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Abstract. In Huber’s theory of adic spaces, one associates to certain topological rings an
associated topological space and a presheaf of rings. However, the analogy with the theory
of schemes breaks down because the resulting presheaf is not always a sheaf unless one adds
some additional assumption on the original ring, such as the strong noetherian property.
Generalizing work of Scholze and Kedlaya–Liu, which established the sheaf property for
perfectoid rings (which are typically not noetherian), Buzzard–Verberkmoes and Mihara
established the sheaf property for stably uniform Huber rings. However, the stably uniform
property can be difficult to verify in examples, and in particular is not (known to be)
preserved under general étale extensions. In this paper, we exhibit several classes of Huber
rings contained among the stably uniform rings over Qp, for which membership (and hence
preservation under étale extensions) can be tested more easily; these include sousperfectoid
rings, which admit module-split embeddings into perfectoids, and diamantine rings, which
satisfy certain conditions on pro-étale cohomology (or equivalently v-cohomology).
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1. Introduction

For much of its history, nonarchimedean analytic geometry was limited to spaces locally
of (topological) finite type over a field; for instance, this is true in the foundational works of
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Tate [46], Raynaud [35], and Berkovich [6, 7]. In retrospect, one reason for this can be seen in
Huber’s general framework [22, 23] of adic spectra associated to f-adic rings (hereafter called
Huber rings): by contrast with what happens for schemes, the structure presheaf on an adic
spectrum is in general not a sheaf. When it is a sheaf, we say that the underlying Huber
ring is sheafy. Even after Huber’s original work (including his treatise [24]), sheafiness was
only known under strong noetherian hypotheses. (See [28, Lecture 1] for further discussion.)

This state of affairs changed drastically with the introduction of perfectoid rings [29, 37],
which are sheafy but generally not noetherian. With this development, it became imperative
to establish more clearly the distinction between sheafy and nonsheafy Huber rings. Since any
perfectoid ring is uniform (its power-bounded elements form a bounded subring; equivalently,
its topology is defined by a supremum over the adic spectrum), much of the work in this
direction has centered on deciding whether sheafiness holds for various subclasses among
the uniform Huber rings. In one direction, Buzzard–Verberkmoes [13] and Mihara [33] gave
examples of uniform Huber rings which are not sheafy, but these examples have a somewhat
pathological flavor. In the other direction, Buzzard–Verberkmoes and Mihara showed that a
Huber ring which is stably uniform (its rational localizations are all uniform) is sheafy; this
includes the case of perfectoid rings.

In this paper, we develop some additional sheafiness criteria for Huber rings, with an
eye towards ease of verification in cases of practical interest. A closely related desidera-
tum is stability under some basic operations, such as formation of finite étale extensions
and adjunction of a convergent power series variable. Note that the criterion of Buzzard–
Verberkmoes–Mihara falls short on these points: if A is a stably uniform Huber ring, it is
not known in general whether a finite étale extension B/A is stably uniform, nor whether
A⟨T ⟩ is stably uniform.

For the rest of this discussion, fix a prime p and consider only Huber rings which are
complete Qp-algebras. We define a Huber ring A to be sousperfectoid1 if there exists a
continuous morphism A→ B of Huber rings with B perfectoid which splits in the category
of topological A-modules. It is easily seen that the sousperfectoid property both implies
uniformity and is preserved under rational localization; consequently, any sousperfectoid
ring is stably uniform and hence sheafy by Buzzard–Verberkmoes–Mihara. (For technical
reasons, it is useful to also consider a slightly more flexible notion of weakly sousperfectoid
rings, in which the existence of a splitting as above is replaced with a uniformity condition
on splittings of finite étale A-algebras.)

We define a Huber ring A to be diamantine2 if A coincides with the ring of global sections
of the structure sheaf on the pro-étale site (or equivalently, on the v-site) of A, and some
additional cohomological conditions hold (see Definition 11.1). Somewhat by design, this
definition is of étale-local nature (Theorem 11.14) and implies uniformity, so any diamantine
ring is stably uniform and sheafy. Moreover, the property of being diamantine is stable under
passage to rational localizations and adjunction of a convergent power series variable.

The class of diamantine rings includes both perfectoid rings and some, but not all, affinoid
algebras over nonarchimedean fields; for example, any smooth affinoid algebra is diamantine.

1We view subperfectoid, which is more consistent with conventional English morphology, as an acceptable
but less mellifluous synonym.

2That is, having characteristic qualities of a diamond in the sense of Scholze [41, 39]. The variant form
adamantine is more common; but besides obscuring the etymological relationship with diamonds, this word
admits a distracting association with a fictional metallic alloy.
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In fact, we determine exactly which affinoid algebras are diamantine: they are the ones which
are reduced and seminormal in the sense of Swan (Theorem 10.3); this relies crucially on a
geometric form of the Ax–Sen–Tate theorem due to Kedlaya–Liu [30, Theorem 8.2.3].

By analogy with perfectoid rings, we define a sousperfectoid space or diamantine space
to be an adic space covered by the adic spectra of sousperfectoid rings or diamantine rings,
respectively (and hence admitting a neighborhood basis of such subspaces). Such spaces
are also stable under the formation of finite étale covers, and hence have well-behaved étale
sites. In fact, we conjecture (Conjecture 12.3) that the category of diamantine spaces is
stable under formation of profinite étale covers, such as the total spaces of étale Qp-local
systems. It would be interesting to directly verify the diamantine property in some key
special cases, such as Shimura varieties of infinite level.

2. Huber, Banach, and perfectoid rings

We begin by summarizing basic algebraic facts about Huber (f-adic) rings, Banach rings,
and perfectoid rings. We postpone discussion of geometric facts to §3.

Definition 2.1. A Huber ring is a (commutative) topological ring A containing an open
subring A0 on which the subspace topology coincides with the I-adic topology for some
finitely generated ideal I of A0. Let A

◦ denote the subring of power-bounded elements of A.
Throughout this paper, we only consider Huber rings which are complete and Tate; the

latter condition asserts that A contains a topologically nilpotent unit. For instance, if K is
a nonarchimedean field (i.e., a field complete with respect to some nontrivial multiplicative
nonarchimedean absolute value), then any Banach algebra over K is a Huber ring. A key
special case is when A is an affinoid algebra (a quotient of the Tate algebra K⟨T1, . . . , Tn⟩,
the completion of K[T1, . . . , Tn] for the Gauss norm) or more generally a Berkovich affinoid
algebra (a quotient of a weighted Tate algebra K⟨T1/r1, . . . , Tn/rn⟩ in which Ti is assigned
the norm ri > 0); recall that in these cases, A is noetherian (see [12, Theorem 5.2.6/1] for
affinoid algebras and [6, Proposition 2.1.3] for Berkovich affinoid algebras).

Remark 2.2. In [28], the discussion includes Huber rings which are not Tate but only
analytic, meaning that the topologically nilpotent elements generate the unit ideal. For
certain technical reasons (especially Proposition 2.14), we do not allow this extra level of
generality here except in a few isolated instances (specified individually). In any case, since
the adic spectra of analytic rings admit open coverings by adic spectra of Tate rings, the
distinction makes no difference at the level of adic spaces.

Definition 2.3. A Huber ring A is uniform if A◦ is bounded in A. If A → B is a strict
inclusion of Huber rings with B uniform, then A is also uniform. (Recall that a morphism
of topological abelian groups is strict if the subspace and quotient topologies on the image
coincide.)

Any uniform Huber ring is reduced. Conversely, while there exist reduced Huber rings
which are not uniform (see [13, Proposition 14] for an example), any reduced affinoid algebra
over a nonarchimedean field is uniform [12, Theorem 6.2.4/1].

Remark 2.4. For A a Huber ring, any finitely generated A-module M admits a natural
topology as a topological A-module (inherited from any surjection from a finite free module),
but this topology need not be Hausdorff in general. When it is,M is complete for the natural
topology; for example, this always happens if M is projective [29, Lemma 2.2.12].
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The classical Banach open mapping theorem admits the following analogue.

Definition 2.5. Let A be a Huber ring (which here must be complete and Tate), let A0 be
a ring of definition of A, and let I be an ideal of definition of A0. Let M be an A0-module.

We say M is torsion if every element is killed by some power of I. We say M is uniformly
torsion if M itself is killed by some power of I. Both the torsion modules and the uniformly
torsion modules form (thick) Serre subcategories of the category of A0-modules.

In case M is chosen from a set {Mj}j∈J and M is killed by some power of I which can be
chosen independently of j, we will say that M is j-uniformly torsion.
We say M is derived complete if ExtiA0

(A0f ,M) = 0 for all f ∈ I and all nonnegative
integers i. See [44, Tag 091P] for other equivalent conditions; in particular, it suffices to
check the definition for i = 0, 1. Any complete A0-module is derived complete [44, Tag 091T].

Lemma 2.6. With notation as in Definition 2.5, the category of derived complete A0-modules
forms a weak Serre subcategory of the category of A0-modules. In particular, it is an abelian
category.

Proof. See [44, Tag 091U]. □

Theorem 2.7. With notation as in Definition 2.5, a derived complete A0-module is torsion
if and only if it is uniformly torsion.

Proof. See [10, Theorem 2.3]. □

Corollary 2.8 (Open mapping theorem). For A a Huber ring (which here must be complete
and Tate), any surjective continuous homomorphism of completely metrizable topological A-
modules is strict (and hence a quotient mapping).

Proof. Set notation as in Definition 2.5, and let f : M → N be such a homomorphism. By
hypothesis, f is the base extension of a morphism f0 : M0 → N0 of complete A0-modules
M0, N0 which are open in M,N . By Lemma 2.6, coker(f0) is a derived complete A0-module.
Since f is surjective, coker(f0) is also torsion; hence by Theorem 2.7, coker(f0) is uniformly
torsion. This implies that f is strict. (See also [20], [28, Appendix], or [17, Appendix 0.B.2].)

□

Definition 2.9. For A a uniform Huber ring, any finite étale A-algebra B, equipped with
its natural topology as an A-module, is again a uniform Huber ring [29, Proposition 2.8.16].

A morphism A → B of uniform Huber rings is profinite étale (resp. faithfully profinite
étale) if B is the completion of a direct limit of subalgebras which are finite étale (resp.
finite étale and faithfully flat, or for short faithfully finite étale) over A. We add the adverb
countably in case the direct limit is taken over a countable index set.

Definition 2.10. A Banach ring is a (commutative) ring A equipped with a submultiplica-
tive nonarchimedean norm with respect to which it is complete. As for Huber rings, we only
consider Banach rings which are Tate in the sense of containing a topologically nilpotent
unit. (Again, in [28] this restriction is weakened to the condition that the topologically
nilpotent elements generate the unit ideal.)

A Banach ring is uniform if its associated spectral seminorm

|x|sp = lim
n→∞

|xn|1/n

defines the same topology as the original norm.
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Remark 2.11. The relationship between Huber and Banach rings is described in detail in
[28, §1.5]. We summarize this discussion as follows.

• Every (Tate) Banach ring has underlying topological ring which is a Huber ring.
• Every (Tate) Huber ring can be promoted to a Banach ring in some fashion. (We
will often exploit this fact for expository purposes.)
• For A a Banach ring, the forgetful functor from the category of Banach rings over
A with bounded morphisms to the category of Huber rings over A with continuous
morphisms is an equivalence.
• A Banach ring is uniform if and only if its underlying Huber ring is uniform.

Remark 2.12. One may also consider Banach modules over Banach rings. A bounded
morphism of Banach modules over a Banach ring is strict if and only if it admits a bounded
set-theoretic section on its image.

Definition 2.13. Fix a prime number p. We use the term perfectoid ring in the sense of
Fontaine [15], [30, §3.3], to mean a uniform Huber ring A containing a topologically nilpotent
unit ϖ such that p ∈ ϖpA◦ and the Frobenius map A◦/(ϖ)→ A◦/(ϖp) is surjective. (This
definition is extended to analytic rings in [28, Lecture 2].)

Proposition 2.14. For any uniform Huber ring A in which p is topologically nilpotent, there
exists a faithfully profinite étale morphism A→ A′ with A′ perfectoid.

Proof. For the case where p is invertible is A, see [29, Lemma 3.6.26]. For the general case,
see [30, Lemma 3.3.28]. □

Proposition 2.15. Let A be a perfectoid ring. Let B be a finite étale A-algebra, topologized
as a finite A-module as per Definition 2.9.

(a) The ring B is again a perfectoid ring.
(b) The A◦-module B◦/A◦ is almost finite projective: for any topologically nilpotent

element x of A, there exist a finite free A◦-module F and some A◦-linear maps
B◦/A◦ → F → B◦/A◦ whose composition is multiplication by x. (A similar statement
then holds with B◦/A◦ replaced by B◦.)

Proof. Part (a) follows from [30, Theorem 3.3.18]. For part (b), [30, Corollary 3.3.24] implies
that B◦ is almost finite projective as an A◦-module; using the fact that B◦ ⊗A◦ B◦ →
(B ⊗A B)◦ is an almost isomorphism [30, Theorem 3.3.18], we deduce from this that B◦ is
an almost finite étale A◦-algebra. (See also [37, Theorem 7.9] for the case where A is an
algebra over a perfectoid field, [29, Theorem 3.6.21] for the case where A is an algebra over
Qp, and [28, Theorem 2.5.9] for an extension to analytic rings.) □

Remark 2.16. Proposition 2.15 includes a strong generalization of the almost purity theo-
rem of Faltings. This generalization is intimately related to applications of perfectoid rings to
commutative algebra, as in the resolution of Hochster’s direct summand conjecture [1, 2, 8, 9].

3. Spectra of Huber rings

We next recall some definitions and results concerning the geometric spaces associated to
Huber rings.
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Definition 3.1. For A a Huber ring, a ring of integral elements of A is an open, integrally
closed subring of A◦. A Huber pair is a pair (A,A+) in which A is a Huber ring and A+

is a ring of integral elements of A. Given such a pair, Huber defines the adic spectrum
Spa(A,A+) of A as the set of equivalence classes of continuous valuations on A centered in
A+. A rational subspace of Spa(A,A+) is one of the form

U = {v ∈ Spa(A,A+) : v(f1), . . . , v(fn) ≤ v(g)}

for some f1, . . . , fn, g ∈ A generating the unit ideal. (Here we are relying on our running
hypothesis that A contains a topologically nilpotent unit to ensure that the only open ideal
of A is the unit ideal.) The rational subspaces form a basis for a topology on Spa(A,A+)
under which this space is spectral in the sense of Hochster [22, Theorem 3.5].

Convention 3.2. For P a property of Huber rings, unless otherwise specified the phrasing
“a Huber pair (A,A+) has property P” will mean that the ring A has property P .

For Banach rings, one has the following analogue of the construction of the adic spectrum.

Definition 3.3. For A a Banach ring, the Gel’fand spectrum of A, denoted M(A), is the
set of bounded multiplicative seminorms on A equipped with the evaluation topology, with
respect to which it is compact. For α ∈ M(A), let H(α) denote the residue field of α, i.e.,
the completion of A/ ker(α) for the induced multiplicative norm. (Here ker(α), the kernel of
α, is defined as the prime ideal α−1(0).) For A+ a ring of integral elements of the underlying
Huber ring of A, there is a natural but not continuous injectionM(A)→ Spa(A,A+).

Remark 3.4. A common refinement of the definitions of the adic spectrum and the Gel’fand
spectrum is given by the construction of a reified adic spectrum of [27]; many of our results
can be transposed to that context with little effort (either by redoing the proofs, or using
descent techniques). We leave this process as an exercise for the interested reader.

Proposition 3.5. For A a Banach ring, the spectral seminorm coincides with the supremum
over the Gel’fand spectrum.

Proof. See [29, Theorem 2.3.10]. □

Definition 3.6. With notation as in Definition 3.1, let A⟨f1
g
, . . . , fn

g
⟩ be the quotient of

A⟨T1, . . . , Tn⟩ by the closure of the ideal (f1 − gT1, . . . , fn − gTn). Let A⟨f1g , . . . ,
fn
g
⟩+ be the

integral closure of the image of A+⟨T1, . . . , Tn⟩ in A⟨f1g , . . . ,
fn
g
⟩. The morphism

(3.6.1) (A,A+)→

(
A

〈
f1
g
, . . . ,

fn
g

〉
, A

〈
f1
g
, . . . ,

fn
g

〉+
)

of Huber pairs is then initial among morphisms (A,A+) → (B,B+) for which the image of
Spa(B,B+)→ Spa(A,A+) is contained in U ; moreover, the induced map

Spa

(
A

〈
f1
g
, . . . ,

fn
g

〉
, A

〈
f1
g
, . . . ,

fn
g

〉+
)
→ U

is a homeomorphism [23, Lemma 1.5]. We call (3.6.1) the rational localization corresponding
to U (it being unique up to unique isomorphism). In some cases where the rings of integral
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elements are not crucial, we refer to the underlying map A→ A⟨f1
g
, . . . , fn

g
⟩ also as a rational

localization.
By a rational covering of (A,A+), we will mean a family {(A,A+) → (Bi, B

+
i )}i of ra-

tional localizations such that the spaces Spa(Bi, B
+
i ) form a covering of Spa(A,A+). By

quasicompactness, any such covering is refined by some finite covering.

Lemma 3.7. Suppose that A is a uniform Huber ring. Choose f, g ∈ A generating the unit
ideal.

(a) The ideals
(f − gT )A⟨T ⟩, (f − gT )A⟨T±⟩

are closed; we thus have

A

〈
f

g

〉
∼= A ⟨T ⟩ /(f − gT ), A

〈
f

g
,
g

f

〉
∼= A⟨T±⟩/(f − gT ).

(b) The sequence

0→ A→ A

〈
f

g

〉
⊕ A

〈
g

f

〉
→ A

〈
f

g
,
g

f

〉
→ 0

is exact.
(c) If A⟨f

g
, g
f
⟩ is uniform, then so are A⟨f

g
⟩ and A⟨ g

f
⟩.

Proof. Parts (a) and (b) are [28, Lemma 1.7.3] and [28, Lemma 1.7.2, Lemma 1.7.3], respec-
tively; we thus focus on (c). Promote A to a uniform Banach ring equipped with a spectral
norm; equip A⟨T ⟩, A⟨U⟩, A⟨T±⟩ with the Gauss extensions of the norm on A (which are
again spectral norms); and equip A⟨f

g
⟩, A⟨ g

f
⟩, A⟨f

g
, g
f
⟩ with the quotient norms from A⟨T ⟩,

A⟨U⟩, A⟨T±⟩. To show that A⟨f
g
⟩ is uniform, for arbitrary x ∈ A⟨f

g
⟩ we must establish a

bound of the form |x|2A⟨ f
g
⟩ ≤ c0 |x2|A⟨ f

g
⟩ for some c0 > 0 which does not depend on x.

To begin with, note that |x2|A⟨ f
g
, g
f
⟩ ≤ |x2|A⟨ f

g
⟩. Since A⟨

f
g
, g
f
⟩ is uniform, there exists c1 > 1

independent of x such that |x|2A⟨ f
g
, g
f
⟩ ≤ c1 |x2|A⟨ f

g
, g
f
⟩. By exactness on the right in (b) plus

Corollary 2.8, there exists c2 > 1 independent of x such that for some y ∈ A,
|x− y|A⟨ f

g
⟩ , |y|A⟨ g

f
⟩ ≤ c2 |x|A⟨ f

g
, g
f
⟩ .

Put c0 := c
1/2
1 c2, so that

|x− y|A⟨ f
g
⟩ , |y|A⟨ g

f
⟩ ≤ c2 |x|A⟨ f

g
, g
f
⟩ ≤ c0

∣∣x2∣∣1/2
A⟨ f

g
⟩ .

For α ∈M(A), if α(f) ≥ α(g), then

α(y) ≤ |y|A⟨ g
f
⟩ ≤ c2 |x|A⟨ f

g
, g
f
⟩ ≤ c0

∣∣x2∣∣1/2
A⟨ f

g
⟩ ;

if α(f) < α(g), then since α(x)2 = α(x2) we have

α(y) ≤ max{α(x2)1/2, α(x− y)} ≤ max{
∣∣x2∣∣1/2

A⟨ f
g
⟩ , |x− y|A⟨ f

g
⟩} ≤ c0

∣∣x2∣∣1/2
A⟨ f

g
⟩ .

It follows that
|y|A⟨ f

g
⟩ ≤ |y|A ≤ c0

∣∣x2∣∣1/2
A⟨ f

g
⟩ ,
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and so

|x|A⟨ f
g
⟩ ≤ max{|y|A⟨ f

g
⟩ , |x− y|A⟨ f

g
⟩} ≤ c0

∣∣x2∣∣1/2
A⟨ f

g
⟩ .

This proves that A⟨f
g
⟩ is uniform; a similar argument implies that A⟨ g

f
⟩ is uniform. (Note

that all of these arguments apply to analytic rings in the sense of Remark 2.2.) □

Proposition 3.8. Let A be a perfectoid ring (for some p). Then for any rational localization
A→ B, B is again a perfectoid ring.

Proof. See [37, Theorem 6.3] for the case where A is an algebra over a perfectoid field; [29,
Theorem 3.6.14] for the case where A is an algebra over Qp; [30, Theorem 3.3.18] for the
general case considered here; and [28, Theorem 2.5.3] for an extension to analytic rings. □

Definition 3.9. For (A,A+) a Huber pair, the structure presheaf on Spa(A,A+) is the
presheaf O assigning to an open subset V to the inverse limit of B as (A,A+) → (B,B+)
runs over all rational localizations with Spa(B,B+) ⊆ V . In particular, if V = Spa(B,B+)
is itself a rational subspace, then O(V ) = B.

We say that (A,A+) is sheafy if O is a sheaf. Note that for given A, sheafiness is indepen-
dent of the choice of A+ [28, Remark 1.6.9]; we may thus also treat sheafiness as a property
of Huber rings subject to Convention 3.2. See [13, 33] for various examples of Huber rings
which are not sheafy.

Since O can fail to be a sheaf, we must keep track of the distinction between the sections
of a presheaf F on an open subset U , denoted F(U), and the locally-defined sections of F
on U (i.e., the sections of the sheafification of F on U). We write H0(U,F) for the latter;
we also write H i(U,F) for i > 0 to mean the i-th cohomology of the sheafification of F on
U .

Proposition 3.10 (Kedlaya–Liu). Let (A,A+) be a sheafy Huber pair. Then H i(Spa(A,A+),O) =
0 for all i > 0. (The same then holds on every rational subspace of Spa(A,A+).)

Proof. See [29, Theorem 2.4.23], or [28, Theorem 1.3.4] for an extension to analytic rings. □

As noted earlier, in Huber’s original development, sheafiness was only established under
certain noetherian hypotheses. Here is an example of one of these hypotheses.

Definition 3.11. A Huber ring A is strongly noetherian if the Tate algebras A⟨T1, . . . , Tn⟩
are noetherian for all n ≥ 0. For example, any affinoid algebra over a nonarchimedean field
is strongly noetherian.

Unlike for polynomial rings in ordinary commutative algebra, a noetherian Huber ring
need not be strongly noetherian (that is, there is no general Hilbert basis theorem in this
context.) For example, there exists a Huber ring A which is a field (but not a nonarchimedean
field) for which A⟨T ⟩ is not noetherian [16, §8.3].

Proposition 3.12 (Huber). Any strongly noetherian Huber ring is sheafy. In particular,
any affinoid algebra over a nonarchimedean field is sheafy.

Proof. See [23, Theorem 2.5], or [28, Theorem 1.2.11] for an extension to analytic rings. □

Subsequently, it was discovered that sheafiness can also be established in some nonnoethe-
rian cases. The basic result in this direction is the following.
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Definition 3.13. A Huber ring A is stably uniform if for every rational localization A→ B,
the ring B is again uniform. For examples of Huber rings which are uniform but not stably
uniform, see [13, Proposition 17], [33]. If A is stably uniform, then any finite étale extension
B of A is again uniform (see Definition 2.9), but it is not known in general whether B must
again be stably uniform.

Proposition 3.14 (Buzzard–Verberkmoes, Mihara). Any stably uniform Huber ring is sheafy.

Proof. The original references are [13, Theorem 7], [33, Theorem 4.9] (the results were ob-
tained independently). The proof of [13] is reproduced in [29, Theorem 2.8.10]. See also [28,
Theorem 1.2.13] for an extension to analytic rings. □

Corollary 3.15. Any perfectoid ring is sheafy.

Proof. This follows from Proposition 3.8 and Proposition 3.14. □

Remark 3.16. We do not know whether or not a uniform Huber ring that is sheafy is
necessarily stably uniform. Compare [29, Remark 2.8.11] and Remark 6.19 below.

Definition 3.17. Let P be a property of Huber rings. We say that P is of local nature if
the following statements hold.

(i) For any rational localization A→ B, if A has property P , then so does B.
(ii) Let A+ be a ring of integral elements of A. Let {(A,A+)→ (Bi, B

+
i )i} be a rational

covering such that

0→ A→
∏
i

Bi →
∏
i,j

Bi⊗̂ABj → · · ·

is exact. If each Bi has property P , then so does A.

For example, the property of being stably uniform is of local nature.

Remark 3.18. In condition (b) of Definition 3.17, the exactness assumption is automatic if
A is sheafy. Since our aim here is to establish sheafiness in cases where it is not previously
known, we do not wish to impose sheafiness as a hypothesis; nonetheless, we need some
hypothesis to rule out the case where the same Bi can occur for different choices of A (see
Remark 3.19).

Remark 3.19. An outstanding open problem is whether the perfectoid property is of
local nature. The example of [13, Proposition 13] shows that if one does not require
A → H0(Spa(A,A+),O) to be an isomorphism, it is possible for a nonsheafy Huber ring
A to admit a rational covering by perfectoid rings.

It is not known whether there exists a similar example in which A is uniform but the
map A → H0(Spa(A,A+),O) (which must now be injective) fails to be surjective. It may
be possible to exhibit such an example by adapting the construction of [13, Proposition 16],
which gives a Huber ring A for which A→ H0(Spa(A,A+),O) is injective but not surjective.
If A→ H0(Spa(A,A+),O) is an isomorphism and A admits a rational covering by perfec-

toid rings with vanishing Čech cohomology, then by Corollary 4.5 below, we know that A is
sheafy. However, this is still not enough to deduce that A is perfectoid; see Remark 11.16.

The following is [28, Theorem 1.2.22(a)], but we give an independent proof to address a
gap in the proof of that result; see Remark 4.6.
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Lemma 3.20. Let (A,A+) be a Huber pair such that X := Spa(A,A+) admits a covering
by rational subspaces Spa(B,B+) for each of which B is sheafy. Define

Ã := H0(X,O), Ã+ := H0(X,O+).

(a) The pair (Ã, Ã+) is a Huber pair for the subspace topology on Ã.
(b) For X̃ := Spa(Ã, Ã+), the natural map π : X̃ → X is a homeomorphism; more

precisely, every rational subspace pulls back to a rational subspace.
(c) The map π admits a section s : X → X̃ in the category of locally ringed spaces.
(d) For each x ∈ X, the local homomorphism π♯

x : OX,x → OX̃,π−1(x) is injective with
dense image.

Proof. By Proposition 3.10, Ã may be computed as the zeroth Čech cohomology for some
covering by rational subspaces. This yields (a).

By definition, Ã is a subring of
∏

x∈X OX,x. Consequently, for each x ∈ X we can extend

the associated valuation to Ã by pulling back along Ã→ OX,x. This gives a map s : X → X̃

such that X
s→ X̃

π→ X is the identity.
For x̃ ∈ X̃ with π(x̃) = x, we claim that x̃ = s(x). To see this, let vx, vx̃ be the valuations

on Ã corresponding to s(x), x̃, respectively, and choose any f ∈ Ã. As an element of
H0(X,O), f restricts on some neighborhood of x to an element of a rational localization
of A. In particular, we can find g1, g2 ∈ A with vx(g2) ̸= 0 such that vx(f − g1/g2) and
vx̃(f − g1/g2) are less than 1. Since vx and vx̃ agree on A, we conclude that vx(f) ≤ 1 if and
only if vx̃(f) ≤ 1, which shows that x̃ = s(x).

We conclude that the map π : X̃ → X is a continuous bijection between spectral spaces
and that specializations lift along π. By [44, Tag 09XU], π is a homeomorphism; this proves
(b).

By hypothesis, X admits a basis of rational subspaces U corresponding to rational lo-
calizations (A,A+) → (B,B+) with B sheafy. For each such map, we have a restric-
tion map Ã = H0(X,O) → H0(U,O) = B, which then induces a section of the map
B → H0(π−1(U),O). These sections being compatible with restriction, we may use them to
upgrade s to a map of locally ringed spaces, yielding (c); the same analysis yields (d). □

Remark 3.21. By contrast with Lemma 3.20, if (A,A+) is an arbitrary Huber pair and
X := Spa(A,A+), then H0(X,O) is formed as a colimit over finite rational coverings and
therefore is not guaranteed to be complete. One can form its completion for a suitable norm,
but it is unclear whether the spectrum of this ring has any meaningful relationship with the
original spectrum.

4. Strongly sheafy Huber rings

We next introduce a refined version of the sheafy condition, which turns out to be much
easier to control.

Definition 4.1. We say that a Huber ring A is strongly sheafy if for every nonnegative
integer n, the ring A⟨T1, . . . , Tn⟩ is sheafy. For example, by Proposition 3.12, any strongly
noetherian Huber ring is strongly sheafy.

The main goal of this section is to give the following characterization of strongly sheafy
Huber rings. The fact that this characterization does not require an explicit quantification
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over rational localizations (although it does implicitly refer to them via cohomology) may
be a bit surprising; we see it as being analogous to Proposition 3.12.

Theorem 4.2. Let (A,A+) be a Huber pair. For each nonnegative integer n, put

Xn := Spa(A⟨T1, . . . , Tn⟩, A+⟨T1, . . . , Tn⟩).
Then A is strongly sheafy if and only if for each nonnegative integer n, the following condi-
tions hold.

(i) The map A⟨T1, . . . , Tn⟩ → H0(Xn,O) is an isomorphism of rings.
(ii) For all i > 0, H i(Xn,O) = 0.

Note that if A is strongly sheafy, then the given conditions hold by Proposition 3.10. The
content of the theorem is thus the converse implication.

Lemma 4.3. Let (A,A+) be a Huber pair in which A satisfies conditions (i), (ii) of Theo-
rem 4.2. Then for any f ∈ A, the following statements hold.

(a) For each nonnegative integer n, the elements Tn+1−f and 1−fTn+1 in A⟨T1, . . . , Tn+1⟩
are not zero-divisors, and each one generates a closed ideal.

(b) The rings A⟨f⟩ and A⟨f−1⟩ also satisfy conditions (i), (ii) of Theorem 4.2.

Proof. We first set some notation so that the two cases can subsequently be treated in
parallel.

• In one case, set w = Tn+1 − f , Un := {v ∈ Xn : v(f) ≤ 1}, and B = A⟨f⟩.
• In the other case, set w = 1− Tn+1f , Un = {v ∈ Xn : v(f) ≥ 1}, and B = A⟨f−1⟩.

For each n, let π : Xn+1 → Xn be the projection morphism. Put Vn := {v ∈ Xn+1 : v(w) = 0};
then π induces a homeomorphism Vn ∼= Un, via which we may define a structure presheaf
OVn . Let j : Vn → Xn+1 be the canonical inclusion.
We now verify that the sequence of sheaves

(4.3.1) 0→ ÕXn+1

×w−→ ÕXn+1 → j∗ÕVn → 0

on Xn+1, where the tildes denote sheafification, is exact. Exactness at the middle is true
by construction; we check exactness at the left and right by examination of the stalk at
v ∈ Xn+1.

• If v(w) = 0, then π(v) ∈ Un and so taking stalks at v in (4.3.1) factors through
restriction from Xn+1 to π−1(Un). The resulting sequence can be identified with the
sequence

0→ Õπ−1(Un)
×w−→ Õπ−1(Un) → π−1ÕUn → 0

which is surjective on the right, split by the natural map π−1ÕUn → Õπ−1(Un), and
injective on the left because for any rational localization (A,A+) → (C,C+), the
element Tn+1 − f of C⟨T1, . . . , Tn+1⟩ is not a zero-divisor. (This is analogous to the
fact that when f is an element in a ring R, the sequence

0→ R[T ]
×(T−f)→ R[T ]→ R[T ]/(T − f)→ 0

is surjective on the right, split by the composition of the identification R[T ]/(T−f) ∼=
R with the structure morphism R→ R[T ], and injective on the left because T − f is
not a zero-divisor in R[T ].)
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• If v(w) > 0, then w is a unit in ÕXn+1,v and (j∗ÕVn)v = 0; taking stalks at v in (4.3.1)
yields the trivially exact sequence

0→ ÕXn+1,v
×unit→ ÕXn+1,v → 0→ 0.

For each i > 0, one segment of the long exact sequence in cohomology associated to (4.3.1)
is

H i(Xn+1, ÕXn+1)
×w−→ H i(Xn+1, ÕXn+1)→ H i(Xn+1, j∗ÕVn)→ H i+1(Xn+1, ÕXn+1).

Since H i(Xn+1,O) = 0 by hypothesis, we deduce that

H i(Un,O) = H i(Vn,O) = H i(Xn+1, j∗ÕVn) = 0.

Another segment of the long exact sequence may be written as

0→ A⟨T1, . . . , Tn+1⟩
×w−→ A⟨T1, . . . , Tn+1⟩ → H0(Un,O)→ 0;

this implies that the composition of the maps

A⟨T1, . . . , Tn+1⟩/(w)→ B⟨T1, . . . , Tn⟩ → H0(Un,O)
is an isomorphism. Since the first map is surjective, all of the maps must be isomorphisms,
which yields both (a) and (b). □

Proof of Theorem 4.2. For any rational localization (A,A+) → (B,B+) we can write B is
the form A⟨f−1⟩⟨f1, . . . , fn⟩ for some f ∈ A and some f1, . . . , fn ∈ A⟨f−1⟩. We may thus
deduce the claim by Lemma 4.3. □

Remark 4.4. As per our running assumptions, in Theorem 4.2 the Huber ring A is required
to be Tate; however, it should be possible to modify the proof to eliminate this assumption.

Corollary 4.5. Let (A,A+) be a Huber pair satisfying the following conditions.

(i) The map A→ H0(Spa(A,A+),O) is an isomorphism of rings.
(ii) There exists a covering of Spa(A,A+) by rational subspaces Spa(B,B+) for each of

which B is strongly sheafy.
(iii) For some covering as in (ii), the higher Čech cohomology vanishes.

Then A is strongly sheafy.

We note in passing that the proof applies without change to analytic rings in the sense of
Remark 2.2. (The statement is probably true even without analyticity, but we did not check
this.)

Proof. Let {Spa(Bi, B
+
i )} be a covering as in (ii) and (iii). PutXn := Spa(A⟨T1, . . . , Tn⟩, A+⟨T1, . . . , Tn⟩);

this space then admits a covering by rational subspaces Spa(Bi⟨T1, . . . , Tn⟩, B+
i ⟨T1, . . . , Tn⟩)

for which Bi⟨T1, . . . , Tn⟩ is strongly sheafy. Moreover, the higher Čech cohomology of
this covering again vanishes. In particular, we may use this covering to compute that
H0(Xn,O) = A⟨T1, . . . , Tn⟩ and H i(Xn,O) = 0 for i > 0; by Theorem 4.2, A⟨T1, . . . , Tn⟩ is
sheafy. □

Remark 4.6. Corollary 4.5 is a weak form of [28, Theorem 1.2.22(b)], which involve sheafy
rather than strongly sheafy Huber rings and includes no analogue of condition (iii). However,
the given proof of (both parts of) [28, Theorem 1.2.22] is incomplete: it treats completely
the case of a simple binary rational covering, but the general assertion does not reduce to

12



that case. While part (a) of the theorem is confirmed by Lemma 3.20, we do not have a
complete proof of (b). (Thanks to Ofer Gabber for bringing this to our attention.)

Note that [28, Remark 1.2.24] is unaffected by this issue: for the example of Buzzard–
Verberkmoes from Remark 3.19, condition (ii) holds for a simple Laurent covering, and for
this covering (iii) is automatic by [28, Lemma 1.8.1].

An important consequence of Theorem 4.2 is the preservation of the strongly sheafy prop-
erty by finite flat extensions. This will be used to show that this property is of étale-local
nature; see Theorem 5.6.

Corollary 4.7. Let A→ B be a finite flat, locally free, locally monogenic morphism of rings.
If A is a strongly sheafy Huber ring, then so is B.

Proof. Extend A to a Huber pair (A,A+) and let B+ be the integral closure of A+ in B. By
Corollary 4.5 we may check the claim locally on Spa(A,A+); we may thus reduce to the case
where B = A⟨T ⟩/(P (T )) for some monic polynomial P (T ). In particular, A → B is now
faithfully flat.

Put

Xn := Spa(A⟨T1, . . . , Tn⟩, A+⟨T1, . . . , Tn⟩), Yn := Spa(B⟨T1, . . . , Tn⟩, B+⟨T1, . . . , Tn⟩).

Let π : Xn+1 → Xn be the projection morphism. Put Vn = {v ∈ Xn+1 : v(P (Tn+1)) = 0};
then Vn ∼= Yn with π : Vn → Xn corresponding to the map A⟨T1, . . . , Tn⟩ → B⟨T1, . . . , Tn⟩; via
this isomorphism we may define a structure sheaf ÕVn , where the tilde denotes sheafification.
Let j : Vn → Xn+1 be the canonical inclusion.
We now verify that the sequence of sheaves

(4.7.1) 0→ O ×P (Tn+1)→ O → j∗ÕVn → 0

on Xn+1 is exact by examination of the stalk at v ∈ Xn+1. Namely, since A→ B is faithfully
flat, we may check exactness after tensoring over A with B, at which point the sequence
becomes canonically split exact at the level of stalks (see the proof of Lemma 4.3).

For each i > 0, one segment of the long exact sequence in cohomology associated to (4.7.1)
is

H i(Xn+1,O)→ H i(Xn+1,O)→ H i(Xn+1, j∗ÕVn)→ H i+1(Xn+1,O).
Since H i(Xn+1,O) = 0 by Theorem 4.2, we deduce that

H i(Yn,O) = H i(Vn,O) = H i(Xn+1, j∗ÕVn) = 0.

Another segment of the long exact sequence may be written as

0→ A⟨T1, . . . , Tn+1⟩
×P (Tn+1)→ A⟨T1, . . . , Tn+1⟩ → H0(Yn,O)→ 0;

this implies that the composition of the maps

A⟨T1, . . . , Tn+1⟩/(P (Tn+1))→ B⟨T1, . . . , Tn⟩ → H0(Yn,O)

is an isomorphism. Since the first map is an isomorphism, so is the second. We may thus
apply Theorem 4.2 to deduce that B is strongly sheafy. □

We mention an instance of Remark 3.4 that will be relevant later.
13



Remark 4.8. For A a Banach ring, it is natural (although not defined in [27]) to say
that A is really strongly sheafy if for every nonnegative integer n and every r1, . . . , rn > 0,
the structure presheaf on the reified adic spectrum of A⟨T1/r1, . . . , Tn/rn⟩ is a sheaf. By
[27, Theorem 7.14], this implies that the global sections of the structure presheaf equal
A⟨T1/r1, . . . , Tn/rn⟩ and the higher cohomology groups vanish; the proof of Theorem 4.2
may be adapted to show that the converse also holds.

5. Étale morphisms

In order to introduce étale morphisms, we first make a temporary definition.

Definition 5.1. A morphism (A,A+)→ (B,B+) of Huber pairs is étale in the näıve sense
if locally on Spa(B,B+), the map factors as a composition of rational localizations and finite
étale morphisms (in fact, only one finite étale morphism is needed).

Remark 5.2. Let (A,A+)→ (B,B+) be a finite morphism of (not necessarily sheafy) Huber
pairs. By [29, Theorem 2.6.9], this morphism is étale in the näıve sense if and only if it is
étale in the algebraic sense. (See [28, Theorem 1.4.2] for an extension to sheafy analytic
rings.)

Definition 5.3. Let (A,A+) be a Huber pair. By a näıve étale covering of (A,A+), we will
mean a family {(A,A+)→ (Bi, B

+
i )}i of morphisms which are étale in the näıve sense such

that the spaces Spa(Bi, B
+
i ) form a set-theoretic covering of Spa(A,A+). Using this notion

of covering, we obtain a (small) étale site Spa(A,A+)et and presheaves O,O+.

Definition 5.4. Let P be a property of Huber rings. By analogy with Definition 3.17, we
say that P is of étale-local nature if the following statements hold.

(i) For any rational localization A→ B, if A has property P , then so does B.
(ii) For any finite étale morphism A→ B, if A has property P , then so does B.
(iii) Let A+ be a ring of integral elements of A. Let {(A,A+) → (Bi, B

+
i )i} be a näıve

étale covering such that

(5.4.1) 0→ A→
∏
i

Bi →
∏
i,j

Bi⊗̂ABj → · · ·

is exact. If each of the rings Bi has property P , then so does A.

In particular, if P is of étale-local nature, then it is of local nature.

Proposition 5.5. Let P be a property of Huber rings satisfying the following conditions.

(i) The property P is of local nature.
(ii) For any finite étale morphism A→ B, if A has property P, then so does B.
(iii) For any faithfully finite étale morphism A → B, if B has property P, then so does

A.
(iv) Every Huber ring with property P is sheafy.

Then P is of étale-local nature; moreover, for every näıve étale covering {(A,A+)→ (Bi, B
+
i )i},

if A has property P, then the sequence (5.4.1) is exact.

Proof. Let B be the basis of Spa(A,A+)et consisting of compositions of rational localizations
and finite étale morphisms. By (i), (ii), and (iv), if A has property P , then each element of
B is sheafy.
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We next check that if A has property P , then for every covering of and by elements of
B, (5.4.1) is exact. For this, we check that the conditions of [29, Proposition 8.2.21] are
satisfied:

(a) The complex (5.4.1) is exact for a simple Laurent covering. This follows from (iv)
and Proposition 3.10.

(b) The complex (5.4.1) is exact for a finite étale covering. This follows from faithfully
flat descent for modules.

Now dropping the condition that A has property P , we say that a covering of and by
elements of B has property P ′ if condition (iii) of Definition 5.4 holds. We check that P ′

satisfies the conditions of [29, Proposition 8.2.20]:

(a) Every covering admitting a refinement having property P ′ also has property P ′. This
follows from (i), (ii), and the previous paragraph (to equate the exactness of (5.4.1)
for the original covering and for its refinement, assuming that the terms in the original
covering have property P).

(b) Every composition of coverings having property P ′ has property P ′. This follows
from the previous paragraph.

(c) Every rational covering has property P ′. This follows from (i).
(d) Any finite étale covering has property P ′. This follows from (iii).

We deduce that for every covering of and by elements of B, if (5.4.1) is exact and each of
the rings Bi has property P , then so does A.

We now verify that P is of étale-local nature. Of the conditions in Definition 5.4, (i) is
included in our hypothesis (i), while (ii) is precisely our hypothesis (ii). To check (iii), note
that given a näıve étale covering {(A,A+)→ (Bi, B

+
i )i}, each pair (Bi, B

+
i ) admits a näıve

étale covering {(Bi, B
+
i ) → (Cij, C

+
ij )j} such that both of the maps (A,A+) → (Cij, C

+
ij )

and (Bi, B
+
i ) → (Cij, C

+
ij ) factor as a composition of rational localizations and finite étale

morphisms. If each Bi has property P , then so does each Cij; moreover, the maps {(A,A+)→
(Cij, C

+
ij )i,j} form a covering of and by elements of B, and the exactness of (5.4.1) for this

covering follows from exactness for the original covering (as in (a) above), so A also has
property P . □

We do not know whether the stably uniform or sheafy properties are of étale-local nature.
(For the perfectoid property, even local nature is unknown; see Remark 3.19.) By contrast,
we have the following result.

Theorem 5.6. The property of a Huber ring being strongly sheafy is of étale-local nature.

Proof. We check the criteria of Proposition 5.5: (i) follows from Corollary 4.5, (ii) follows
from Corollary 4.7, and (iii) and (iv) are straightforward. □

Definition 5.7. Let (A,A+) be a strongly sheafy Huber pair. We say that a morphism
(A,A+) → (B,B+) is étale if it is étale in the näıve sense and moreover B is sheafy. This
implies that B+ is also strongly sheafy: (B,B+) admits a rational covering by terms which
are strongly sheafy, and by Proposition 3.10 this covering is acyclic, so the fact that the
strongly sheafy property is of étale-local nature (Theorem 5.6) yields that B is strongly
sheafy.
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By Corollary 4.7, if A→ B is finite étale as a morphism of rings, then (A,A+)→ (B,B+)
is étale in this sense. Consequently, the corresponding étale site defines the same topos as
with our previous definition.

Proposition 5.8. Let (A,A+) be a strongly sheafy Huber pair. Then H i(Spa(A,A+)et,O) =
0 for all i > 0.

Proof. See [29, Theorem 8.2.22]. □

Remark 5.9. It will follow from Corollary 7.4 below that any perfectoid ring satisfies the
conclusion of Proposition 5.8.

Remark 5.10. It should be possible to give a more intrinsic definition of an étale morphism,
in which the existence of local factorizations becomes a lemma rather than a definition. See
the appendix to [28] for further discussion.

Definition 5.11. By analogy with Definition 5.1, one can also specify what it should mean
for a morphism (A,A+)→ (B,B+) of Huber pairs to be smooth in the näıve sense: locally on
Spa(B,B+) the morphism should factor as a composition of rational localizations, finite étale
coverings, and Tate algebra extensions. If a property of Huber rings is of étale-local nature
and is preserved by Tate algebra extensions, then it propagates along smooth morphisms;
that is, if A has the property, (A,A+) → (B,B+) is a smooth morphism, and B is sheafy,
then B also has the property.

For example, propagation along smooth morphisms holds for the property of being strongly
sheafy by Theorem 5.6. It will also hold for the property of being plus-sheafy, or being
uniform and plus-sheafy, by Theorem 6.21.

6. Cohomology of the integral structure sheaf

Definition 6.1. For (A,A+) a Huber pair, the integral structure presheaf on Spa(A,A+) is
the presheaf O+ assigning to an open subset V the inverse limit of B+ as (A,A+)→ (B,B+)
runs over all rational localizations with Spa(B,B+) ⊆ V . We can and will view O+ as a
subpresheaf of O; it is a sheaf if and only if O is (using the Tate condition on A in the “only
if” direction).

There is no analogue of Proposition 3.10 asserting the acyclicity of O+ even when A is
an affinoid algebra. See Example 6.6 for a mild example and Example 6.11 for a far more
serious example; both examples are analyzed using the following algebraic condition.

Definition 6.2. A ring R is seminormal if the map

R→ {(y, z) ∈ R×R : y3 = z2}, x 7→ (x2, x3)

is bijective. Note that injectivity of this map is equivalent to R being reduced, and that any
normal (i.e., integrally closed) integral domain is seminormal; in particular, a smooth affinoid
algebra over a nonarchimedean field is seminormal. For further discussion and references,
see [30, Definition 1.4.1].

Lemma 6.3. Let R→ S be an étale ring homomorphism. If R is seminormal, then so is S.

Proof. By writing R as a direct limit of finitely generated Z-algebras, we may reduce to the
case where R is excellent, as then is S. In this case, the definition of seminormality given in
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Definition 6.2, due to Swan, agrees with the definition of Traverso [47]; we may thus apply
[19, Theorem 5.8] to conclude. □

Lemma 6.4. For affinoid algebras, the properties of being reduced and seminormal are both
of étale-local nature.

Proof. With regard to preservation under rational localizations, for the reduced property,
see [29, Lemma 2.5.9] and references therein; for the seminormal property, see [30, Propo-
sition 3.7.2]. With regard to preservation under finite étale morphisms, for the reduced
property, see [44, Tag 025O]; for the seminormal property, see Lemma 6.3. Condition (iii) of
Definition 5.4 is straightforward. □

Remark 6.5. We have not checked that seminormality of a Huber ring A implies seminor-
mality of A⟨T ⟩. However, for A uniform, this is an easy consequence of Proposition 3.5. For
A an affinoid algebra in mixed characteristic, it will be a consequence of Theorem 10.3.

Example 6.6. Let C be a smooth, projective, geometrically irreducible curve of genus at
least 2 over Qp with good reduction. Let X be the (adic) analytification of C; the space X
contains a point x corresponding to the generic point of the special fiber C of the smooth
model of C over Zp. Let Spa(A,A

+) be an affinoid subspace of X whose complement is iso-
morphic to an open unit disc over Qp; in particular, this subspace must contain x. Since X is
smooth, A is seminormal; it will follow from Theorem 10.3 later that H1(Spa(A,A+),O+) is
uniformly torsion. However, there exists a surjective map H1(Spa(A,A+),O+)→ H1(C,O),
and the nonvanishing of the target ensures that H1(Spa(A,A+),O+) is nonzero. (See [49,
Proposition 2] for a result which can be used to identify the annihilator ofH1(Spa(A,A+),O+)
in this and similar examples.)

The following is an adaptation of an argument suggested by Gabber. On account of Propo-
sition 6.14 below, this generalizes the statement that perfectoid algebras are seminormal [30,
Theorem 3.7.4].

Proposition 6.7. Let (A,A+) be a sheafy Huber pair with A uniform. If H1(Spa(A,A+),O+)
is uniformly torsion, then A is seminormal.

Proof. Note that neither the hypothesis nor the conclusion depends on A+, so we may
assume hereafter that A+ = A◦. Choose a pair (y, z) ∈ A × A such that y3 = z2. Define
the Banach algebra A′ over A by forming the quotient of A⊕A (equipped with the product
topology) by the A-submodule {(az,−ay) : a ∈ A}, promoting to an A-algebra by declaring
that (a0, a1)(b0, b1) = (a0b0 + ya1b1, a0b1 + a1b0) and the map A → A′ is a 7→ (a, 0), then
taking the uniform completion as per [29, Definition 2.8.13]. By construction, the element
x = (0, 1) ∈ A′ satisfies x2 = y, x3 = z.

Put X = Spa(A,A◦) and X ′ = Spa(A′, A′◦). Note that any v ∈ X extends uniquely from
A to A′ (considering separately the cases v(y) = 0, v(y) ̸= 0); consequently, the map π : X ′ →
X is a homeomorphism inducing isomorphisms on residue fields. By Proposition 3.5, the
morphism A→ A′ is a strict inclusion (compare Remark 9.2). The diagram

O+
X

//

��

OX

��
π∗O+

X′
// π∗OX′
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is cartesian and cocartesian (the latter because of the isomorphisms of residue fields) and
gives rise to an exact sequence

0→ O+
X → OX ⊕ π∗O+

X′ → π∗OX′ → 0.

We thus obtain an inclusion

H0(X ′,O)
H0(X ′,O+) + A

↪→ H1(X,O+).

Note that A′ → H0(X ′,O) is not guaranteed to be an isomorphism, but by Proposition 3.5
the preimage of H0(X ′,O+) in A′ equals A′◦.

Let ϖ ∈ A be a topologically nilpotent unit which kills H1(X,O+). For each positive
integer n, we apply the previous inclusion to the image of ϖ−nx in H0(X ′,O) to find an ∈ A
such that ϖ−n+1x − an ∈ A′◦. The sequence {ϖn−1an}∞n=1 then converges to x in A′ and
hence in A; that is, x ∈ A satisfies x2 = y, x3 = z. It follows that A is seminormal. □

Definition 6.8. Let (A,A+) be a Huber pair, put X = Spa(A,A+), and let ϖ ∈ A+ be a
topologically nilpotent unit of A. We say that (A,A+) is plus-sheafy if

(i) theA+-modules ker(A+/ϖnA+ → H0(X,O+/ϖn)), coker(A+/ϖnA+ → H0(X,O+/ϖn))
are n-uniformly torsion;

(ii) for each positive integer i, the A+-modules H i(X,O+/ϖn) are n-uniformly torsion
(but not necessarily i-uniformly torsion).

It is evident that this does not depend on either A+ or the choice of ϖ.
From the exact sequence

(6.8.1) 0→ O+ ×ϖn

→ O+ → O+/ϖn → 0

we see that if A→ H0(X,O) is an isomorphism and H i(X,O+) is uniformly torsion for each
positive integer i, then A is plus-sheafy. The converse holds if A is uniform; see Lemma 6.18.

Example 6.9. The ring A = Z((T )) is plus-sheafy: taking A+ = ZJT K and ϖ = T , it
is straightforward to check that A+/ϖnA+ ∼= H0(X,O+) and that H i(X,O+/ϖn) = 0 for
i > 0. This example will be used in Example 6.28.

Example 6.10. For K a nonarchimedean field and n a positive integer, the ring A =
K⟨T1, . . . , Tn⟩/(T 2

n) is sheafy and plus-sheafy but not uniform. This follows from the fact
that for

X = Spa(K⟨T1, . . . , Tn−1⟩, K◦⟨T1, . . . , Tn−1⟩),
Y = Spa(K⟨T1, . . . , Tn⟩/(T 2

n), K
◦⟨T1, . . . , Tn⟩/(T 2

n)),

and f : Y → X the natural morphism, we have

f∗O+
Y
∼= O+

X ⊕OXTn, Rif∗O+
Y = 0 (i > 0).

While this example is still sheafy, see Example 6.28 for an example where sheafiness fails.

Example 6.11. We recall an example from [5]. Put A = Qp⟨y, z⟩/(y3 − z2); then A is
integral (and hence uniform; see Definition 2.3) but not seminormal. Put X = Spa(A,A◦).
By Proposition 6.7, H1(X,O+) is not killed by any power of p. In particular, although A is
strongly sheafy (by virtue of being an affinoid algebra), it will follow from Lemma 6.18(c)
that A is not plus-sheafy. See Example 10.5 for additional discussion.
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Remark 6.12. Note that in Example 6.11, H1(Spa(A,A◦),O+) is torsion but not uniformly
torsion. This does not contradict Theorem 2.7 because H1(Spa(A,A◦),O+) is not a derived
complete A◦-module: its computation involves a colimit over all finite coverings by rational
subspaces, for each of which the Čech cohomology groups are uniformly torsion, but there
is no uniformity maintained in the colimit.

Remark 6.13. For A a Banach ring, the cohomology groups of O+ are the same whether
computed on the adic spectrum or the reified adic spectrum of A (see the proof of [5,
Satz 3.1]); by the same token, the global sections of O+/ϖn or O are the same in either case.
Consequently, the condition that A is plus-sheafy can be formulated equivalently using the
reified adic spectrum. (That is, there is no need to separately define the condition of being
really plus-sheafy.)

Proposition 6.14. For (A,A+) a perfectoid Huber pair and every positive integer i, the
A+-module H i(Spa(A,A+),O+) is almost zero: it is killed by every topologically nilpotent
unit in A. In particular, A is plus-sheafy.

Proof. See [30, Theorem 3.5.5]. That result includes a much stronger statement which we
will use later; see Theorem 9.3. □

We do not expect the converse of Proposition 6.7 to hold even for affinoid algebras. This
leads to the following question.

Question 6.15. Is the plus-sheafy property for a Huber pair (A,A+) in which A is an
affinoid algebra over a nonarchimedean field equivalent to some ring-theoretic property of A,
and if so what property?

Remark 6.16. It was shown by Bartenwerfer [5, Theorem, Folgerung 3] (building on [4])
that a smooth affinoid algebra over a nonarchimedean field is plus-sheafy. Following Defini-
tion 5.11, we will recover this result by proving a relative version; see Corollary 6.27.

Lemma 6.17. Let A be a plus-sheafy Huber ring. Then for any f ∈ A, A⟨f⟩ and A⟨f−1⟩
are also plus-sheafy. If moreover A is uniform, then so are A⟨f⟩ and A⟨f−1⟩.

Proof. Choose an extension of A to a Huber pair (A,A+). As in the proof of Lemma 4.3, we
set notation so that the two cases can be treated in parallel.

• In one case, set w = T − f and B = A⟨f⟩.
• In the other case, set w = 1− fT and B = A⟨f−1⟩.

Put X := Spa(A,A+), U := Spa(B,B+), and let j : U → X denote the canonical inclusion.
Let O⟨T ⟩,O+⟨T ⟩ be the presheaves on X characterized by

(O⟨T ⟩)(Spa(C,C+)) = C⟨T ⟩, (O+⟨T ⟩)(Spa(C,C+)) = C+⟨T ⟩.
We have an isomorphism of A+-modules

A+⟨T ⟩/ϖn ∼= (A+/ϖnA+)[T ] ∼=
∞⊕
i=0

(A+/ϖnA+)T i;

by the same token, we have an isomorphism of O+-modules

(6.17.1) O+⟨T ⟩/ϖn ∼=
∞⊕
i=0

(O+/ϖn)T i.
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Consequently, our hypotheses imply that the A+-modules

coker(A+⟨T ⟩/ϖnA+⟨T ⟩ → H0(X,O+⟨T ⟩/ϖn))

are n-uniformly torsion; and for each positive integer i, the A+-modules H i(X,O+⟨T ⟩/ϖn)
are n-uniformly torsion.

Choose a positive integer c such that ϖcw ∈ A+; for each positive integer n, we then have
a sequence

(6.17.2) 0→ Õ+⟨T ⟩/ϖn ×ϖcw→ Õ+⟨T ⟩/ϖn → j∗Õ+/ϖn → 0

(where the tildes denote sheafification, and more precisely Õ+⟨T ⟩ means the sheafification
of O+⟨T ⟩). We claim that in the sequence (6.17.2), the cohomology at the left is a sheaf
killed by ϖ; the cohomology at the middle is a sheaf killed by ϖc+1; and the cohomology at
the right is a sheaf killed by ϖc. As in the proof of Lemma 4.3, we see this by inspecting
the stalks at a point v ∈ X.

• If v ∈ U , then we have an exact sequence

0→ H(v)⟨T ⟩ w→ H(v)⟨T ⟩ → H(v)→ 0.

We read off the claim using the fact that the Gauss norm onH(v)⟨T ⟩ is multiplicative.
• If v /∈ U , then w is a unit inH(v)⟨T ⟩ and j∗Õ+

v = 0. We again use the multiplicativity
of the Gauss norm on H(v)⟨T ⟩ to conclude.

Now let i and n be positive integers. Taking cohomology in (6.17.2), and using the fact
that Rij∗(O+/ϖn) = 0 for i > 0, shows that the A+-modules H i(U,O+/ϖn) are n-uniformly
torsion. It also gives rise to a sequence

(6.17.3) H0(X,O+⟨T ⟩/ϖn)→ H0(U,O+/ϖn)→ H1(X,O+⟨T ⟩/ϖn)

which is exact modulo n-uniformly torsion modules; in this sequence, the term on the
right is n-uniformly torsion, as then is the cokernel of the left arrow. Combining with
the fact that coker(A+⟨T ⟩/ϖnA+⟨T ⟩ → H0(X,O+⟨T ⟩/ϖn)) is n-uniformly torsion, we see
that coker(B+/ϖnB+ → H0(U,O+/ϖn)) is n-uniformly torsion.

Backing up (6.17.3) by one term, we see that the composition of maps

(6.17.4) A+⟨T ⟩/(ϖcw,ϖn)→ B+/(ϖn)→ H0(U,O+/ϖn)

is an isomorphism modulo n-uniformly torsion modules; since the first map is surjective
modulo n-uniformly torsion modules, both maps must be isomorphisms modulo n-uniformly
torsion modules.

Now suppose in addition that A is uniform. Then A+ is bounded in A and A+ ∼=
lim←−n

A+/(ϖn). By (6.17.4), the composition

A+⟨T ⟩/(ϖcw)→ B+ → lim←−
n

B+/(ϖn)

has uniformly torsion kernel and cokernel; inverting ϖ yields that the composition

A⟨T ⟩/(w)→ B →

(
lim←−
n

B+/(ϖn)

)
[ϖ−1]

is an isomorphism. In particular, the map A⟨T ⟩/(w)→ B, which is a priori only a surjection,

is in fact an isomorphism; therefore B →
(
lim←−n

B+/(ϖn)
)
[ϖ−1] is also an isomorphism. This
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in turn implies that B+ → lim←−n
B+/(ϖn) is injective, so B+ is bounded in B; hence B is

uniform. □

Lemma 6.18. Let (A,A+) be a uniform plus-sheafy Huber pair and put X = Spa(A,A+).

(a) For any rational localization (A,A+)→ (B,B+), (B,B+) is again uniform and plus-
sheafy. Consequently, A is stably uniform, and hence sheafy by Proposition 3.14.

(b) The map A+ → H0(X,O+) is injective with uniformly torsion cokernel.
(b) For i > 0, H i(X,O+) is uniformly torsion.

Proof. As in the proof of Theorem 4.2, we may deduce (a) from Lemma 6.17.
To deduce (b), apply (a) to deduce that A → H0(X,O) is an isomorphism; this at

once implies that A+ → H0(X,O+) is injective. Meanwhile, we can choose a nonnegative
integer c so that for any element α ∈ H0(X,O+), ϖcα maps to zero in coker(A+/ϖnA+ →
H0(X,O+/ϖn)) for all n. That is, there exist elements yn ∈ A+ such that yn−ϖcα vanishes
as an element of H0(X,O+/ϖn), and thus equals ϖn times an element zn ∈ H0(X,O+).
Since A+ ∩ ϖnH0(X,O+) = ϖnA+, we have yn − yn+1 ∈ ϖnA+, and so the elements
yn converge to a limit y ∈ A+. Since ϖcα − y ∈ H0(X,O) ∼= A = A+[ϖ−1], we may
choose a nonnegative integer d such that ϖc+dα−ϖdy ∈ A+; now ϖc+dα−ϖdy belongs to⋂

n(A
+ ∩ ϖnH0(X,O+)) =

⋂
nϖ

nA+ = 0. We deduce that ϖcα = y, and so coker(A+ →
H0(X,O+)) is killed by ϖc.
To prove (c), combine (a) with Proposition 3.10 to deduce that H i(X,O) = 0. This

implies that H i(X,O+) is torsion; in other words,

(6.18.1) H i(X,O+) =
⋃
n≥1

H i(X,O+)[ϖn].

From (6.8.1), for i > 1 we obtain a surjective map

H i−1(X,O+/ϖn)→ H i(X,O+)[ϖn];

for i = 1, we similarly obtain a map

coker(A+/ϖnA+ → H0(X,O+/ϖn))→ H1(X,O+)[ϖn]

with n-uniformly torsion cokernel. We thus deduce that H i(X,O+)[ϖn] is n-uniformly tor-
sion; by (6.18.1), H i(X,O+) is uniformly torsion. □

Remark 6.19. Following up on Remark 3.16, note that Lemma 6.18 implies that a uniform
Huber ring which is sheafy but not stably uniform cannot be plus-sheafy.

Lemma 6.20. Let A → B be a finite étale morphism of rings. If A is a plus-sheafy Huber
ring, then so is B. (As per Definition 2.9, if A is uniform then B is also uniform, and hence
stably uniform by Lemma 6.18(a).)

Proof. Extend A to a Huber pair (A,A+) and let B+ be the integral closure of A+ in B.
Fix a topologically nilpotent unit ϖ in A. Put X := Spa(A,A+), Y := Spa(B,B+), and let
π : Y → X be the canonical projection; then by computing at stalks we see that Riπ∗Õ+

Y

(where the tilde denotes sheafification) is killed by ϖ for i > 0, and similarly after reducing
modulo ϖn for every positive integer n. Consequently, for each i ≥ 0, the kernel and
cokernel of H i(Y, Õ+

Y /ϖ
n) → H i(X, π∗Õ+

Y /ϖ
n) are n-uniformly torsion. By writing B (in

the category of A-modules) as a direct summand of a finite free A-module, we deduce that
B is plus-sheafy. □
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Theorem 6.21. The property of a Huber ring being plus-sheafy is of local nature. The
property of a Huber ring being uniform and plus-sheafy is of local nature and étale-local
nature.

Proof. We first establish local nature: in Definition 3.17, condition (i) is Lemma 6.18, and
condition (ii) is straightforward. We next establish étale-local nature using the criteria of
Proposition 5.5: (i) is the previous discussion, (ii) is Lemma 6.20, (iii) is straightforward,
and (iv) follows from Lemma 6.18(a). □

Remark 6.22. Using Remark 6.13, the proof of Theorem 6.21 can be extended to show
that the property of a Banach ring being plus sheafy, or of being uniform and plus-sheafy,
is also of local nature and étale-local nature for the reified adic spectrum.

We next consider passage to Tate algebras. The main result here (the final conclusion of
Lemma 6.24) has been generalized by Gabber to the case of a morphism which is “smooth
of good reduction” (private communication).

Lemma 6.23. Let π : Y → X be a morphism of ringed spaces and fix a basis B of Y closed
under intersections. Let F be a sheaf of OY -modules with the property that for all x ∈ X,
all V ∈ B, and all i > 0,

lim−→
x∈U

Ȟ i(π−1(U) ∩ V,F) = 0

where U runs over neighborhoods of x in X and Ȟ i denotes the colimit of Čech cohomology
over all coverings. Then Riπ∗F = 0 for all i > 0.

Proof. This is a relative version of [44, Tag 01EV], whose proof we follow. We prove the claim
for i = 1, . . . , k by induction on k, with the base case k = 1 following from [44, Tag 09V1].
Given the claim for some k ≥ 1, form an exact sequence

0→ F → I → E → 0

of OY -modules with I injective. Then π∗I is flasque [44, Tag 09SX] and

0→ π∗F → π∗I → π∗E → R1π∗F

is exact. Moreover, our assumption for i = 1 ensures on one hand that R1π∗F = 0, and on the
other hand that we may transfer the initial hypothesis from F to E (using [44, Tag 01EU]).
Applying the induction hypothesis to E , we deduce that Riπ∗F = 0 for i = 2, . . . , k+1, thus
completing the induction. □

Lemma 6.24. Let A be a (not necessarily sheafy) Banach ring and put X = Spa(A,A◦).
Let B be one of A⟨T/r⟩ or A⟨s/T, T/r⟩ for any 0 < s ≤ r, put Y = Spa(B,B◦), and let
π : Y → X be the projection. Let O++

Y denote the presheaf of topologically nilpotent sections
of OY . Then for all rational subspaces V of Y , all x ∈ X, and all i, n > 0,

lim−→
x∈U

Ȟ i(π−1(U) ∩ V, Õ++
Y ) = 0

(where the tilde denotes sheafification); consequently, by Lemma 6.23, Riπ∗Õ++
Y = 0 for all

i, n > 0.
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Proof. In the case where X is a point, this is a result of Bartenwerfer [4, Theorem, Folgerung
2]; we follow the presentation in [48, Proposition 3.5] to relativize the argument. Fix an open
subset U0 of X, an element x ∈ X, a rational subset V0 of π−1(U0), and a covering V of V0.
We will show that there exists a refinement V′ of V such that

lim−→
U

Ȟ i(π−1(U) ∩ V0, Õ++
Y ;V′|π−1(U)∩V0

) = 0 (i > 0),

where the colimit is taken over all rational subspaces of U0 containing x.
By Tate’s reduction [28, §1.6], we can choose a refinement V′ of V which is a composition

of simple Laurent coverings. We may thus reduce the claim to the case where V is the
simple Laurent covering defined by some f ∈ O(V0); in this case we will prove the claim
with V′ = V. Let V1, V2 be the two terms in the covering and put V12 := V1 ∩ V2.

We first recall the proof of this case whenX is a point, as described in [48, Proposition 3.5].
Put K := H(x) and let Vj,x be the pullback of Vj to Spa(B⊗̂AK, (B⊗̂AK)◦). The set Vj,x
is a rational subspace of the analytic projective line P1

K,an; its complement is the union of
finitely many connected components Wj,0, . . . ,Wj,n(j), which we can label so that Wj,0 is the
component containing∞. For i = 0, . . . , n(j), the set Vj,x∪Wj,i is again a rational subspace
of P1

K,an. Moreover,

W12,j ∈ {W1,j1 : j1 ∈ {0, . . . , n(1)}} ∪ {W2,j2 : j2 ∈ {0, . . . , n(2)}} (j = 0, . . . , n(12)).

Every g ∈ O(Vj,x) has a unique Mittag-Leffler decomposition g = g0 + · · · + gn where
gi ∈ O(Vj,x ∪Wi) and gi(∞) = 0 for i > 0. Moreover, the supremum norm of g is equal to
the maximum of the supremum norms of the gi. The acyclicity statement in this case is the
surjectivity of O(V1,x) ⊕ O(V2,x) → O(V12,x); we obtain a splitting using the Mittag-Leffler
decomposition and the identification of each W12,j with some W1,j1 or W2,j2 .
Returning to the general case, note that for some neighborhood U of x in U0, we may

lift the decomposition of the complement of Vi,x to the complement of Vi ∩ P1
U,an, at which

point we again have Mittag-Leffler decompositions and a candidate splitting map for the map
O(π−1(U) ∩ V1)⊕O(π−1(U) ∩ V2)→ O(π−1(U) ∩ V12). While this map no longer preserves
norms, we can still say that for any g ∈ O(V12) and any ϵ > 0, for U sufficiently small the
image of g under the splitting has norm at most 1 + ϵ times the norm of g. This yields the
claimed result. □

Lemma 6.25. If A is a plus-sheafy Banach ring, then so are the weighted Tate algebras
A⟨T/r⟩ and A⟨s/T, T/r⟩ for all 0 < s ≤ r. In particular, if A is a plus-sheafy Huber ring,
then so are A⟨T ⟩ and A⟨T±⟩.

Proof. We treat the case of A⟨T ⟩ in detail, the other cases being similar (using Remark 4.8
and Remark 6.13 to handle A⟨T/r⟩ and A⟨s/T, T/r⟩). Put

X := Spa(A,A◦), Y := Spa(A⟨T ⟩, A⟨T ⟩◦)

and let π : Y → X be the projection. Let ϖ ∈ A be a topologically nilpotent unit. The map
O+

X⟨T ⟩ → π∗Õ+
Y (where the tilde denotes sheafification) is injective and (because every Tate

algebra over a nonarchimedean field is sheafy) its cokernel is killed by every topologically
nilpotent element of A; since A → H0(X,OX) is bijective, we may deduce from this that
A+⟨T ⟩/ϖn → H0(X, Õ+

Y /ϖ
n) has n-uniformly torsion kernel and cokernel.
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By Lemma 6.24, Riπ∗(Õ++
Y /ϖn) = 0 for all i, n > 0, so the map H i(X, π∗(Õ++

Y /ϖn)) →
H i(Y, Õ++

Y /ϖn) is a bijection for all i, n > 0. Since Õ+
Y /Õ

++
Y is killed by every topolog-

ically nilpotent element of A, the kernel and cokernel of the map H i(X, π∗(Õ+
Y /ϖ

n)) →
H i(Y, Õ+

Y /ϖ
n) are n-uniformly torsion. As in the previous paragraph, π∗(Õ+

Y /ϖ
n) differs

from O+
X⟨T ⟩/ϖn by an n-uniformly torsion A+-module, and O+

X⟨T ⟩/ϖn may be rewritten

as (O+
X/ϖ

n)[T ] as in (6.17.1); hence H i(Y, Õ+
Y /ϖ

n) differs from H i(X,O+
X/ϖ

n)[T ] by an
n-uniformly torsion A+-module. Combining this with the fact that A is plus-sheafy yields
that A⟨T ⟩ is plus-sheafy. □

Corollary 6.26. Let A be a uniform plus-sheafy Huber ring.

(a) The ring A is strongly sheafy. (Example 6.11 shows that the converse fails.)
(b) If A is a Banach ring, then for every nonnegative integer n and every ρ1, . . . , ρn > 0,

A⟨T1/ρ1, . . . , Tn/ρn⟩ is sheafy.
Proof. This is immediate from Lemma 6.25. □

Corollary 6.27. Let (A,A+) → (B,B+) be a morphism of uniform Huber rings which is
smooth in the näıve sense. If A is plus-sheafy, then so is B. In particular, any smooth
affinoid algebra over a nonarchimedean field is plus-sheafy.

Proof. As per Definition 5.11, this follows by combining Theorem 6.21 with Lemma 6.25. □

The following example was suggested by Yutaro Mikami.

Example 6.28. Let A be the completion of the nonsheafy Huber ring given at the end
of [23, §1] (which Huber attributes to Rost). Explicitly, A is the completion of A▷ =
Z[X1, X2, X3]X1X2 for the topology under which {Xn

2B : n = 0, 1, . . . } form a fundamental
system of neighborhoods of 0, where B is the subring

Z[X2, X1X2, X
−1
1 X2, X

n
1X

n
2X3, X

−n
1 X−n

2 X3 : n = 0, 1, . . . ] ⊂ A.

Note that X2 is a topologically nilpotent unit in A, so A is Tate.
Huber shows that A is nonsheafy as follows. Promote A to a Huber pair (A,A+), put X =

Spa(A,A+), and let (A,A+) → (B1, B
+
1 ), (A,A

+) → (B2, B
+
2 ) be the rational localizations

defined by the conditions v(X1) ≤ 1 and v(X1) ≥ 1. Then X3 ∈ A is nonzero but maps to
zero in B1 and B2, so A→ H0(X,O) fails to be injective. Note that this also shows that A
is not uniform.

Now note that since X3 defines the zero section of O, neither X nor the cohomology
of O changes if we replace A by A/(X3) ∼= Z((X2))⟨X1X2, X2/X1⟩. By Example 6.9 and
Lemma 6.25, we deduce that A is plus-sheafy but not sheafy.

7. Sousperfectoid rings

We now describe a criterion for strong sheafiness which is easily checked in some key
examples. This construction is related to the use of preperfectoid and relatively perfectoid
rings in [40, Definition 2.3.4] and [29, §3.7]. Hereafter, fix a prime number p.

Definition 7.1. For A a Huber ring in which p is topologically nilpotent, a perfectoid
frame for A consists of a morphism A → A′ of Huber rings with A′ perfectoid, together
with a splitting σ : A′ → A in the category of topological A-modules. We summarize this

relationship using the notation A
σ

⇆ A′.
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We say that A is sousperfectoid if there exists a perfectoid frame for A. In this case,
A→ A′ is a strict inclusion, so A is uniform. Moreover, if A→ B is a rational localization,

then by Proposition 3.8 we obtain another perfectoid frame B
σ′

⇆ A′⊗̂AB by base extension,
so B is again sousperfectoid. Consequently, any sousperfectoid ring is stably uniform, and
hence sheafy by Proposition 3.14. However, we do not know whether the sousperfectoid
property is of local nature; see Remark 8.16 for a related discussion.

We extend the preceding definitions to a Banach ring by applying them to the underlying
Huber ring.

Remark 7.2. The existence of a splitting of A→ A′ in the category of A-modules is stable
under taking completed tensor products over A with a Huber ring B over A. However, such
tensor products generally do not preserve uniformity, and passing to the uniform completion
may destroy the splitting; see Example 10.5, and also Remark 8.3 for a related phenomenon.

Any perfectoid ring is sousperfectoid. We may generate additional examples using stability
under rational localization and the following lemmas.

Lemma 7.3. If A is a sousperfectoid Banach ring, then so are the weighted Tate algebras
A⟨T/r⟩ and A⟨s/T, T/r⟩ for all 0 < s ≤ r. In particular, if A is a sousperfectoid Huber
ring, then so are A⟨T ⟩ and A⟨T±⟩.

Proof. Let A
σ

⇆ A′ be a perfectoid frame. We may then construct perfectoid frames

A

〈
T

r

〉
σ′

⇆ A′

〈
T p−∞

rp−∞

〉
, A

〈
s

T
,
T

r

〉
σ′

⇆ A′

〈
sp

−∞

T p−∞ ,
T p−∞

rp−∞

〉
by the formula σ′(

∑
n xnT

n) =
∑

n∈Z σ(xn)T
n, i.e., by declaring that σ′ acts via σ on coeffi-

cients and kills all non-integral powers of T . □

Corollary 7.4. Any sousperfectoid ring, and in particular any perfectoid ring, is strongly
sheafy.

Proof. As noted in Definition 7.1 above, any sousperfectoid ring is sheafy. By Lemma 7.3, if
A is sousperfectoid, then for any n the ring A⟨T1, . . . , Tn⟩ is again sousperfectoid, and hence
sheafy. □

Lemma 7.5. Let f : A→ B be a finite étale morphism of Huber rings.

(a) If A is sousperfectoid, then so is B.
(b) Suppose that f is also faithfully flat. If B is sousperfectoid, then so is A.

Proof. Suppose that A is sousperfectoid. Let A
σ

⇆ A′ be a perfectoid frame. By Propo-

sition 2.15, by base extension we obtain a perfectoid frame B
σ′

⇆ B ⊗A A
′. This implies

(a).

Suppose that f is faithfully flat and B is sousperfectoid. Let B
σ

⇆ B′ be a perfectoid frame.

By composing σ with any A-linear splitting of B, we obtain a perfectoid frame A
σ′

⇆ B′.
This implies (b). □
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Lemma 7.6. Let A be a sousperfectoid Huber ring. Then every countably faithfully profinite
étale morphism A→ B splits in the category of topological A-modules. In particular, if there
exists such a morphism with B perfectoid, then this morphism extends to a perfectoid frame.

Proof. Let A
σ

⇆ A′ be a perfectoid frame; then A′ → B′ := B⊗̂AA
′ is again countably

profinite étale, and so B′ is again perfectoid by Proposition 2.15. Moreover, by applying
Proposition 2.15 countably many times (as in [30, Lemma 3.4.4]), the morphism A′ → B′

splits in the category of topological A-modules. We thus obtain a splitting of A→ B′ which
we may restrict to B. □

Remark 7.7. We do not know if Lemma 7.6 remains true if the word “countably” is omitted,
due to difficulties with taking inverse limits over uncountable inverse sets, as in the errata to
[38]. One approach to remedying this difficulty is to work with weakly sousperfectoid Huber
rings, as in §8.

As an example of the difficulty caused by Remark 7.7, we consider the case of a nonar-
chimedean field.

Remark 7.8. Let K be a nonarchimedean field. Then every separable Banach space over
K admits a Schauder basis, i.e., it is isomorphic to a finite or countable product of copies
of K topologized with the supremum norm [12, Proposition 2.7.2/3]. Consequently, any
countably faithfully profinite étale morphism K → L splits in the category of topological
K-vector spaces. In particular, if there exists such a morphism with L perfectoid (e.g., if K
is topologically countably generated over Qp), then K is sousperfectoid.

We now turn briefly to the case of positive characteristic.

Definition 7.9. A ring (without topology) of characteristic p is Frobenius-split (or F-split)
if the absolute Frobenius endomorphism of A admits a splitting. This concept has been
extensively studied for both rings and schemes, and has a diverse range of applications. See
[43] for a detailed survey.

Lemma 7.10. Let A be a uniform Huber ring of characteristic p.

(a) If A is sousperfectoid, then A is F-split.
(b) If A is F-finite (that is, the Frobenius endomorphism is finite) and F-split, then A is

sousperfectoid.

Proof. Suppose that A admits a perfectoid frame A
σ

⇆ A′. Then restricting σ to A1/p ⊆ A′

yields a Frobenius splitting. This proves (a).
If A is F-finite, then any splitting of Frobenius is automatically continuous. By iterating

the splitting, we get a continuous splitting of the map from A to its perfect closure, which
then extends to the completion and gives rise to a perfectoid frame. This yields (b). □

Example 7.11. Let K be a perfect nonarchimedean field of characteristic p. Let X be a
smooth projective variety over K with ample canonical bundle (e.g., a curve of genus at least
2). Then the Frobenius map on the structure sheaf OX does not admit a global splitting
[43, Corollary 2.18], so the homogeneous coordinate ring of X for the canonical embedding
is not Frobenius-split [43, Theorem 2.12].

Let Y be the affine cone over X for the canonical embedding. If we take a connected
affinoid neighborhood of the origin in the analytification of Y , we obtain a normal affinoid
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algebra A over K. We expect that a suitable variation of the proof of [43, Theorem 2.12]
can be used to show that A is neither Frobenius-split nor sousperfectoid; however, we did
not attempt to write out the details.

8. Weakly sousperfectoid rings

To circumvent several technical issues, including those associated to taking uncountable
inverse limits (Remark 7.7), we offer a weaker version of the sousperfectoid property. It is
motivated by the following observation.

Remark 8.1. Let A be a Banach ring. Let {Ai}i be a filtered system of Banach A-algebras
with submetric morphisms, and let A′ be the completed direct limit of the Ai [29, Defini-
tion 2.6.1]. Suppose that there exists c > 0 such that for each i, the map A→ Ai admits a
splitting in the category of Banach A-modules of operator norm at most c. Then the map
A→ A′ is strict.

Definition 8.2. Let A be a uniform Banach ring equipped with the spectral norm. For
B a faithfully finite étale A-algebra, view B as a Banach module over A (and thus as a
uniform Banach ring; see Definition 2.9), and equip B with its spectral norm. Let cB/A be
the infimum of the operator norms of all splittings of the map A → B in the category of
A-modules.

Remark 8.3. In connection with Remark 7.2, beware that the operator norm of a splitting
is not stable under base change. That is, with notation as in Definition 8.2, for A → A′

a morphism of uniform Banach rings, there is no immediate relationship between cB/A and
c(B⊗AA′)/A′ .

For example, let Cp be a completed algebraic closure of Qp and take A = Cp⟨T ⟩, B =
Cp⟨T 1/pn⟩, A′ = B. Let σ : B → A be the reduced trace; this is an A-module splitting of
A → B of operator norm 1. However, B ⊗A A

′ splits as a direct sum of copies of A′ with
the induced map σ′ : B ⊗A A

′ → A′ being the averaging map, which has operator norm pn.
With some more effort, one can show that there exists no splitting of A → B whose base
extension to A′ has operator norm less than pn.

Lemma 8.4. Let A → A′ be a morphism of Banach rings with A uniform. Assume either
that

(i) A′ is the completed direct limit of a filtered system {A′
j}j∈J of faithfully finite étale

A-algebras (for the spectral norm on each A′
j) for which {cA′

j/A
}j∈J is bounded; or

(ii) A′ is uniform and A→ A′ splits in the category of topological A-modules.

Then the following statements hold.

(a) If A′ → H0(Spa(A′, A′◦),O) is an isomorphism of rings, then so is A→ H0(Spa(A,A◦),O).
(b) If A′ is sheafy (resp. strongly sheafy), then A is sheafy (resp. strongly sheafy).
(c) If A′ is sheafy and H1(Spa(A′, A′◦),O+) is uniformly torsion (so in particular if A′

is plus-sheafy, by Lemma 6.18(c)), then H1(Spa(A,A◦),O+) is uniformly torsion.

Proof. We first treat (a). In case (ii), taking the composition

H0(Spa(A,A◦),O)→ H0(Spa(A′, A′◦),O) ∼= A′ → A
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yields a splitting of the map A → H0(Spa(A,A◦),O); since the construction is compatible
with localization, the splitting map is injective. In case (i), we make an analogous construc-
tion as follows. Choose splittings πj : A

′
j → A with j-uniformly bounded operator norm.

Given f ∈ H0(Spa(A,A◦),O), we again map to H0(Spa(A′, A′◦),O) ∼= A′; we then write
the result as the limit of a convergent sequence {gn} with gn ∈ A′

jn for some jn ∈ J . The
sequence πjn(gn) then converges to a limit which does not depend on the choices of the gn.
To prove (b), note that conditions (i) and (ii) of the present theorem are both preserved

by passing from A to a rational localization or to A⟨T ⟩; we may thus deduce (b) from (a).
To prove (c), note that condition (ii) implies that the exact sequence

0→ A+ → A′+ → A+/A′+ → 0

defines a torsion class in Ext(A+/A′+, A+); we thus obtain an exact sequence

∗ → H1(Spa(A,A◦),O+)→ H1(Spa(A′, A′◦),O+)

in which the unspecified first term is uniformly torsion. In case (i), we similarly obtain an
exact sequence

∗ → H1(Spa(A,A◦),O+)→ H1(Spa(A′
j, A

′◦
j ),O+)

in which the unspecified first term is j-uniformly torsion. □

Definition 8.5. Let A be a uniform Banach ring in which p is topologically nilpotent. We
say that A is weakly sousperfectoid if the quantities cB/A are uniformly bounded as B varies
over all faithfully finite étale A-algebras. If we need to specify a particular bound c ≥ 1, we
will say that A is c-weakly sousperfectoid.
This definition admits a topological reformulation: A is weakly sousperfectoid if and only

if there exists a topologically nilpotent element x of A such that for every faithfully finite
étale A-algebra B, the inclusion A → B admits a splitting in the category of A-modules
carrying xB◦ into A◦. We may thus say that a uniform Huber ring is weakly sousperfectoid
if some (hence any) promotion of A to a uniform Banach ring is weakly sousperfectoid.

Lemma 8.6. Any weakly sousperfectoid ring is strongly sheafy.

Proof. Apply Proposition 6.14 and Lemma 8.4. □

Remark 8.7. Note that one could formulate the definition of a weakly sousperfectoid Huber
or Banach ring without requiring p to be topologically nilpotent. However, at this level of
generality, we do not know whether this definition demonstrates any reasonable behavior; in
particular, we do not know that it implies sheafiness.

In contrast with Remark 7.8, every nonarchimedean field is weakly sousperfectoid.

Lemma 8.8. Suppose that A is a nonarchimedean field of residue characteristic p.

(a) Let V be a finite-dimensional A-vector space. Then for every Banach norm on V and
every c > 1, there exists a weighted supremum norm on V with respect to some basis
which differs from the given norm (in either direction) by a multiplicative factor of
at most c.

(b) We have cB/A = 1. Consequently, A is 1-weakly sousperfectoid.

Proof. Part (a) is well-known; see any of [12, Proposition 2.6.2/3], [25, Lemma 1.3.7], [32,
§3, Lemme 2]. Part (b) is an immediate consequence of part (a). □
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We next set about reconciling the definitions of sousperfectoid and weakly sousperfectoid
rings, starting with the fact that perfectoid rings are weakly sousperfectoid.

Lemma 8.9. Let A be a perfectoid ring. For every faithfully finite étale A-algebra B, we
have cB/A = 1. Consequently, A is 1-weakly sousperfectoid.

Proof. This is an immediate consequence of Proposition 2.15. □

Corollary 8.10. Any sousperfectoid Huber ring (in particular, any perfectoid ring) is weakly

sousperfectoid. More precisely, if A is a Banach ring admitting a perfectoid frame A
σ

⇆ A′

in which σ has operator norm c, then A is weakly c-sousperfectoid.

Proof. It suffices to prove the second assertion. Let A → B be a faithfully finite étale
morphism and put B′ := A′⊗AB; then A′ → B′ is again faithfully finite étale. By Lemma 8.9,
we have cB′/A′ = 1; consequently, for any c′ > c we can find a splitting of A → A′ → B′ =
A→ B → B′ of operator norm at most c′. □

Remark 8.11. If A is a 1-sousperfectoid Banach ring, then H1(Spa(A,A+),O+) is annihi-
lated by every topologically nilpotent element of A. This observation can be used to exhibit
examples of Banach rings which are weakly sousperfectoid but not weakly 1-sousperfectoid,
e.g., using Example 6.6.

We now give a crucial reformulation of the definition of a weakly sousperfectoid ring,
which will allow us to emulate some basic argument about sousperfectoid rings. It essentially
asserts that to establish that A is weakly sousperfectoid, we only need to check the uniform
boundedness of the constants cB/A for B running over a convenient family of faithfully finite
étale A-algebras.

Lemma 8.12. The following statements hold.

(a) Let A be a uniform Banach ring. Let A′ be a ring which is the completed direct limit
of a filtered system {A′

i}i∈I of faithfully finite étale A-algebras (for the spectral norm
on each A′

i). Suppose that A′ is weakly sousperfectoid and {cA′
i/A
}i∈I is bounded.

Then A is weakly sousperfectoid.
(b) Let A → A′ be a morphism of uniform Huber rings (resp. uniform Banach rings)

which splits in the category of topological A-modules (resp. Banach A-modules). If A′

is weakly sousperfectoid (so in particular by (a), if A′ is perfectoid), then A is weakly
sousperfectoid.

Proof. To prove (a), let A → B be a faithfully finite étale A-algebra; then any splitting of
A′ → (B ⊗A A

′) can be approximated to within any desired accuracy by a splitting taking
B into A′

i for some i. In particular, this approximation can be made without increasing the
operator norm. It follows that

cB/A ≤ c(B⊗AA′)/A′ sup
i
{cA′

i/A
},

so A is weakly sousperfectoid.
To prove (b), we need only consider the Banach case. For B a faithfully finite étale A-

algebra, we may split A→ B by composing the inclusion B → B′ := B ⊗A A
′, a splitting of

A′ → B′, and the splitting A′ → A. The quantity cB/A is thus bounded by a fixed constant
(the operator norm of A′ → A) times the supremum of the quantities cB′/A′ . □
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Corollary 8.13. If A is a weakly sousperfectoid Banach ring, then so are the weighted
Tate algebras A⟨T/r⟩ and A⟨s/T, T/r⟩ for all 0 < s ≤ r. In particular, if A is a weakly
sousperfectoid Huber ring, then so are A⟨T ⟩ and A⟨T±⟩.

Proof. For simplicity, we treat only the case of A⟨T ⟩, the other cases being similar. By
Lemma 8.12(b), it suffices to check that A⟨T p−∞⟩ is weakly sousperfectoid. To check this,
apply Proposition 2.14 to construct a faithfully profinite étale morphism A → A′ with A′

perfectoid, then apply Lemma 8.12(a) to the family {B⟨T p−∞⟩} where B runs over faithfully
finite étale A-subalgebras of A′. □

Theorem 8.14. Let A→ B be a rational localization of Huber rings. If A is weakly sousper-
fectoid, then so is B. Consequently, any weakly sousperfectoid Huber ring is stably uniform.

Proof. Promote A and B to Banach rings. Apply Proposition 2.14 to construct a faithfully
profinite étale morphism A → A′ with A′ perfectoid; by Proposition 3.8, the morphism
B → B′ := B⊗̂AA

′ has the same properties. For Ai running over the faithfully finite étale
subalgebras of A′, the maps B → B ⊗A Ai are uniformly split for the tensor product norm
on B ⊗A Ai; consequently, B → B′ is strict (because the spectral norm is equivalent to the
tensor product norm). It follows that B is uniform. By Lemma 8.12 applied to the B⊗AAi,
B is weakly sousperfectoid. □

Lemma 8.15. Let f : A→ B be a finite étale morphism of Huber rings.

(a) If A is weakly sousperfectoid, then so is B.
(b) Suppose that f is also faithfully flat. If B is weakly sousperfectoid, then so is A.

Proof. Promote A and B to Banach rings. Suppose that A is weakly sousperfectoid and
equip it with its spectral norm. Apply Proposition 2.14 to construct a faithfully profinite
étale morphism A→ A′ with A′ perfectoid and put B′ = A′ ⊗A B; by Proposition 2.15, the
tensor product norm is equivalent to its associated spectral norm. Consequently, c(Ai⊗AB)/B is
uniformly bounded as Ai runs over faithfully finite étale A-subalgebras of A

′. By Lemma 8.12,
we deduce that B is weakly sousperfectoid.

Suppose that f is faithfully flat and B is weakly sousperfectoid. Fix an A-linear splitting
of A → B; using this splitting, we see that cBi/A is uniformly bounded as Bi runs over all
faithfully finite étale B-algebras. By Lemma 8.12, we deduce that A is weakly sousperfectoid.

□

Remark 8.16. While the weakly sousperfectoid property does avoid some complications
associated with the sousperfectoid property, neither one is known to be of local nature
(Definition 3.17). For a statement about local nature limited to affinoid algebras, see Theo-
rem 10.3.

9. Fine topologies on (pre)adic spaces

In order to formulate some subsequent statements, we must consider some finer topologies
than the étale topology. Note that at several points below, we write Spa(A,A+) where it

would be more appropriate to write S̃pa(A,A+) as in [40, Definition 2.1.5] or [29, Defini-
tion 8.2.3] (to denote the sheafification of the representable functor); this should not cause
any confusion.
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Definition 9.1. For (A,A+) a Huber pair, the v-topology on X = Spa(A,A+) is the
Grothendieck topology3 whose objects are preadic spaces over Spa(A,A+) (i.e., the adic
spaces of [40, Definition 2.1.5]), and where a family of morphisms {fi : Ui → X}i∈I is a cov-
ering if every quasicompact open subset of X is contained in the image of some quasicompact
open subset of ⊔Ui. Let Spa(A,A

+)v denote the resulting site; it carries natural presheaves
O and O+. Note that the category of preadic spaces admits fiber products, so this definition
makes sense.

When A is a Tate ring over Zp, the associated diamond Spd(A,A+) has a v-site as defined
in [39], and there is a natural map of sites Spd(A,A+)v → Spa(A,A+)v. This map is not an
equivalence, but it does induce an equivalence of topoi. Likewise, if A is perfectoid, there is a
natural map from Spa(A,A+)v to the v-site defined in [30]; again, this is not an equivalence
of sites, but it induces an equivalence of topoi.

Remark 9.2. Let A→ B be a morphism of uniform Banach rings such thatM(B)→M(A)
is surjective. By Proposition 3.5, A→ B is an isometry for the spectral norms, and hence a
strict inclusion.

Now let (A,A+)→ (B,B+) be a morphism of uniform Huber rings which is a covering in
the v-topology. By the previous paragraph, A→ B is again a strict inclusion.

For our purposes, the most important example of a v-cover is given by Proposition 2.14,
on account of the following statement.

Theorem 9.3. Let (A,A+) be a perfectoid Huber pair.

(a) The presheaves O,O+ on Spa(A,A+)v are sheaves.
(b) For all i > 0, H i(Spa(A,A+)v,O) = 0.
(c) For all i > 0, the A+-module H i(Spa(A,A+)v,O+) is almost zero: it is killed by

every topologically nilpotent unit of A.

Proof. See [30, Theorem 3.5.5]. □

Remark 9.4. Theorem 9.3 implies a corresponding assertion for any topology between the
analytic topology and the v-topology. For example, this includes the pro-étale topology in the
original sense of Scholze [38, §3] (see also [29, §9.1]), as well as the more general sense used
in Scholze’s theory of diamonds [41, 39]. It also implies that for any Huber pair (A,A+),
the pro-étale cohomology and the v-cohomology of the structure presheaf on Spa(A,A+)
coincide; this will be used when making some citations into the literature.

Definition 9.5. For A→ A′ a morphism of Huber rings, define the complex

CA′/A : 0→ C0
A′/A

d0→ C1
A′/A → · · ·

by taking Ci
A′/A to be the uniform completion of the (i + 1)-fold tensor product of A′ over

A (so that C0
A′/A is the uniform completion of A′) and di is the alternating sum of the base

extension maps. Also, let

C+
A′/A : 0→ C0,+

A′/A

d0→ C1,+
A′/A → · · ·

3As usual, large topologies require some set-theoretic care; for a rigorous treatment, one should first
express everything within a fixed Grothendieck universe, then check that no answers depend on this choice.
Compare [44, Tag 0F4R].
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denote the corresponding complex of plus subrings. Since C+
A′/A is a complex of complete A+-

modules, Lemma 2.6 and Theorem 2.7 together imply that hi(C+
A′/A) is a derived complete

A+-module.
In the case where A → A′ is a v-covering with A′ perfectoid, each term in the complex

CA′/A is perfectoid by [29, Corollary 3.6.18]. Combining this observation with Theorem 9.3
yields canonical isomorphisms

hi(CA′/A) ∼= H i(Spa(A,A+)v,O)

via which we may topologize the right-hand side using the subquotient topology on the left-
hand side. This topology does not depend on the choice of A′. By the same token, in the
category of A+-modules modulo the subcategory of modules annihilated by all topologically
nilpotent units of A, we may identify hi(C+

A′/A) with H
i(Spa(A,A+)v,O+).

Definition 9.6. For (A,A+) a Huber pair in which p is topologically nilpotent, define the
v-completion (Ǎ, Ǎ+) to be the Huber pair given by Ǎ = H0(Spa(A,A+)v,O) and Ǎ+ =
H0(Spa(A,A+)v,O+). We say a Huber pair is v-complete if the natural map (A,A+) →
(Ǎ, Ǎ+) is an isomorphism.

Note that Ǎ depends only on A, and that v-completeness is independent of A+. Concretely,
we can compute Ǎ and Ǎ+ by the following recipe.

Lemma 9.7. Given a Huber ring A in which p is topologically nilpotent, let Ai be a directed

system of finite étale Galois A-algebras with Galois groups Gi, such that the completion Â∞
of the direct limit A∞ = lim−→Ai is perfectoid. Set G = lim←−Gi, so G operates naturally on A∞

and Â∞. Then Ǎ ∼= ÂG
∞.

Likewise, if A+ ⊂ A is a ring of integral elements, and Â+
∞ denotes the completion of the

integral closure of A+ in A∞, then Ǎ+ ∼= Â+G
∞ .

Proof. Apply Definition 9.5 with A′ = Â∞. It is easy to check in this case that CA′/A is the
usual complex of continuous cochains

0→ Â∞ → C(G, Â∞)→ C(G×G, Â∞)→ . . . ,

so the formula for Ǎ follows immediately. The analogous result for rings of integral elements
follows by a similar argument. □

Lemma 9.8. Let A be a Huber ring in which p is topologically nilpotent.

(a) Let A → B be a finite étale ring map. Then the natural map Ǎ ⊗A B → B̌ is an
isomorphism.

(b) The natural map Ǎ→ ˇ̌A is an isomorphism.
(c) For any ring of integral elements A+, the natural map (A,A+) → (Ǎ, Ǎ+) in-

duces an isomorphism Spd(Ǎ, Ǎ+) ∼= Spd(A,A+). In particular, the natural map
Spa(Ǎ, Ǎ+)→ Spa(A,A+) is a homeomorphism inducing isomorphisms of completed
residue fields, and Hom(A,B) = Hom(Ǎ, B) for any perfectoid Huber ring B.

Proof. Choose a directed system Ai and all attendant notation as in Lemma 9.7. Also set

Hi := ker(G→ Gi), so Ai = AHi
∞ and Ǎi

∼= Â∞
Hi

.
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For (a), set Bi = Ai ⊗A B and B∞ = lim−→Bi. Since A → B is finite étale, Â∞ ⊗A B is a
perfectoid Tate ring, and in particular is already complete for the natural topology, so the

natural map Â∞ ⊗A B → B̂∞ is an isomorphism. Thus

B̌ ∼= B̂G
∞
∼= (Â∞ ⊗A B)G ∼= ÂG

∞ ⊗A B ∼= Ǎ⊗A B

as desired.
For (b), note that Ǎi := ÂHi

∞ is a directed system of finite étale Galois Ǎ-algebras (apply
(a) to the maps A→ Ai and A→ Ai ⊗A Ai

∼= C(Gi, Ai)). Moreover, the composition of the
natural maps

A∞ = lim−→AHi
∞ → lim−→ ÂHi

∞ → Â∞

has dense image, so the natural map

A∞ → lim−→ ÂHi
∞ = lim−→ Ǎi

has dense image and becomes an isomorphism after completion. In particular, the completion

l̂im−→ Ǎi is perfectoid, so ˇ̌A ∼= l̂im−→ Ǎi

G

by Lemma 9.7. On the other hand, we’ve already

observed that l̂im−→ Ǎi

G
∼= ÂG

∞
∼= Ǎ, so the result follows.

For (c), combine the proof of (b) with [39, Proposition 15.4], noting in particular that

Spd(Â∞, Â
+
∞) is simultaneously a G-torsor over Spd(A,A+) and over Spd(Ǎ, Ǎ+). The

preservation of residue fields uses the Ax–Sen theorem; see Proposition 9.15 below. □

Remark 9.9. Beware that Lemma 9.8 does not imply that v-completion commutes with
rational localization. The proof of Lemma 11.7 will show that this would follow from Con-
jecture 9.12.

Lemma 9.10. Let (A,A+) be a Huber pair in which p is topologically nilpotent, and suppose
that A is v-complete.

(a) The ring A is uniform and seminormal.
(b) The map A→ H0(Spa(A,A+),O) is an isomorphism of rings.

Proof. By the open mapping theorem (Corollary 2.8), the map A→ Ǎ is an isomorphism of
topological rings, not just underlying rings. Since the target is evidently uniform, so then is
A. To see that A is seminormal, apply [30, Theorem 3.7.4] (or Proposition 6.7) for the case
where A is perfectoid, and [30, Corollary 3.7.5] for the general case. This proves (a).

Let A → A′ be a v-covering with A′ perfectoid. Since A is uniform, by Proposition 3.5
the map A → H0(Spa(A,A+),O) is injective. To check that this map is surjective, take
an arbitrary element of H0(Spa(A,A+),O); map it to H0(Spa(A′, A′+),O) = A′ (using
Theorem 9.3(a)); check pointwise (using Proposition 3.5 again) that further applying d0

gives the zero element of C1
A′/A; and use the posited equality A = ker(d0). This proves

(b). □

Definition 9.11. Let (A,A+) be a Huber pair in which p is topologically nilpotent. By
Corollary 2.8, for any i > 0, the following conditions on A are equivalent.

(a) The A-module H i(Spa(A,A+)v,O) is complete for the subquotient topology.
(b) The A-module H i(Spa(A,A+)v,O) is Hausdorff for the subquotient topology.
(c) The torsion submodule of H i(Spa(A,A+)v,O+) is uniformly torsion. (We do not

require the whole module to be torsion; see Remark 9.13.)
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(d) The image of di is closed.
(e) The map di is strict.

When these conditions hold, we say that A is i-strict.

While the following conjecture seems overly optimistic, we have no counterexample against
it. For example, it is true for any affinoid algebra in mixed characteristic (see Lemma 10.1).

Conjecture 9.12. Let (A,A+) be a Huber pair in which p is topologically nilpotent. Then
A is i-strict for every i > 0.

Remark 9.13. One trivial way for A to be i-strict is to have H i(Spa(A,A+)v,O) = 0.
However, this generally does not happen except when A is perfectoid (Theorem 9.3).

We record some interactions between Theorem 9.3 and the Galois cohomology of nonar-
chimedean fields.

Remark 9.14. In case K is a nonarchimedean field, the extension in Proposition 2.14 may
be taken to be a completed algebraic closure L of K. By Theorem 9.3, it follows that
H i(Spa(K,K◦)v,O) may be identified with H i

cont(GK , L), the i-th cohomology group of the
complex of continuous inhomogeneous L-valued cochains on GK .

Proposition 9.15 (Ax–Sen). Let K be a nonarchimedean field in which |p| = p−1. Let L
be a completed algebraic closure of K.

(a) We have LGK = K.
(b) The torsion submodule of the K◦-module H1

cont(GK , L
◦) is killed by every element of

K of norm at most p−p/(p−1)2.

In particular, by Remark 9.14, K = H0(Spa(K,K◦)v,O) and K is 1-strict.

Proof. This follows from a result of Ax [3, §2, Proposition 1]. In the case where K is the
completion of an algebraic extension of a complete discretely valued field with perfect residue
field, Sen [42] showed that the norm bound in (b) can be improved to p−1/(p−1); we will not
need this improvement here. □

Corollary 9.16. Let (A,A+) be a Huber pair in which p is a topologically nilpotent unit.
Put X := Spa(A,A+) and let ν : Xv → X be the canonical projection. Then ker(R1ν∗Õ+

Xv
→

R1ν∗ÕXv) (where the tildes denote sheafification) is killed by every x ∈ A for which x(p−1)2p−p

is topologically nilpotent.

Proof. Promote A to a Banach ring over Qp. We compute the stalk at v ∈ X projecting
to α ∈ M(A). Per Proposition 2.14, let A → A′ be a faithfully profinite étale morphism
with A′ perfectoid. An element of the stalk of the kernel at v can be represented, for some
rational localization (A,A+) → (B,B+) with v ∈ Spa(B,B+), by an element y of C1,+

B′/B

(where B′ = A′⊗̂AB) whose image in C1
B′/B equals d0(z) for some z ∈ C0

B′/B; to say that

this element of the stalk is killed by x is to assert that xy is itself in the image of d0. By
Proposition 9.15(b), this holds after base extension from A to H(α); that is, the image of
xy in C1,+

(A′⊗̂AH(α))/H(α)
equals d0(z′) for some z′ ∈ C0,+

(A′⊗̂AH(α))/H(α)
= (A′⊗̂AH(α))+. Now

d0(xz − z′) = 0, so by Proposition 9.15(a) we have xz − z′ ∈ H(α); in other words, we can
adjust the choice of z′ so that xz = z′ ∈ (A′⊗̂AH(α))+. At the expense of replacing (B,B+)
with another localization, we can ensure that xz ∈ C0,+

B′/B, proving the claim. □
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Remark 9.17. We do not know whether a similar uniform bound on the torsion ofH i
cont(GK , L

◦)
exists for any i > 1. For K a local field, such a bound has been recently announced by
Barthel–Schlank–Stapleton–Weinstein.

Remark 9.18. Proposition 9.15(a) fails whenK is of characteristic p, asH0(Spa(K,K◦)v,O)
equals not K but its completed perfect closure (see [3]).

Adapting the proof of Proposition 6.7 to the v-topology yields the following.

Lemma 9.19. For (A,A+) a uniform Huber pair in which p is a topologically nilpotent unit,
the following conditions are equivalent.

(i) The torsion submodule of H1(Spa(A,A+),O+) is uniformly torsion.
(ii) The ring H0(Spa(A,A+)v,O) is 1-strict and equals H0(Spa(A,A+),O).

Proof. To lighten notation, we write O+,O throughout where we really mean the sheafifica-
tions thereof. Put X := Spa(A,A+) and let ν : Xv → X be the canonical projection. The
commutative diagram

O+
X

//

��

OX

��
ν∗O+

Xv
// ν∗OXv

is cartesian and cocartesian (the latter by Proposition 9.15(a)), and hence gives rise to a
short exact sequence

(9.19.1) 0→ O+
X → OX ⊕ ν∗O+

Xv
→ ν∗OXv → 0.

Note that the kernel ofH1(X,O+)→ H1(X,O) equals the torsion submoduleH1(X,O+)tors,
and similarly with X replaced by Xv. Consequently, taking cohomology in (9.19.1) yields
an exact sequence

(9.19.2) 0→ H0(Xv,O)
H0(Xv,O+) +H0(X,O)

→ H1(X,O+)tors → H1(X, ν∗O+
Xv
)tors → 0.

(Here we are using that A is uniform to identify H0(X,O) with a subgroup of H0(Xv,O).)
In particular, any element of H0(Xv,O) not contained in H0(X,O) contributes a family of
torsion elements to H1(X,O+) which are not killed by any single power of p.
By Corollary 9.16, the sheaf ker(R1ν∗O+

X → R1ν∗OX) is killed by some power of p. Conse-
quently, in the previous sequence, the last nonzero term becomes isomorphic toH1(Xv,O+)tors
in the quotient category modulo groups killed by powers of p. This yields the desired equiv-
alence. □

Remark 9.20. Set notation as in the proof of Lemma 9.19, but assume in addition that A
is sheafy. By Proposition 3.10 we have H i(X,O) = 0 for i > 0. Now taking cohomology in
(9.19.1) shows that for i > 0, we have an exact sequence
(9.20.1)
0→ coker(H i(X, ν∗O+

Xv
)→ H i(X, ν∗OXv))→ H i+1(X,O+)tors → H i+1(X, ν∗O+

Xv
)tors → 0.

It follows that for i > 1, H i(X,O+) is uniformly torsion if and only if H i−1(X, ν∗OXv) = 0
and H i(X, ν∗O+

Xv
) is uniformly torsion.
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Keep in mind however that we do not have a direct comparison of H i(X, ν∗O+
Xv
)tors with

H i(Xv,O+)tors due to the possible contribution of Rjν∗O+
Xv

for j > 1. We do not control
the latter even when X is a point (Remark 9.17).

10. Affinoid algebras revisited

We next determine which affinoid algebras over mixed-characteristic nonarchimedean fields
have the weakly sousperfectoid property. We do not attempt to test for the sousperfectoid
property due to complications already occurring for nonarchimedean fields; see Remark 10.8.

In the process, we give a partial answer to Problem 6.15 in mixed characteristics; note
that while this statement makes no reference to anything other than affinoid algebras, our
proof requires perfectoid algebras, and in particular some results of [30] extending the Ax–
Sen theorem (Proposition 9.15). Somewhat vexingly, this approach limits us to handling the
mixed-characteristic case of Problem 6.15; it may be possible to handle the case of positive
characteristic using similar techniques, but Theorem 10.3 does not directly generalize (see
Example 7.11).

Lemma 10.1. Let A be an affinoid algebra over a nonarchimedean field K.

(a) If K is perfectoid, then A is i-strict for all i > 0.
(b) If K is of mixed characteristics, then A is 1-strict.

Proof. In case (a), we have by [30, Theorem 8.6.2] (and the comparison of topologies given
by Remark 9.4) that for all i > 0, H i(Spa(A,A+)v,O) is a finite A-module and hence a
complete A-module because A is noetherian [29, Remark 2.2.11].

In case (b), let K ′ be a completed algebraic closure of K and put A′ = A⊗̂KK
′. By

Proposition 9.15, K is 1-strict. By this plus [29, Lemma 2.2.9],

H1
cont(GK , K

′)⊗̂KA ∼= H1
cont(GK , A

′),

from which it follows that H1
cont(GK , A

′) is separated and so H1
cont(GK , A

′◦) is uniformly
torsion. By the previous paragraph, H1(Spa(A′, A′◦)v,O+) is uniformly torsion. By the
Hochschild–Serre spectral sequence, we have an exact sequence

0→ H1
cont(GK , A

′◦)→ H1(Spa(A,A◦)v,O+)→ H1(Spa(A′, A′◦)v,O+)GK ;

this yields the desired result. □

Lemma 10.2. Let A be an affinoid algebra over a nonarchimedean field (of any charac-
teristic). Let M be a finitely generated A◦-module. Then any A◦-submodule N of M is
almost finitely generated: for every topologically nilpotent unit x of A, there exists a finitely
generated submodule P of N containing xN .

Proof. See [31, Satz 5.1]. □

Theorem 10.3. Let A be a reduced (hence uniform) affinoid algebra over a nonarchimedean
field of mixed characteristics. Then the following conditions are equivalent.

(a) The ring A is weakly sousperfectoid. (By Corollary 8.10, this holds if A is sousper-
fectoid.)

(b) The ring A is seminormal.
(c) The ring A is v-complete.
(d) The A◦-module H1(Spa(A,A◦),O+) is uniformly torsion.
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In particular, by (b) plus Lemma 6.4, all of these properties (on affinoid algebras) are of
étale-local nature.

Proof. By Lemma 8.6, (a) implies (d). By Proposition 6.7, (d) implies (b). By the geometric
Ax–Sen–Tate theorem [30, Theorem 8.2.3], (b) implies (c).

It thus remains to check that (c) implies (a). Promote A to a Banach ring. Let A → B
be a faithfully finite étale morphism; our goal is to define a splitting B → A of bounded
operator norm. Apply Proposition 2.14 to construct a faithfully profinite étale morphism
A→ A′ with A′ perfectoid. Put

B′ := B ⊗A A
′, A′′ := C1

A′/A, B′′ := C1
B′/B.

By Lemma 8.9, for any c1 > 1 we may choose a splitting π : B′ → A′ of operator norm
at most c1. By base extension, we obtain two splittings π0, π1 : B

′′ → A′′. The difference
π0 − π1 gives an element of HomA′′(B′′/A′′, A′′) = A′′ ⊗A HomA(B/A,A); the class of this
element in coker(d0) ⊗A HomA(B/A,A) does not depend on the choice of π. Since one
possible choice would be the base extension of a splitting B → A, it follows that π0 − π1 ∈
image(d0)⊗A HomA(B/A,A) = HomA(B/A, image(d0)).
Let M be the image of B◦ in B/A. By Lemma 10.2, Hom(M,A◦) is an almost finitely

generated A◦-module; for any c2 > 1, we can thus write π0 − π1 as a finite sum
∑

i a
′′
iψi in

which ψi ∈ Hom(M,A◦) and a′′i ∈ image(d0) has norm at most c1c2.
By Lemma 10.1, there exists c3 > 1 (independent of B) such that each a′′i can be lifted

to some a′i ∈ A′ of norm at most c1c2c3. Put ψ :=
∑

i a
′
iψi; this is an A′-linear map from

B′/A′ to A′ of operator norm at most c1c2c3. Viewing ψ as a map B′ → A′, we may form
the difference π − ψ; this map carries B/A into ker(d0) = A thanks to (c). We thus deduce
that cB/A ≤ c1c2c3, and so (a) holds as desired. □

Corollary 10.4. For A as in Theorem 10.3, the v-completion of A is equal to the seminor-
malization of A.

Example 10.5. As in Example 6.11, put A = Qp⟨y, z⟩/(y3 − z2). By Theorem 10.3, A is
not weakly sousperfectoid. Note that H0(Spa(A,A◦)v,O) = Qp⟨x⟩ where y = x2, z = x3.
This example makes Remark 7.2 explicit: whereas Qp⟨y, z⟩ is sousperfectoid, it cannot

admit a perfectoid frame Qp⟨y, z⟩
σ

⇆ B that admits a base extension to A. That is because
the uniform completion of B ⊗Qp⟨y,z⟩ A receives a morphism with dense image from the
perfectoid ring B, and therefore is itself perfectoid [30, Theorem 3.3.18(ii)]; the existence of
a frame as described would then have the untenable consequence that A is sousperfectoid.

Remark 10.6. In Example 10.5, we can write A = A1⊗̂A0A2 for

A0 = Qp⟨x, y, z⟩, A1 = Qp⟨x, y, z⟩/(x), A2 = Qp⟨x, y, z⟩/(y3 − z2 − x).

Since A0, A1, A2 are all smooth affinoid algebras over Qp, they are all weakly sousperfectoid
by Theorem 10.3. This shows the category of weakly sousperfectoid Huber rings is not closed
under the formation of completed tensor products even in cases where the completed tensor
product is uniform.

However, if A is a perfectoid Huber ring and B,C are sousperfectoid (resp. weakly sous-
perfectoid) Huber rings over A, then B⊗̂AC is again sousperfectoid (resp. weakly sousperfec-
toid). This follows from the fact that the completed tensor product of two perfectoid rings
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over a third one is again perfectoid (e.g., see [30, Theorem 3.3.13]); we leave further details
to the reader.

We mention the following variant of Example 10.5 in the context of perfectoid spaces.

Example 10.7. Suppose p > 2. Let K be a perfectoid field of characteristic 0 and put

A0 := K⟨T p−∞⟩, A := A0[T
1/2], A′ := K⟨(T 1/2)p

−∞⟩.
The ring A, topologized as a finite free A0-module, is a closed subring of A′ and hence
uniform. By Corollary 4.7 and Corollary 7.4, A is also sheafy (see [28, Exercise 2.5.8] for an
alternate argument in the equal-characteristic case). However, A is evidently not seminormal.
The latter conclusion may also be seen directly from the definition: the map A→ A′ induces
an isomorphismM(A′)→M(A), from which it follows that H0(Spa(A,A+)v,O) equals A′

rather than A.

Remark 10.8. Note that Theorem 10.3 does not give a criterion for testing whether an
affinoid algebra A over a nonarchimedean field K of mixed characteristics is sousperfec-
toid. This is due to difficulties involving uncountable inverse limits (see Remark 7.7 and
Remark 7.8), which mean in particular that we do not even know whether K itself is sous-
perfectoid. One may hope to prove that A is sousperfectoid if and only if K is sousperfectoid
and A is seminormal, but we did not attempt to establish this.

11. Diamantine rings

For general Huber rings, we do not know whether either the sousperfectoid or weakly
sousperfectoid properties is of local nature. To remedy this, we formulate one more sheafiness
condition.

Definition 11.1. Let A be a Huber ring over Qp (that is, a Huber ring in which p is
a topologically nilpotent unit). We say that A is diamantine if A is plus-sheafy and v-
complete. Any such ring is uniform and seminormal (by Lemma 9.10), strongly sheafy (by
Corollary 6.26), and 1-strict (by Lemma 9.19). In fact, if A is plus-sheafy and uniform, then
it is v-complete by Lemma 6.18(c) and Lemma 9.19, and hence diamantine.

Remark 11.2. Because a diamantine Huber ring is required to be v-complete, the v-topology
on diamantine spaces is subcanonical. This implies that the functor from diamantine spaces
overQp to Scholze’s category of diamonds (i.e., pro-étale sheaves on the category of perfectoid
spaces of characteristic p which are locally the quotients of perfectoid spaces by pro-étale
equivalence relations) is fully faithful, and explains the choice of terminology here.

Proposition 11.3. Let A be a Huber ring over Qp.

(a) If A is perfectoid, then A is diamantine.
(b) If A is a nonarchimedean field, then A is diamantine.

Proof. In case (a), the ring A is plus-sheafy by Proposition 6.14 and v-complete by The-
orem 9.3. In case (b), the ring A is plus-sheafy trivially and v-complete by Proposi-
tion 9.15. □

Lemma 11.4. Let A be a Banach ring in which p is topologically nilpotent.

(a) If A is weakly sousperfectoid (which holds by Corollary 8.10 if A is sousperfectoid),
then A is v-complete.
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(b) For all 0 < s ≤ r, the v-completion of A⟨T/r⟩ (resp. A⟨s/T, T/r⟩) is equal to Ǎ⟨T/r⟩
(resp. Ǎ⟨s/T, T/r⟩).

Proof. Assertion (a) follows from Lemma 8.4(a). For (b), we treat the case of A⟨T ⟩ in detail,
the other cases being similar. Let A→ A′ be a v-covering with A′ perfectoid. By Lemma 7.3,
A′⟨T ⟩ is sousperfectoid, and so by (a) is v-complete. We may thus identify the v-completion
of A⟨T ⟩ with the equalizer of the two maps A′⟨T ⟩ → C1

A′/A⟨T ⟩, which is equal to Ǎ⟨T ⟩. □

Corollary 11.5. If A is a diamantine Banach ring, then so are the weighted Tate algebras
A⟨T/r⟩ and A⟨s/T, T/r⟩ for all 0 < s ≤ r. In particular, if A is a diamantine Huber ring,
then so are A⟨T ⟩ and A⟨T±⟩.

Proof. LetB be one of the rings in question. By Lemma 11.4, B is v-complete; by Lemma 6.25,
it is also plus-sheafy. □

Definition 11.6. For M a Banach module over a Huber ring A, let M⟨T ⟩ be the set of
formal sums

∑∞
n=0mnT

n in which {mn} is a null sequence in M . This module may be
identified with M⊗̂AA⟨T ⟩.

Lemma 11.7. Let A be a diamantine Huber ring. Then for any f ∈ A, B := A⟨f−1⟩ is also
diamantine.

Proof. Extend A → B to a rational localization (A,A+) → (B,B+) of Huber pairs. By
Lemma 6.18, B is again plus-sheafy; it thus remains to check that B = H0(Spa(B,B+)v,O).
Apply Proposition 2.14 to construct a faithfully profinite étale morphism A→ A′ with A′

perfectoid. Let M0,M1 be the kernel and cokernel of d0 : C0
A′/A⟨T ⟩ → C1

A′/A⟨T ⟩. Since A is

1-strict by Lemma 9.19, M0 = A⟨T ⟩ and M1 is a Banach module over A.
In the commutative diagram

(11.7.1) 0 // C0
A′/A⟨T ⟩

×(1−fT )
//

d0

��

C0
A′/A⟨T ⟩

d0

��

// C0
A′/A⟨f−1⟩ //

d0

��

0

0 // C1
A′/A⟨T ⟩

×(1−fT )
// C1

A′/A⟨T ⟩ // C1
A′/A⟨f−1⟩ // 0

the rows are strict exact by Lemma 3.7(a). By [30, Remark 1.2.8], the map M1⟨T ⟩
×(1−fT )→

M1⟨T ⟩ is injective. We thus have an exact sequence

0→ A⟨T ⟩ ×(1−fT )→ A⟨T ⟩ → H0(Spa(B,B+)v,O)→ 0

which, by Lemma 3.7(a) applied to A, implies that A⟨f−1⟩ → H0(Spa(B,B+)v,O) is an
isomorphism. □

Corollary 11.8. Let (A,A+) be a diamantine Huber pair. Then Spa(A,A+) admits a neigh-
borhood basis consisting of rational subspaces Spa(B,B+) for which B is diamantine.

Proof. This follows from Lemma 11.7 via [30, Lemma 3.7.8]. □

Lemma 11.9. Any diamantine Huber ring is stably uniform.

Proof. By Lemma 9.10, any diamantine ring is uniform. For any rational localization
(A,A+) → (B,B+) we have B = A⟨f−1⟩⟨f1, . . . , fn⟩ for some f ∈ A and some f1, . . . , fn ∈
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A⟨f−1⟩. In light of Lemma 11.7, we know that A⟨f−1⟩ is diamantine; hence to prove that B
is uniform, we may reduce to the case where B = A⟨f1, . . . , fn⟩ for some f1, . . . , fn ∈ A.
We will prove that for any disjoint subsets S, T of {1, . . . , n}, the ring

AS,T := A⟨fi : i ∈ S⟩⟨f±
j : j ∈ T ⟩

is uniform; the case S = {1, . . . , n}, T = ∅ will prove the desired result. We proceed by
induction on #S, the case S = ∅ (for T arbitrary) being a consequence of Lemma 11.7. For
S ̸= ∅, write S as the disjoint union of S ′ and {i} for some i. By the induction hypothesis,
AS′,T∪{i} is uniform; by Lemma 3.7(c), this implies that AS,T is uniform. □

Theorem 11.10. Let (A,A+) be a diamantine Huber pair. Then for any rational localization
(A,A+)→ (B,B+), B is also diamantine.

Proof. By Lemma 6.18, B is plus-sheafy; it thus remains to check that the map B →
H0(Spa(B,B+)v,O) is an isomorphism. By Lemma 11.9, B is uniform and so the map
B → H0(Spa(B,B+)v,O) is injective. By Corollary 11.8, Spa(A,A+) admits a neighborhood
basis consisting of rational subspaces satisfying the conclusion of the theorem; consequently,
any global section of O on Spa(B,B+)v arises from a global section on Spa(B,B+). By
Lemma 11.9 again, B is sheafy; it follows that B → H0(Spa(B,B+)v,O) is surjective. □

Corollary 11.11. The diamantine property of Huber rings is of local nature.

Proof. Of the conditions of Definition 3.17, (i) is Theorem 11.10. To check (ii), note that
the plus-sheafy condition is of local nature (Theorem 6.21); the rest is straightforward. □

Remark 11.12. In [29, Definition 9.2.12], a Huber ring A was defined to be pro-sheafy if A
is uniform and sheafy and OX → ν∗OXv is an isomorphism. Any diamantine ring has this
property, by the discussion of Definition 11.1 (for the uniform and sheafy conditions) and
Theorem 11.10 (for the last condition).

Lemma 11.13. Let f : A→ B be a finite étale morphism of Huber rings.

(a) If A is diamantine, then so is B.
(b) If f is faithfully flat and B is diamantine, then so is A.

Proof. Part (a) follows directly from Theorem 6.21 and Lemma 9.8.
To prove (b), it similarly suffices to check that A = H0(Spa(A,A◦)v,O). This is easily

seen by computing within B. □

Theorem 11.14. The diamantine property of Huber rings is of étale-local nature.

Proof. We establish étale-local nature using the criteria of Proposition 5.5: (i) is Corol-
lary 11.11, and (ii) and (iii) are Lemma 11.13, and (iv) is Lemma 6.18. □

Lemma 11.15. If A is plus-sheafy, then so is Ǎ. Consequently, by Lemma 9.8, the functor
A 7→ Ǎ defines an adjunction between plus-sheafy Huber rings in which p is topologically
nilpotent and diamantine rings.

Proof. Put X = Spa(A,A◦) and X̌ = Spa(Ǎ, Ǎ◦). Fix a topologically nilpotent unit ϖ of
A. By Lemma 9.8, the natural map X̌ → X is a homeomorphism. If we use this map to
identify the two spaces, then the natural morphisms of sheaves

ν∗O+
Xv
→ ν∗O+

X̌v
, ν∗OXv → ν∗OX̌v
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are isomorphisms. Meanwhile, by Proposition 9.15(a), the maps

O+
X → ν∗O+

Xv
, O+

X̌
→ ν∗O+

X̌v

are injective and their cokernels are killed by ϖ, and likewise after quotienting everything
modulo ϖn for any positive integer n. This allows us to transfer conditions (ii) and (iii)
of Definition 6.8 from A to Ǎ. Since evidently H0(X̌,O) = Ǎ, we deduce that Ǎ is plus-
sheafy. □

Remark 11.16. Continuing with Remark 3.19, let A be a sheafy Huber ring which admits
a rational covering by perfectoid rings. By Corollary 11.11, A is diamantine; in particular,
H1(Spa(A,A+),O+) is uniformly torsion. However, this is not enough to deduce that A is
perfectoid. It would suffice to show that there exists a topologically nilpotent unit ϖ ∈ A+

which both divides p and annihilates H1(Spa(A,A+),O+), as this would imply the existence
of approximate p-th roots in A+/(ϖ).

Lemma 11.17. Let A be a diamantine Huber ring. Let G be a finite group acting on A.
Then AG is also diamantine.

Proof. Choose a topologically nilpotent unit ϖ in AG (e.g., by taking the norm of a topologi-
cally nilpotent unit in A). By Lemma 12.5, AG is v-complete. To prove that it is plus-sheafy,
we must prove that for each positive integer i, there exists a positive integer c such that for
each positive integer n, H i(Spa(AG, AG◦),O+/ϖn) is killed by ϖc. In fact, by the usual spec-
tral sequence [44, Tag 01ES] it is equivalent to prove the corresponding statement with sheaf
cohomology replaced by Čech cohomology. To see this, start with a cocycle on Spa(AG, AG◦),
trivialize it on Spa(A,A◦), then use the trace to return to AG. □

Theorem 11.18. Let (A,A+)→ (B,B+) be a morphism of Huber rings which is smooth in
the näıve sense. If A is diamantine, then so is B. In particular, any smooth affinoid algebra
over a nonarchimedean field is diamantine.

Proof. As per Definition 5.11, the first assertion follows by combining Corollary 11.5 with
Theorem 11.14. The second assertion then follows from Proposition 11.3(b). □

12. Conjectures

In this section, we present a series of optimistic conjectures. We begin with the most
interesting (and perhaps most plausible) of them.

Conjecture 12.1. Let A be a Huber ring in which p is topologically nilpotent. Suppose that
for every point x ∈ X = Spa(A,A◦), the completed residue field K(x) at x is a perfectoid
field. Then Ǎ is a perfectoid ring.

The condition on residue fields is not enough to guarantee that A itself is perfectoid, as
demonstrated by Example 10.7.

Proposition 12.2. Conjecture 12.1 implies that perfectoidness is a local property.

Proof. Suppose that A is sheafy and that X = Spa(A,A+) has an open covering by affinoid
perfectoid subsets. Then A is diamantine, and in particular v-complete, so A ∼= Ǎ. But the
completed residue fields of X are evidently perfectoid, so Conjecture 12.1 implies that Ǎ is
a perfectoid ring. Thus A ∼= Ǎ is perfectoid. □
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Conjecture 12.1 would also give a new proof of Bhatt-Scholze’s theorem that if A is a per-
fectoid ring and A→ B is an integral ring map, then B has a canonical “perfectoidization”,
cf. [11, Theorem 1.16(1)]. To see this, observe that integrality implies that any completed
residue field L of Spa(B,B◦) is the completion of an algebraic extension of some completed
residue field K of Spa(A,A◦); since K is perfectoid by assumption, L is also perfectoid.
Conjecture 12.1 then applies.

One of the most intriguing hopes for diamantine rings is that they might give a handle on
some of the thorny issues around inverse limits in p-adic geometry.

Conjecture 12.3. Let A be a diamantine Huber ring. Then for any profinite étale morphism
A→ B, B is also diamantine.

Conjecture 12.4. Let A be a perfectoid Huber ring over Qp. Let G be a p-adic Lie group
acting continuously on A. Suppose in addition that the action map

G× Spa(A,A◦)→ Spa(A,A◦)×Spa(Qp,Zp) Spa(A,A
◦)

is a monomorphism. Then AG is diamantine.

Lemma 12.5. Let A be a diamantine ring. Let G be a profinite group acting continuously
on A. Then AG ∼= H0(Spa(AG, AG◦)v,O).

Proof. Straightforward. □

Remark 12.6. Let A be a diamantine ring. Let G be a profinite group acting continuously
on A such that for each open subgroup H of G, the map AG → AH is finite étale. We then
have a canonical isomorphism

H i
cont(G,A)

∼= H i(Spa(AG, AG◦)v,O)

so by Lemma 12.5, AG is diamantine if and only if H i
cont(G,A) is complete for each positive

integer i.
By contrast, if G is a profinite group acting continuously on A without further conditions,

one cannot use the H i
cont(G,A)’s as a reliable indicator of whether AG is diamantine, and in

fact the group H i
cont(G,A) can be rather unpleasant, as the following example shows.

Example 12.7. Let Cp be a completed algebraic closure of Qp. Let p be the element of

C♭
p corresponding to some sequence (pp

−n
)n. Put A := Cp⟨T p−∞

i : i = 0, 1, . . . ⟩ and let T i

be the element of A♭ corresponding to the sequence (T p−n

i )n. Let G be the group Zp acting
Cp-linearly on A via the substitution

T2i 7→ T2i, T2i+1 7→ ♯(T 2i+1 + piT 2i) (i = 0, 1, . . . ).

Then the principal crossed homomorphism corresponding to T2i+1 has supremum norm p−ci

for

ci = min{j + p−ji : j = 0, 1, . . . }.
Since ci → ∞ as i → ∞, the map from A to crossed homomorphisms is not strict, so

H1
cont(G,A) is not complete. However, AG = Cp⟨T p−∞

2i ⟩ is perfectoid and hence diamantine.

We would also like to state a special case of both Conjecture 12.1 and Conjecture 12.3,
which we believe is within reach. (For a closely related problem, see [36, Conjecture 4.1.27].)
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Conjecture 12.8. Let Xi = Spa(Ai, A
◦
i ) be a tower of smooth affinoid adic spaces over

a mixed-characteristic perfectoid field K with finite étale transition maps, and suppose the

tower is deeply ramified in the sense of [18]. Then the ring ̂lim−→i
Ai is diamantine.

13. Summary of containments

We conclude by summarizing our results with a diagram of containments among various
classes of Huber rings (or equivalently, implications among various properties of Huber rings);
see Figure 1. In each case, we have given an internal or external reference for the containment;
this includes cases which are true by definition or vacuous, in which case we enclose the
reference in parentheses. (Note that in some cases, the implication must be interpreted
within the class of Huber rings over Qp because one of the properties involved is only defined
in that context.) The absence of an indicated relation is not meant to imply non-containment
in either direction, but in some cases this are known; see below.

smooth char 0 affinoid

(6.2)
��

11.18

&.

perfectoid
(7.1)

%-
11.3

��

seminormal char 0 affinoid

10.3

)1
(6.2)
��

sousperfectoid

8.10
��

affinoid

[46]
��

diamantine
(11.1)

qy

(11.1)

##

weakly sousperfectoid

8.14
w�

11.4

��

8.6

qy

strongly noetherian

3.12 &.

uniform plus-sheafy

(6.8)

y�

6.26
�� 6.18 %-

strongly sheafy

(4.1)

��

stably uniform

(3.13), 3.14
��

v-complete

9.10

��

sheafy uniform

(3.9)qy (2.3) %-
plus-sheafy sheafy uniform

Figure 1. Containments among various classes of Huber rings.

We use a double arrow to indicate containments which are known to be strict, for the
following reasons. In the process we also establish some non-containments that are not
indicated in the diagram.

• The affinoid algebra Qp⟨T1, T2, T3, T4⟩/(T1T2 − T3T4) is seminormal but not smooth.

• For K a perfectoid field, the ring K⟨T p−∞⟩ is perfectoid but not strongly noetherian.
• The field Qp is sousperfectoid, diamantine, and a smooth characteristic-0 affinoid,
but not perfectoid.
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• Any nonarchimedean field is weakly sousperfectoid by Lemma 8.8, but a nonar-
chimedean field can fail to be sousperfectoid for reasons of cardinality (see Re-
mark 7.8).
• Example 6.11 is affinoid and stably uniform, but not v-complete (Theorem 10.3).
• The rings considered in [26] are strongly noetherian but not affinoid. They are
probably also sousperfectoid and diamantine, but we did not check this. They cannot
be perfectoid because a noetherian perfectoid ring is a finite product of perfectoid
fields [28, Corollary 2.9.3].
• Example 6.10 is sheafy and plus-sheafy but not uniform; Example 6.28 is plus-sheafy
but not sheafy; and the examples of [13, Proposition 18] and [33, Theorem 4.6] are
uniform but not sheafy.

This leaves the following containments for which strictness remains an open question.

• Weakly sousperfectoid to v-complete.
• Diamantine to v-complete.
• Strongly sheafy to sheafy.
• Stably uniform to sheafy uniform.
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[35] M. Raynaud, Géométrie analytique rigide d’apres Tate, Kiehl, ..., Bull. Soc. Math. France 39/40 (1974),

319–327.
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