adic cohomology applicable in far larger characteristics than had
been previously expected; this was demonstrated experimentally for hyperelliptic
curves of genus 2 and 3 by Kedlaya and Sutherland [55]. (Interestingly, Harvey’s
motivation was not computing zeta functions, but rather computing cyclotomic p-
adic canonical heights of elliptic curves over Q using the method of Mazur, Stein
and Tate [71].)

Even more recently, Harvey has described a higher-dimensional analogue of
his work for hyperelliptic curves, which might make the direct method feasible for
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such examples as cyclic cubic threefolds. One key difference from [1] is that the
reduction algorithm is translated from a problem of commutative algebra into a
reasonably compact problem of linear algebra. This has the effect of avoiding the
use of dense multivariate polynomials, leading to improved asymptotic behavior
especially as the characteristic grows. As of this writing, Harvey’s work is still in
preparation, but see [37].

A.5. Picard-Fuchs-Manin connections. We are not sure where the name
“Gauss-Manin connection” comes from. In [32, footnote 13], Grothendieck proposes
the existence of a “canonical connection” on relative algebraic de Rham cohomol-
ogy, inspired by Manin’s use of such a construction in his proof of the analogue of
the Mordell conjecture over complex function fields [68]. (Grothendieck suggests
that such a connection could be used to define a Leray spectral sequence; Defi-
nition 5.2.2 shows that the reverse is actually what happens!) This explains the
inclusion of Manin’s name; the reference to Gauss appears to invoke the theory of
hypergeometric differential equations while skipping over the intervening history of
Picard-Fuchs differential equations.

For the holomorphicity of the topological Picard-Fuchs-Manin connection, see
[31]. For the fact that it agrees with the algebraic connection, see [46].

Theorem 5.2.5 is a theorem originally due to Griffiths, but many proofs are
possible. See [30, Theorem 3.1] for an overview.

For more on the use of Lefschetz pencils in algebraic geometry, see Katz’s
exposés in SGA 7 [20, Exposés XVII, XVIII].

A.6. The deformation method for cyclic cubic threefolds. The exis-
tence of a Frobenius structure on a Picard-Fuchs-Manin connection was originally
observed in a number of examples by Dwork, notably including the Legendre family
of elliptic curves [22]. See van der Put [94] for a modern treatment of this example.
Theorem 6.1.3 is a corollary of Theorem 6.5.2, for more on which see below.

The original idea of using the Frobenius structure on a Picard-Fuchs-Manin
connection to compute zeta functions is due to Lauder [59], who described an
algorithm for smooth projective hypersurfaces using Dwork cohomology. Lauder
later gave an alternate development using relative Monsky-Washnitzer cohomology
[60]; a similar development was given by Gerkmann [28], and this is what we have
followed in these notes.

The deformation method has also been used by Hubrechts [38] to give more
efficient point counting algorithms for elliptic curves than is possible using the
direct method. Additional work has been done for hyperelliptic curves by Hubrechts
[39, 40], and for Ca,b curves by Castryck, Hubrechts, and Vercauteren [11]. (It
is worth studying Hubrechts’s work for its significant improvements over what we
have described here, in the space and memory requirements used for carrying out
the deformation method.)

It is an interesting open question whether there is an analogue of Harvey’s
method (reducing the dependence on p to square-root) for the deformation method.
The recent work of Hubrechts on memory-efficient use of the deformation method
[40] provides a clue, as it uses the same baby step-giant step trick (due to Chud-
novsky and Chudnovsky) as in Harvey’s method; however, there is an additional
step needed of repackaging the algorithm so that one never explicitly writes down
a power series involving O(p) terms.
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Theorem 6.4.2 is due to Dwork and Robba [24]; see also [23, Theorem IV.3.1].
Theorem 6.4.3 is an effective version due to Kedlaya [53, Theorem 18.3.3] of a
bound due to Chiarellotto and Tsuzuki [13, Proposition 6.10].

Theorem 6.5.2 is due to Berthelot [4, Théorème 5]. A conjecture of Berthelot
(in the constant coefficient case) and Shiho (in general) asserts that more generally,
for any smooth proper morphism between varieties over a field of characterisic
p > 0, the relative rigid cohomology should exist as an overconvergent F -isocrystal.
This is known in certain cases by work of Tsuzuki [93] and Shiho [86, 87, 88]; it is
likely to be proved soon using Caro’s construction of a category of p-adic coefficients
(overholonomic arithmetic D-modules), as completed recently by Caro and Tsuzuki
[9].

In previous published work on the deformation method, e.g. [28], the t-adic
precision is controlled by the method suggested above Theorem 6.5.5, i.e., by using
p-adic precision loss bounds in the direct method as applied over the generic fibre
of the base. To the best of our knowledge, the method described here has not been
used previously, though Alan Lauder informs us that he is using it currently. (See
also [63] for another appearance of this technique.)

Theorem 6.5.5 is implicit in the work of Berthelot [4]; it follows from the
overconvergence of the Taylor series map, which is built into Berthelot’s definition
of an overconvergent F -isocrystal. The argument has been made explicit several
times in the literature, e.g., [92, Theorem 3.4.10] and [53, Proposition 17.3.1].

A.7. Additional suggestions. These notes are loosely inspired by the au-
thor’s notes for the 2007 Arizona Winter School [51]. We have attempted here
to focus more on computational aspects of the deformation method; consequently,
comparing the two documents may be profitable.

For varieties of dimension greater than 1, Lauder has also introduced a “fibra-
tion method” for computing zeta functions [61]. This shares the advantage held by
the deformation method of involving only one-dimensional varieties at any given
step, but does not require the auxiliary construction of the Frobenius structure on
an entire Picard-Fuchs-Manin connection. Lauder has obtained good experimental
results in the case of elliptic surfaces; these appear in [62].

In principle, all three of the approaches to effective p-adic cohomology (direct,
deformation, fibration) should be applicable to appropriate classes of mildly sin-
gular varieties, but a fair bit of care must be applied. Some analysis along these
lines, including some positive numerical results, has been made by Kloosterman
[58]. Dealing with singular fibres properly requires effective convergence bounds for
logarithmic connections with nilpotent residues (improving upon work of Christol-
Dwork); these can be found in [53, Chapter 18]. It also requires checking some
compatibilities between Hyodo-Kato Frobenius actions and Picard-Fuchs-Manin
connections; to our knowledge, these have not been checked in general.
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Sci. Paris Sér. I Math. 325 (1997), 493–498.
[7] P. Berthelot and A. Ogus, Notes on Crystalline Cohomology, Princeton Univ. Press, Prince-

ton, 1978.

[8] C. Breuil, B. Conrad, F. Diamond, and R. Taylor, On the modularity of elliptic curves over
Q: wild 3-adic exercises, J. Amer. Math. Soc. 14 (2001), 843–939.

[9] D. Caro and N. Tsuzuki, Overholonomicity of overconvergent F -isocrystals on smooth vari-
eties, arXiv:0803.2015v1 (2008).

[10] W. Castryck, J. Denef, and F. Vercauteren, Computing zeta functions of nondegenerate

curves, Int. Math. Res. Papers 2006, article ID 72017 (57 pages).
[11] W. Castryck, H. Hubrechts, and F. Vercauteren, Computing zeta functions in families of

Ca,b curves using deformation, in Algorithmic Number Theory (ANTS VIII), Lecture Notes

in Computer Science 5011, Springer, New York, 2008, 296–311.
[12] B. Chiarellotto and B. le Stum, Sur la pureté de la cohomologie cristalline, C. R. Acad. Sci.
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