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1. Sheaves on analytic adic spaces

We begin by picking up where the first lecture of Weinstein [177, Lecture 1], on the
adic spectrum associated to a Huber pair, leaves off. We collect the basic facts we need
about the structure sheaf, vector bundles, and coherent sheaves on the adic spectrum. The
approach is in some sense motivated by the analogy between the theories of “varieties”
(here meaning schemes locally of finite type over a field) and of general schemes. In our
version of this analogy, the building blocks of the finite-type case are affinoid algebras over
a nonarchimedean field (with which we assume some familiarity, e.g., at the level of [22] or
[71]), and we are trying to extend to more general Huber rings in order to capture examples
that are very much not of finite type (notably perfectoid rings). However, this passage does
not go quite as smoothly as in the theory of schemes, so some care is required to assemble a
theory that is both expansive enough to include perfectoid rings and robust enough to allow
us to assert the general theorems we will need.

In order to streamline the exposition, we have opted to state most of the key theorems first
without proof (see §1.2–1.4). We then follow with discussion of the overall strategy of proof of
these theorems (see §1.6), and finally treat the technical details of the proofs (see §1.7–1.9).
Along the way, we include some technical subsections that can be skimmed or skipped on
first reading: one on the open mapping theorem (§1.1), one on Banach rings (§1.5), one on
the étale topology (§1.10), and one on preadic spaces (§1.11).
Hypothesis 1.0.1. Throughout §1, let (A,A+) be a fixed Huber pair (with A complete,
as per our conventions) and put X := Spa(A,A+). Unless otherwise specified, we assume
also that A is analytic (see Definition 1.1.2); however, there is little harm done if the reader
prefers to assume in addition that A is Tate (see Definition 1.1.2 and Remark 1.1.5).
1.1. Analytic rings and the open mapping theorem. We begin with a brief technical
discussion, which can mostly be skipped on first reading. This has to do with the fact that
Huber’s theory of adic spaces includes the theory of formal schemes as a subcase, but we are
primarily interested in the complementary subcase.
Remark 1.1.1. In any Huber ring, the set of units is open: if x is a unit and y is sufficiently
close to x, then x−1(x − y) is topologically nilpotent and its powers sum to an inverse of
x−1y. This implies that any maximal ideal is closed.

This observation is often used in conjunction with [94, Proposition 3.6(i)]: if A 6= 0, then
X 6= ∅. For a derivation of this result, see Corollary 1.5.18.
Definition 1.1.2. Recall that the Huber ring A is said to be Tate (or sometimes microbial)
if it contains a topologically nilpotent unit (occasionally called a microbe by analogy with
terminology used in real algebraic geometry [51]; more commonly a pseudouniformizer). For
example, if A is an algebra over a nonarchimedean field, then A is Tate; this includes the
case where A contains a field F on which the induced topology is discrete (e.g., when A is of
characteristic p), as then for any pseudouniformizer $ ∈ A we have F (($)) ⊆ A. However,
it is possible for A to be Tate without being an algebra over any nonarchimedean field; see
[113, Example 2.16].

More generally, we say that A is analytic if its topologically nilpotent elements generate
the trivial ideal in A; Example 1.5.7 separates the Tate and analytic conditions. The term
analytic is not standard (the corresponding term in [73, §0.B.1.(c)] is extremal), but is
motivated by Lemma 1.1.3 below. By convention, the zero ring is both Tate and analytic.
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We say that a Huber pair (A,A+) is Tate (resp. analytic) if A is Tate (resp. analytic).
Lemma 1.1.3. The following conditions on a general Huber pair (A,A+) are equivalent.

(a) The ring A is analytic.
(b) Any ideal of definition in any ring of definition generates the unit ideal in A.
(c) Every open ideal of A is trivial.
(d) For every nontrivial ideal I of A, the quotient topology on A/I is not discrete.
(e) The only discrete topological A-module is the zero module.
(f) The set X contains no point on whose residue field the induced valuation is trivial.

Proof. We start with some easy implications:
• (b) implies (a) (any ideal of definition consists of topologically nilpotent elements);
• (b) and (c) are equivalent (any ideal of definition is open, and any open ideal contains
an ideal of definition);
• (c) and (d) are equivalent (trivially);
• (e) implies (d) (trivially).

We next check that (a) implies (b). Suppose that A is analytic, A0 is a ring of definition,
and I is an ideal of definition. For any topologically nilpotent elements x1, . . . , xn ∈ A which
generate the unit ideal, for any sufficiently large m the elements xm1 , . . . , xmn belong to I and
still generate the unit ideal in A.

At this point, we have the equivalence among (a)–(d). To add (e), we need only check
that (c) implies (e), which we achieve by checking the contrapositive. Let M be a nonzero
discrete topological A-module, and choose any nonzero m ∈M . The map A→M , a 7→ am
is continuous; its kernel is a nontrivial open ideal of A.

We next check that (a) implies (f). If A is analytic, then for each v ∈ X, we can find a
topologically nilpotent element x ∈ A with v(x) 6= 0. We must then have 0 < v(x) < 1, so
the induced valuation on the residue field is nontrivial.

We finally check that (f) implies (d), by establishing the contrapositive. Let I be a nontriv-
ial ideal of A such that A/I is discrete for the quotient topology. Then the trivial valuation
on the residue field of any maximal ideal of A/I gives rise to a point of X on whose residue
field the induced valuation is trivial. �

Corollary 1.1.4. If (A,A+) is an analytic Huber pair, then Spa(A,A+)→ Spa(A+, A+) is
injective. (We will show later that it is also a homeomorphism onto its image; see Lemma 1.6.5.)
Proof. For v ∈ Spa(A,A+), by Lemma 1.1.3 there exists a topologically nilpotent element x
of A such that 0 < v(x) < 1. For w ∈ Spa(A,A+) agreeing with v on A+, for any y, z ∈ A,
any sufficiently large positive integer n has the property that xny, xnz ∈ A+; it follows that
the order relations in the pairs

(v(y), v(z)), (v(xny), v(xnz)), (w(xny), w(xnz)), (w(y), w(z))

all coincide, yielding v = w. �

Remark 1.1.5. Lemma 1.1.3 shows that a Huber pair (A,A+) is analytic if and only if
Spa(A,A+) is analytic in the sense of Huber; that is, if (A,A+) is analytic, then Spa(A,A+)
is covered by rational subspaces (see Definition 1.2.1) which are the adic spectra of Tate
rings. Consequently, from the point of view of adic spaces, escalating the level of generality
of Huber pairs from Tate to analytic does not create any new geometric objects. However,
it does improve various statements about acyclicity of sheaves, as in the rest of this lecture.
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Exercise 1.1.6. Let A be a Huber ring. If there exists a finite, faithfully flat morphism
A→ B such that B is Tate (resp. analytic) under its natural topology as an A-module (see
Definition 1.1.11), then A is Tate (resp. analytic).

Exercise 1.1.7. A (continuous) morphism f : A → B of general Huber rings is adic if
one can choose rings of definition A0, B0 of A,B and an ideal of definition A such that
f(A0) ⊆ B0 and f(I)B0 is an ideal of definition of B0. Prove that this condition is always
satisfied when A is analytic.

From now on, assume (unless otherwise indicated) that A is analytic. In the classical
theory of Banach spaces, the open mapping theorem of Banach plays a fundamental role in
showing that topological properties are often controlled by algebraic properties. The same
theorem is available in the nonarchimedean setting for analytic rings.

Definition 1.1.8. A morphism of topological abelian groups is strict if the subspace and
quotient topologies on its image coincide. For a surjective morphism, this is equivalent to
the map being open.

Theorem 1.1.9 (Open mapping theorem). Let f : M → N be a continuous morphism
of topological A-modules which are first-countable (i.e., 0 admits a countable neighborhood
basis) and complete (which implies Hausdorff). If f is surjective, then f is open. (Note that
A itself is first-countable.)

Proof. As in the archimedean case, this comes down to an application of Baire’s theorem
that every complete metric space is a Baire space (i.e., the union of countably many nowhere
dense subsets is never open). The case where A is a nonarchimedean field can be treated
in parallel with the archimedean case, as in Bourbaki [24, I.3.3, Théorème 1]; see also [155,
Proposition 8.6]. It was observed by Huber [95, Lemma 2.4(i)] that the argument carries
over to the case where A is Tate; this was made explicit by Henkel [92]. The analytic case is
similar; see Problem A.3.1. �

Remark 1.1.10. Theorem 1.1.9 is in fact a characterization of analytic Huber rings: if A
is not analytic, there exists a morphism f : M → N of complete first-countable topological
A-modules which is continuous but not open. For example, let I be a nontrivial open ideal
and take M,N to be two copies of

∏
n∈Z(A/I) equipped with the discrete topology and the

product topology, respectively. (Thanks to Zonglin Jiang for this example.)

Before stating an immediate corollary of Theorem 1.1.9, we need a definition.

Definition 1.1.11. Let M be a finitely generated A-module. For any A-linear surjective
morphism F → M where F is a finite free A-module, we may form the quotient topology
of M ; the resulting topology does not depend on the choice. (It suffices to compare with a
second surjection F⊕F ′ →M by factoring the map F ′ →M through F⊕F ′.) This topology
is called the natural topology on M .

If A is noetherian, thenM is always complete for its natural topology (see Corollary 1.1.15
below). In general, M need not be complete for the natural topology, but the only way
for completeness to fail is for M to fail to be Hausdorff. Namely, if M is Hausdorff, then
ker(F →M) is closed, so quotienting by it gives a complete A-module.

Even ifM is complete for its topology, that does not mean that its image under a morphism
of finitely generated A-modules must be complete (unless A is noetherian). For example,
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for f ∈ A, it can happen that ×f : A → A is injective but its image is not closed; see
Remark 1.8.3.

Corollary 1.1.12. Suppose that A is analytic. Let M be a finitely generated A-module. If
M admits the structure of a complete first-countable topological A-module for some topology,
then that topology must be the natural topology.

Proof. Apply Theorem 1.1.9 to an A-linear surjection F →M with F finite free. �

Let us now see some examples of this theorem in action. The following argument is essen-
tially [23, Proposition 3.7.2/1] or [71, Lemma 1.2.3].

Lemma 1.1.13. Let M be a finitely generated A-module which is complete for the natural
topology. Then any dense A-submodule ofM equalsM itself. (This argument does not require
A to be analytic, but the following corollary does.)

Proof. We may lift the problem to the case whereM is free on the basis e1, . . . , en. Let N be
a dense submodule of M ; we may then choose e′1, . . . , e

′
n ∈ N such that e′j =

∑
iBijei with

Bij being topologically nilpotent if i 6= j and Bii − 1 being topologically nilpotent if i = j.
Then the matrix B is invertible (its determinant equals 1 plus a topological nilpotent), so
N = M . �

Corollary 1.1.14. Let M be a finitely generated A-module which is complete for the natural
topology. Then any A-submodule of M whose closure is finitely generated is itself closed.

Proof. Let N be an A-submodule whose closure N̂ is finitely generated. By Corollary 1.1.12,
the subspace topology on N̂ coincides with the natural topology, so Lemma 1.1.13 may be
applied to see that N = N̂ . �

Corollary 1.1.15. The following statements hold.
(a) If A is noetherian, then every finitely generated A-module is complete for the natural

topology, and every submodule of such a module is closed.
(b) Conversely, if every ideal of A is closed, then A is noetherian.

Proof. Suppose first that A is noetherian. For M a finitely generated A-module and F →M
an A-linear surjection with F finite free, Corollary 1.1.14 implies that ker(F →M) is closed,
so M is complete. Applying Corollary 1.1.14 again shows that every submodule of M is
closed, yielding (a).

Conversely, suppose that every ideal of A is closed. To prove (b), we will obtain a con-
tradiction under the hypothesis that there exists an ascending chain of ideals I1 ⊆ I2 ⊆ · · ·
which does not stabilize, by showing that the union I of the chain is not closed. In fact this
already follows from Baire’s theorem, but we give a more elementary argument below.

Since A is analytic, we can find some finite set x1, . . . , xn of topologically nilpotent units
which generate the unit ideal in A. For each m, choose an element ym ∈ Im − Im−1. We can
then choose an index im ∈ {1, . . . , n} such that xjimym /∈ Im−1 for all positive integers j.

Let V1, V2, . . . be a cofinal sequence of neighborhoods of 0 in A. We now choose posi-
tive integers j1, j2, . . . and open subgroups Um of A subject to the following conditions (by
choosing jm sufficiently large and Um sufficiently small given the choice of j1, . . . , jm−1 and
U1, . . . , Um−1).

(a) For each positive integer m, xjmimym ∈ Vm ∩
⋂
m′<m Um′ .
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(b) For each positive integer m, Um ⊆
⋂
m′<m Um′ .

(c) For each positive integer m, (xjmimym + Um) ∩ Im−1 = 0..

Then
∑∞

m=1 x
jm
im
ym converges to a limit y which is in the closure of I by (a), but not in I by

(b) (for each m we have y ∈ Im−1 + xjmim + Um and hence y /∈ Im−1), a contradiction. �

As a concrete example of what happens when A is not noetherian, we offer the following
exercise.

Definition 1.1.16. For A a Huber ring, let A〈T 〉 be the completion of A[T ] for the topology
with a neighborhood basis given by U [T ] = {

∑∞
n=0 anT

n : an ∈ U for all n} as U runs
over neighborhoods of 0 in A. We may similarly define A〈T1, . . . , Tm〉, or even the analogue
with infinitely many variables. When the topology on A is induced by a norm, this can be
interpreted in terms of a Gauss2 norm; see Definition 1.5.3.

Exercise 1.1.17. Let p be a prime. Let A be the quotient of the infinite Tate algebra
Qp〈T, U1, V1, U2, V2, . . . 〉 by the closure of the ideal (TU1 − pV1, TU2 − p2V2, . . . ).

(a) Show that A is uniform (see Definition 1.2.12).
(b) Show that T is not a zero-divisor in A.
(c) Show that the ideal TA is not closed in A.

The following argument can be found in [95, II.1], [96, Lemma 1.7.6].

Lemma 1.1.18. Let M be an A-module which is the cokernel of a strict morphism between
finite projective A-modules. Equivalently by Theorem 1.1.9, M is finitely presented and com-
plete for the natural topology.

(a) LetM〈T 〉 be the set of formal sums
∑∞

n=0 xnT
n with xn ∈M forming a null sequence.

Then the natural map M ⊗A A〈T 〉 →M〈T 〉 is an isomorphism.
(b) LetM〈T±〉 be the set of formal sums

∑
n∈Z xnT

n with xn ∈M forming a null sequence
in each direction. Then the natural map M ⊗AA〈T±〉 →M〈T±〉 is an isomorphism.

Proof. We treat only (a), since (b) is similar. If M is finitely generated and complete for the
natural topology, then it is apparent that M ⊗A A〈T 〉 → M〈T 〉 is surjective. Suppose now
that as in the statement of the lemma, M is the cokernel of a strict morphism F1 → F0

between finite projective A-modules. Put N := ker(F0 → M); then N is finitely generated
and complete for the natural topology. We thus have a commutative diagram

N ⊗A A〈T 〉 //

��

F0 ⊗A A〈T 〉 //

��

M ⊗A A〈T 〉 //

��

0

0 // N〈T 〉 // F 〈T 〉 // M〈T 〉 // 0

with exact rows in which the middle vertical arrow is an isomorphism and both vertical arrows
are surjective. By the five lemma, it follows that the right vertical arrow is injective. �

Lemma 1.1.19. Suppose that A is noetherian.
(a) The homomorphism A→ A〈T 〉 is flat.
(b) If A〈T 〉 is also noetherian, then A[T ]→ A〈T 〉 is also flat.

2Correctly spelled “Gauß”, but I’ll stick to the customary English transliteration.
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Proof. Let 0 → M → N → P → 0 be an exact sequence of finite A-modules; by Corol-
lary 1.1.15, it is also a strict exact sequence for the natural topologies. Consequently, the
exact sequence

0→M〈T 〉 → N〈T 〉 → P 〈T 〉 → 0

is the base extension of the previous sequence from A to A〈T 〉. This proves (a).
Suppose now that A〈T 〉 is noetherian. To prove (b), by [166, Tag 00MP] it suffices to

check that for every prime ideal p of A, the map A[T ] ⊗A κ(p) → A〈T 〉 ⊗A κ(p) is flat.
Since A〈T 〉 is noetherian (and analytic because A is), Corollary 1.1.15 implies that pA〈T 〉
is a closed ideal; we may thus identify pA〈T 〉 with the subset p〈T 〉 of A〈T 〉 (again as in
Lemma 1.1.18. In particular, as a module over the principal ideal domain A[T ] ⊗A κ(p) =
κ(p)[T ], A〈T 〉 ⊗A κ(p) = A〈T 〉/p〈T 〉 is torsion-free and hence flat. �

1.2. The structure sheaf. We continue with the definition and analysis of the structure
presheaf. As in the theory of affine schemes, we have in mind a formula for certain distin-
guished open subsets, in this case the rational subspaces; the shape of the general definition
is meant to enforce this formula. However, we will almost immediately hit a serious difficulty
which echoes throughout the entire theory.

We recall some facts about rational subsets of X from the previous lecture [177, Lecture 1].

Definition 1.2.1. A rational subspace of X is one of the form

X

(
f1, . . . , fn

g

)
:= {v ∈ X : v(fi) ≤ v(g) 6= 0 (i = 1, . . . , n)}

where f1, . . . , fn, g ∈ A are some elements which generate an open ideal in A; such subspaces
form a neighborhood basis in X. Since we are assuming that A is analytic, by Lemma 1.1.3
any open ideal is in fact the trivial ideal; in particular, we may rewrite the previous formula
as

(1.2.1.1) X

(
f1, . . . , fn

g

)
:= {v ∈ X : v(fi) ≤ v(g) (i = 1, . . . , n)}.

There is a morphism (A,A+) → (B,B+) of (complete) Huber pairs which is initial among
morphisms for which Spa(B,B+) maps into X

(
f1,...,fn

g

)
; this morphism induces a map

Spa(B,B+) ∼= X
(
f1,...,fn

g

)
which not only is a homeomorphism, but matches up rational

subspace of Spa(B,B+) with rational subspaces of X contained in X
(
f1,...,fn

g

)
. We call any

such morphism “the” rational localization corresponding to X
(
f1,...,fn

g

)
, using the definite

article since the morphism is unique up to unique isomorphism.
Thanks to (1.2.1.1), the ring B in the pair (B,B+) may be identified explicitly as the

quotient of A〈T1, . . . , Tn〉 by the closure of the ideal (gT1− f1, . . . , gTn− fn); we denote this
ring by A

〈
f1,...,fn

g

〉
. (We will see later that when the structure presheaf on X is a sheaf, it is

not necessary to take the closure; see Theorem 1.2.7.) The ring B+ may be identified as the
integral closure of the image of A+〈T1, . . . , Tn〉 in B; we denote this ring by A+

〈
f1,...,fn

g

〉
.

Exercise 1.2.2. Given f1, . . . , fn, g ∈ A which generate the unit ideal, there exists a neigh-
borhoodW of 0 in A such that any f ′1, . . . , f ′n, g′ ∈ A satisfying f ′1−f1, . . . , f

′
n−fn, g′−g ∈ W
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generate the unit ideal and define the same rational subspace as do f1, . . . , fn, g. (See [156,
Remark 2.8], [117, Remark 2.4.7].)

Definition 1.2.3. Define the structure presheaf O on X as follows: for U ⊆ X open,
let O(U) be the inverse limit of B over all rational localizations (A,A+) → (B,B+) with
Spa(B,B+) ⊆ U . In particular, if U = Spa(B,B+) then O(U) = B.

Let O+ be the subpresheaf of O defined as follows: for U ⊆ X open, let O(U) be the
inverse limit of B+ over all rational localizations (A,A+)→ (B,B+) with Spa(B,B+) ⊆ U .
Equivalently,

O+(U) = {f ∈ O(U) : v(f) ≤ 1 for all v ∈ U}.
In particular, if U = Spa(B,B+) then O(U) = B+.

Remark 1.2.4. For any open subset U of X, the ring O(U) is complete for the inverse limit
topology, but in general it is not a Huber ring. A typical example is the open unit disc inside
the closed unit disc, which is Fréchet complete with respect to the supremum norms over all
of the closed discs around the origin of radii less than 1. (This ring cannot be Huber because
the topologically nilpotent elements do not form an open set.)

Remark 1.2.5. For each x ∈ X, the stalk OX,x is a direct limit of complete rings, and hence
is a henselian local ring; in particular, the categories of finite étale algebras over OX,x and
over its residue field are equivalent. Compare [117, Lemma 2.4.17].

Remark 1.2.6. In order to follow the theory of affine schemes, one would next expect to
prove that the presheaf O is a sheaf. This is indeed true when A is an affinoid algebra over
a nonarchimedean field, as this follows (after a small formal argument; see Lemma 1.6.3)
from Tate’s acyclicity theorem in rigid analytic geometry [169, Theorem 8.2], [23, Theo-
rem 8.2.1/1].

Unfortunately, there exist examples where O is not a sheaf. This remains true if we assume
that A is Tate, as shown by an example of Huber [95, §1]; or even if we assume that A is
Tate and uniform, as shown by examples of Buzzard–Verberkmoes [26, Proposition 18] and
Mihara [138, Theorem 3.15].

Since O can fail to be a sheaf, we must track of the distinction between its sections on an
open subset U , denoted O(U), and the locally-defined sections of O on U (i.e., the sections
of the sheafification of O on U). We write H0(U,O) for the latter.

A conceptual explanation for the previous examples is given by the following result.

Theorem 1.2.7 (original). Suppose that O is a sheaf. Then for any f1, . . . , fn, g ∈ A which
generate the unit ideal, the ideal (gT1 − f1, . . . , gTn − fn) in A〈T1, . . . , Tn〉 is closed.

Proof of Theorem 1.2.7. Let (A,A+) → (B,B+) be the rational localization defined by the
parameters f1, . . . , fn; then the kernel of the map A〈T1, . . . , Tn〉 → B taking Ti to fi/g is the
closure of the ideal in question. By Corollary 1.1.14, it thus suffices to check that this kernel
is finitely generated; this will follow from Lemma 1.9.23. �

In light of the previous remarks, we are forced to introduced and study the following
definition.

Definition 1.2.8. We say that (A,A+) is sheafy if O is a sheaf. Although it is not immedi-
ately obvious from the definition, we will see shortly that this property depends only on A,
not on A+ (Remark 1.6.9).
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Definition 1.2.9. When (A,A+) is sheafy, we may equip X in a natural way with the
structure of a locally v-ringed space, i.e., a locally ringed space in which the stalk of the
structure sheaf at each point is equipped with a distinguished valuation (with morphisms
required to correctly pull back these valuations). By considering locally v-ringed spaces which
are locally of this form, we obtain Huber’s notion of an analytic adic space.

As explained in [177, Lecture 1], Huber’s theory also allows the use of rings A which are
not analytic; this for example allows ordinary schemes and formal schemes to be treated as
adic spaces. In addition, Huber shows that a Huber ring A which need not be analytic, but
which admits a noetherian ring of definition, is sheafy [95, Theorem 2.5]. However, allowing
nonanalytic Huber rings creates some extra complications which are not pertinent to the
examples we have in mind (with a small number of exceptions), e.g., the distinction between
continuous and adic morphisms (see Exercise 1.1.7). For expository treatments of adic spaces
without the analytic restriction, see [31] or [175].

We will establish sheafiness for two primary classes of Huber rings. The first includes the
class of affinoid algebras.

Definition 1.2.10. The ring A is strongly noetherian if for every nonnegative integer n,
the ring A〈T1, . . . , Tn〉 is noetherian; note that this property passes to rational localizations.
For example, if A is an affinoid algebra over a nonarchimedean field K, then A is strongly
noetherian: this reduces to the fact that K〈T1, . . . , Tn〉 is noetherian, for which see [169,
Theorem 4.5] or [23, Theorem 5.2.6/1].

When A is Tate, the following result is due to Huber [95, Theorem 2.5]. The general case
incorporates an observation of Gabber to treat the case where A is analytic but not Tate;
see §1.7 for the proof.

Theorem 1.2.11 (Huber plus Gabber’s method). If A is strongly noetherian, then A is
sheafy.

The second class of sheafy rings we consider includes the class of perfectoid rings. (We
will mostly handle the condition of uniformity via the corresponding definition for Banach
rings; see Definition 1.5.11 and Exercise 1.5.13.)

Definition 1.2.12. Recall that A is said to be uniform if the ring of power-bounded elements
of A is a bounded subset. (A subset S of A is bounded if for every neighborhood U of 0 in A,
there exists a neighborhood V of 0 in A such that S ·V ⊆ U . If A is topologized using a norm,
this corresponds to boundedness in the usual sense.) For example, if K is a nonarchimedean
field, then K〈T 〉/(T 2) is not uniform because the K-line spanned by T is unbounded, but
consists of nilpotent and hence power-bounded elements; by the same token, any uniform
(analytic) Huber ring is reduced, and conversely for affinoid algebras (see Remark 1.2.16).

The pair (A,A+) is stably uniform if for every rational localization (A,A+) → (B,B+),
the ring B is uniform. Again, this depends only on A, not on A+: one may quantify over
all rational localizations by running over finite sequences f1, . . . , fn, g of parameters which
generate the unit ideal, rather than over rational subspaces; and in this formulation A+ does
not appear. (What is affected by the choice of A+ is whether or not two different sets of
parameters define the same rational subspace.)

The case of the following result where A is Tate is due to Buzzard–Verberkmoes [26, The-
orem 7] and independently Mihara [138, Theorem 4.9] (see also [117, Theorem 2.8.10]). The
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general case is again obtained by modifying the argument slightly using Gabber’s method;
see again §1.7 for the proof.

Theorem 1.2.13 (Buzzard–Verberkmoes, Mihara plus Gabber’s method). If A is stably
uniform, then (A,A+) is sheafy.

Remark 1.2.14. If A is uniform, then the natural map from A to the ring H0(X,O) of
global sections of O is automatically injective (Remark 1.5.25); if A is stably uniform, then
the analogous map for any rational subspace is also injective. The content of Theorem 1.2.13
is to show that these maps are all surjective.

Let us now discuss the previous two definitions in more detail.

Remark 1.2.15. Unfortunately, it is rather difficult to exhibit examples of strongly noether-
ian Banach rings, in part because there is no general analogue of the Hilbert basis theorem:
if A is noetherian and Tate, it does not follow that A〈T 〉 is noetherian. See Remark 1.2.17
for further discussion.

For K a discretely valued field, one can build another class of strongly noetherian rings
by considering semiaffinoid algebras, i.e., the quotients of rings of the form

oKJT1, . . . , TmK〈U1, . . . , Un〉 ⊗oK K;

these rings, and the uniformly rigid spaces associated to them, have been studied by Kappen
[100]. Beware that the identification of rigid spaces with certain adic spaces does not extend to
uniformly rigid spaces, and as a result certain phenomena do not exhibit the same behavior.

A third class of strongly noetherian rings will arise from studying Fargues–Fontaine curves
in a subsequent lecture. See Remark 3.1.10.

Remark 1.2.16. Every reduced affinoid algebra over a nonarchimedean field is stably uni-
form; this follows from the facts that any reduced affinoid algebra is uniform [23, Theo-
rem 6.2.4/1], [71, Theorem 3.4.9] and any rational localization of a reduced affinoid algebra
is again reduced [23, Corollary 7.3.2/10], [117, Lemma 2.5.9]. However, this argument does
not apply to reduced strongly noetherian rings; see Remark 1.2.17 for further discussion.

Additionally, every perfectoid ring is stably uniform; this is because any rational localiza-
tion is again perfectoid. These examples are genuinely separate from the strongly noetherian
case, because a perfectoid ring is noetherian if and only if it is a finite direct product of
perfectoid fields (Corollary 2.9.3).

Remark 1.2.17. One can construct examples where (the underlying ring of) A is a field but
is not uniform; a particularly interesting example has been given by Fujiwara–Gabber–Kato
[72, §8.3]. Note that any such A is a nondiscrete topological ring; hence A is Tate but cannot
be a nonarchimedean field. The underlying ring of A is obviously noetherian and reduced.

The aforementioned example has the additional property that A〈T 〉 is not noetherian; it
thus witnesses the failure of the Hilbert basis theorem for Huber rings (Remark 1.2.15). By
contrast, if one could find such a field which is strongly noetherian, it would provide an
example of a reduced, strongly noetherian, Tate ring which is not even uniform, let alone
stably uniform (Remark 1.2.16).

It is not straightforward to check that a given uniform Huber ring A is stably uniform.
Most known examples which are not strongly noetherian are derived from perfectoid algebras
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(to be introduced in the next lecture) using the following observation. (See Exercise 2.5.8 for
an exception.)

Lemma 1.2.18. Suppose that there exist a stably uniform Huber ring B and a continuous
A-linear morphism A→ B which splits in the category of topological A-modules. Then A is
stably uniform.

Proof. The existence of the splitting implies that A→ B is strict, so A is uniform. Moreover,
the existence of the splitting is preserved by taking the completed tensor product over A
with a rational localization. It follows that A is stably uniform. �

Remark 1.2.19. Rings satisfying the hypothesis of Lemma 1.2.18 with B being a perfec-
toid ring (as in Corollary 2.5.5 below) are called sousperfectoid rings in [85], where their
basic properties are studied in some detail. This refines the concept of a preperfectoid ring
considered in [161].

The following question is taken from [117, Remark 2.8.11].

Problem 1.2.20. Is it possible for A to be uniform and sheafy without being stably uniform?

Remark 1.2.21. At this point, it is natural to ask whether the inclusion functor from sheafy
Huber rings to arbitrary Huber rings admits a spectrum-preserving left adjoint. This would
be clear if H0(X,O) were guaranteed to be a sheafy Huber ring; however, it is not even clear
that it is complete, due to the implicit direct limit in the definition of H0(X,O). By contrast,
if X admits a single covering by the spectra of sheafy rings, then the subspace topology gives
H0(X,O) the structure of a Huber ring, and it turns out (but not trivially) that this ring is
sheafy; see Theorem 1.2.22.

Another approach to working around the failure of sheafiness for general Huber rings is
to use techniques from the theory of algebraic stacks. For this approach, see §1.11.

For the proof of the following result, see §1.9.

Theorem 1.2.22 (original3). Suppose that there exists a finite covering V of X by rational
subspaces such that O|V is a sheaf for each V ∈ V. Put

Ã := H0(X,O), Ã+ := H0(X,O+);

note that these rings constitute a Huber pair for the subspace topology on Ã.
(a) The map A→ Ã induces a homeomorphism Spa(Ã, Ã+) ∼= Spa(A,A+) of topological

spaces such that rational subspaces pull back to rational subspaces (but possibly not
conversely) and on each V ∈ V, the structure presheaf pulls back to the structure
presheaf.

(b) The ring Ã is sheafy.
In particular, by Theorem 1.3.4, O is acyclic.

Remark 1.2.23. In Theorem 1.2.22, it is obvious that if O(V ) is stably uniform for each
V ∈ V, then so is Ã. The analogous statement for the strongly noetherian property is true
but much less obvious; see Corollary 1.4.19. See Problem 1.2.25 for a related problem.

3Note added 9 Nov 2021: Ofer Gabber has pointed out an issue with the proof. The case of a simple
binary rational covering is correct, but not the reduction to this case. For a correct proof of (a), see [85,
Lemma 3.20]. For (b), it is probably necessary to add the hypothesis that O is acyclic; see [85, Corollary 4.5]
for a similar result.
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Remark 1.2.24. One of the examples of Buzzard–Verberkmoes [26, Proposition 13] is a
construction in which there exists a finite covering V of X by rational subspaces such that
O(V ) is a perfectoid (and hence stably uniform and sheafy) Huber ring for each V ∈ V, so
Theorem 1.2.22 applies, but the map A → H0(X,O) is not injective. (In this example, one
has A+ = A◦.) See Remark 2.5.11 for further discussion.

Another example of Buzzard–Verberkmoes [26, Proposition 16] is a construction in which
A → H0(X,O) is injective but not surjective. However, in this example, we do not know
whether A is uniform (injectivity is instead established using Corollary 1.5.24), or whether
H0(X,O) is a Huber ring (because the construction does not immediately yield local sheafi-
ness).

Problem 1.2.25. Suppose that A is uniform and that every open subset of X can be written
as the union of rational subspaces Spa(B,B+) for which B is uniform. Does it follow that A
is stably uniform?

1.3. Cohomology of sheaves. Recall that Tate’s acyclicity theorem asserts more than the
fact that O is a sheaf: it also asserts the vanishing of higher cohomology of O on rational
subspaces, and makes similar assertions for the presheaves associated to finitely generated
A-modules. We turn next to generalizing these statements to more general Huber rings.

Definition 1.3.1. We say that a sheaf F on X is acyclic if H i(U,F) = 0 for every rational
subspace U of F and every positive integer i.

Definition 1.3.2. For any A-module M , let M̃ be the presheaf on X such that for U ⊆ X
open, M̃(U) is the inverse limit of M ⊗AB over all rational localizations (A,A+)→ (B,B+)
with Spa(B,B+) ⊆ U . In particular, if U = Spa(B,B+) then M̃(U) = M ⊗A B.

Remark 1.3.3. Beware that the definition of M̃ uses the ordinary tensor product, and
makes no reference to any topology on M . However, if M is finitely generated and both
M and its base extension are complete for the natural topology (Definition 1.1.11), then
the ordinary tensor product coincides with the completed tensor product. Note that the
condition on completeness of the base extension cannot be omitted; see Exercise 1.4.7.

In the Tate case, the following result is due to Kedlaya–Liu [117, Theorem 2.4.23]; this
again generalizes results of Tate and Huber for affinoid algebras and strongly noetherian
rings, respectively. For the proof, see §1.8.

Theorem 1.3.4 (Kedlaya–Liu plus Gabber’s method). If A is sheafy, then for any finite
projective A-module M , the presheaf M̃ is an acyclic sheaf.

Remark 1.3.5. One serious impediment to extending Theorem 1.3.4 to more general mod-
ules is that it is not known that rational localization maps are flat. This is true in rigid
analytic geometry [169, Lemma 8.6], [23, Corollary 7.3.2/6]; the same result extends to
strongly noetherian Tate rings, as shown by Huber [95, II.1], [96, Lemma 1.7.6]. It is not
at all clear whether flatness should hold in general; however, one can prove a weaker re-
sult which nonetheless implies all of the previously asserted flatness results, and is useful in
applications. See Theorem 1.4.14.

Remark 1.3.6. By contrast with the situation for schemes (e.g., see [166, Tag 01XE]),
in rigid analytic geometry there is no cohomological criterion for detecting affinoid spaces
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among quasicompact rigid spaces. To wit, let X be a quasicompact rigid analytic space over
a field K (identified with its corresponding adic space) for which H i(X,F) = 0 for every
coherent sheaf F on X and every i > 0 (that is, X is a quasicompact Stein space over K).
It can then happen that X is not an affinoid space over K; examples have been given by
Q. Liu [134, 135]. (The example in [134] is not normal, and its normalization is an affinoid
space. The example in [135] is normal and even smooth over K, because it is a subset of the
affine plane.)

For X a quasicompact Stein space over K, by Remark 1.2.21, O(X) is a Huber ring;
by [135, Proposition 1.2(a)], O(X) is noetherian. Since the product of X over K with any
affinoid space is again a quasicompact Stein space [135, Proposition 4.1], O(X) is even
strongly noetherian, and hence sheafy by Theorem 1.2.11. Put A := O(X), A+ := O+(X);
there is a natural map X → Spa(A,A+) of adic spaces, which by [135, Proposition 1.3]
induces a bijection of the rigid-analytic points of X with the maximal ideals of A. By [135, §3,
Théorème 1], there exists a covering of Spa(A,A+) by rational subspaces whose pullbacks to
X are affinoid spaces overK; by applying [23, Proposition 7.3.3/5] to each of these subspaces,
we deduce that X → Spa(A,A+) is an isomorphism. That is, X is the adic affinoid space
associated to the Huber pair (A,A+), but the ring A is not topologically of finite type (or tft
for short) over K. In the example of [135, §4, Théorème 4], this is witnessed by the fact that
the reduction A◦/A◦◦ is not noetherian; if A were an affinoid algebra over K, this reduction
would instead be of finite type over the residue field of K [23, Corollary 6.3.4/3].

The upshot of this discussion is that Liu’s counterexamples do not rule out the existence
of a cohomological criterion for detecting adic affinoid spaces among quasicompact analytic
adic spaces. See Problem 1.3.7 below.

Problem 1.3.7. Let X be an analytic adic space satisfying the following conditions.

• The space X is separated : X is covered by a family of open subspaces among which
any nontrivial finite intersection is an adic affinoid space.
• The space X is holomorphically separable: the natural map X → Spa(O(X),O+(X))
is injective.
• For each i > 0, the group H i(X,O) vanishes.

Does it then follow that X ∼= Spa(O(X),O+(X)), and hence that X is an adic affinoid
space?

The conditions on X correspond to the definition of an S-space in [135]; when X is a rigid
analytic space, these conditions are equivalent to X being a quasicompact Stein space [135,
§4, Théorème 2]. In particular, Remark 1.3.6 gives an affirmative answer to this question
when X is a rigid analytic space; we expect that the methods of [135] can be adapted to the
general case.

1.4. Vector bundles and pseudocoherent sheaves. To further continue the analogy
with affine schemes, one would now like to define coherent sheaves (or pseudocoherent
sheaves, in the absence of noetherian hypotheses) and verify that they are precisely the
sheaves arising from pseudocoherent modules. In rigid analytic geometry, this is a theorem
of Kiehl [121, Theorem 1.2]; however, here we are hampered by a lack of flatness (Re-
mark 1.3.5). Before remedying this in a way that leads to a full generalization of Kiehl’s
result, let us consider separately the case of vector bundles.
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Definition 1.4.1. A vector bundle on X is a sheaf F of O-modules on X which is locally of
the form O⊕n for some positive integer n. In other words, there exists a finite covering {Ui}ni=1

of X by rational subspaces such that for each i, Mi := F(Ui) is a finite free O(Ui)-module
and the canonical morphism M̃i → F|Ui

of sheaves of O|Ui
-modules is an isomorphism. Let

VecX denote the category of vector bundles on X.
Let FPModA denote the category of finite projective A-modules. For M ∈ FPModA,

M is already locally free over Spec(A), and so M̃ ∈ VecX ; moreover, the resulting functor
FPModA → VecX taking M to M̃ is exact. (Note that this exactness must be derived from
the flatness of finite projective modules because rational localizations are not known to be
flat; see Remark 1.3.5.)

When A is Tate, the following result is due to Kedlaya–Liu [117, Theorem 2.7.7]; again,
the Tate hypothesis can be removed using Gabber’s method. See §1.9 for the proof.

Theorem 1.4.2 (Kedlaya–Liu plus Gabber’s method). If A is sheafy, then the functor
FPModA → VecX taking M to M̃ is an equivalence of categories, with quasi-inverse taking
F to F(X). In particular, by Theorem 1.3.4, every sheaf in VecX is acyclic.

Remark 1.4.3. If one restricts attention to finite étale A-algebras and finite étale OX-
modules, then the functor M 7→ M̃ is an equivalence of categories even if A is not sheafy.
See for example [117, Theorem 2.6.9] in the case where A is Tate.

Remark 1.4.4. Theorem 1.4.2 may be reformulated as the statement that the functor
VecSpec(A) → VecX given by pullback along the canonical morphism X → Spec(A) of locally
ringed spaces (coming from the adjunction property of affine schemes) is an equivalence of
categories. It also implies that VecX depends only on A, not on A+. (The same will be true
for PCohX by Theorem 1.4.18.)

We now turn to more general (but still finitely generated) modules; here we give a stream-
lined presentation of material from [118].

Definition 1.4.5. An A-module M is pseudocoherent if it admits a projective resolution
(possibly of infinite length) by finite projective A-modules (which may even be taken to
be free modules); when A is noetherian, this is equivalent to A being finitely generated.
(The term pseudocoherent appears to have originated in SGA 6 [99, Exposé I], and is used
systematically in the paper of Thomason–Trobaugh [171].)

We say that M is stably pseudocoherent if M is pseudocoherent and, for every rational
localization (A,A+)→ (B,B+),M⊗AB is complete for its natural topology as a B-module.
Write PCohA for the category of stably pseudocoherent A-modules; if A is strongly noe-
therian, by Corollary 1.1.15 this is exactly the category of finitely generated A-modules.
Otherwise, it is rather difficult to directly exhibit elements of PCohA other than elements
of FPModA; we can exhibit some elements indirectly using Theorem 1.4.20.

Remark 1.4.6. If f ∈ A is not a zero-divisor and fA is not closed in A (which can occur;
see Exercise 1.1.17 or Remark 1.8.3), then A/fA is pseudocoherent but not complete for the
natural topology, and hence not an object of PCohA.

Unfortunately, even if fA is closed in A, it is possible for there to exist a rational lo-
calization (A,A+) → (B,B+) for which fB is not a closed ideal; see Example 1.4.8. In
this case, A/fA is pseudocoherent and complete for the natural topology, yet not stably
pseudocoherent.
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Exercise 1.4.7. Set notation as in Exercise 1.1.17.
(a) Show that A is uniform. I do not know whether A is stably uniform.
(b) Show that the natural map Qp〈T 〉 → A is flat. Recall that Qp〈T 〉 is a principal

ideal domain (see [71, Theorem 2.2.9] or [108, Proposition 8.3.2]), so this amounts to
checking that no nonzero element of Qp〈T 〉 maps to a zero-divisor in A (the case of
T itself having been checked in Exercise 1.1.17).

(c) Conclude that if R is a noetherian Huber ring, R → A is a flat homomorphism of
Huber rings with A analytic, and M is a finitely generated R-module, then M ⊗R A
is pseudocoherent but not necessarily complete for the natural topology. (Take R :=
Qp〈T 〉, M := R/TR.)

Example 1.4.8 (Scholze, private communication). We construct an example of a rational
localization (A,A+) → (B,B+) and an element f ∈ A for which f is not a zero-divisor of
A or B, and fA is closed in A but fB is not closed in B. See Remark 1.4.6 for context and
[118, Example 2.4.2] for more details.

LetK be any perfectoid field. Fix an integerN ≥ 3 coprime to p, so that the (compactified)
modular curve X(N)K exists as a scheme (rather than a Deligne-Mumford stack), and hence
as an adic space. Let V0 be the ordinary locus of X(N)K , including all cuspidal discs. Let
U0 be an affinoid strict neighborhood of V0 in X(N)K ; by making U0 sufficiently small, we
may ensure that O(U0) contains a lift h of the Hasse invariant and that V0 is the rational
subspace of U0 of the form |h| ≤ 1. (See [29] for more context on the p-adic geometry of
modular curves.)

Let U1, V1 be the respective inverse images of U0, V0 in the infinite-level modular curve
X(Np∞)K . The Hodge-Tate period map [27] induces a morphism ψ : U1 → P1

K such that
V 1 = ψ−1(P1(Qp)). (More precisely, ψ−1(P1(Qp)) consists of V1 plus some rank-2 points
corresponding to generically ordinary families of elliptic curves with supersingular special-
ization). Let D ⊆ P1

K be the closed unit disc, and put

U := ψ−1(D) ⊆ U1, V = U ×U1 V1.

The space U = Spa(A,A+) is an affinoid perfectoid space, so A is sheafy (Corollary 2.5.4).
The morphism ψ from U to the closed unit disc defines an element f ∈ A. Let Z be the
Shilov boundary of U ; it is the inverse image of the Shilov boundary of U0, and hence consists
entirely of points not in V . In particular, f vanishes nowhere on Z; since Z is compact, f is
bounded below on Z, and so multiplication by f defines a strict inclusion on A.

The space V = Spa(B,B+) is again the rational subspace of U defined by the Hasse
invariant; however, ψ carries V to the Cantor set D(Qp) ∼= Zp. In particular, any continuous
function from Zp to K pulls back to an element of B, the identity function corresponding
to f itself. Moreover, any continuous function g : Zp → K with g(0) = 0 corresponds to an
element of the closure of fB; however, g only corresponds to an element of fB if and only
if g(x)/x is bounded on Zp \ {0}. Consequently, fB is not closed.

Remark 1.4.9. An easy fact about pseudocoherent A-modules is the “two out of three”
property: in a short exact sequence

(1.4.9.1) 0→M1 →M →M2 → 0

of A-modules, if any two of M,M1,M2 are pseudocoherent, then so is the third.
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The “two out of three” property is not true as stated for PCohA: if M1,M ∈ PCohA,
then M2 need not be complete for its natural topology (as in Definition 1.1.11, this can
occur for M1 = M = A). However, suppose that M2 ∈ PCohA. In this case, if M1 is
complete for the natural topology, then so isM2 (see Exercise 1.4.10); while ifM is complete
for the natural topology, then M1 is Hausdorff for the subspace topology and hence also
for its natural topology. Using the fact that M ∈ PCohA implies that (1.4.9.1) remains
exact upon tensoring with a rational localization (see Corollary 1.4.15), we conclude that if
M2 ∈ PCohA, then M ∈ PCohA if and only if M1 ∈ PCohA.

Exercise 1.4.10. Let
0→M1 →M →M2 → 0

be an exact sequence of topological A-modules in whichM1,M2 are complete andM is finitely
generated over some Huber ring B over A. Then M is complete for its natural topology as a
B-module. (Hint: Choose a B-linear surjection F →M and apply the open mapping theorem
to the composition F → M → M2 as a morphism of topological A-modules. This implies
that the surjectionM →M2 has a bounded set-theoretic section; using this section, separate
the problem of summing a null sequence in M to analogous problems in M1 and M2.)

Remark 1.4.11. Note that a pseudocoherent module is not guaranteed to have a finite
projective resolution by finite projective modules, even over a noetherian ring; this is the
stronger property of being of finite projective dimension. For example, for any field k, over
the local ring k[T ]/(T 2), the residue field is a module which is pseudocoherent but not of
finite projective dimension. More generally, every pseudocoherent module over a noetherian
local ring is of finite projective dimension if and only if the ring is regular [166, Tag 0AFS].
(Modules of finite projective dimension are sometimes called perfect modules, as in [166,
Tag 0656], since they are the ones whose associated singleton complexes are perfect.)

Remark 1.4.12. It is not hard to show that a tensor product of pseudocoherent modules
is pseudocoherent. However, we do not know whether PCohA is stable under formation of
tensor products, due to the completeness requirement.

Remark 1.4.13. It is possible to characterize stably pseudocoherent modules without test-
ing the completeness condition for all rational localizations. For an example of this, see
Remark 1.6.17.

When A is Tate, the following result is due to Kedlaya–Liu [118, Theorem 2.4.15]. See
again §1.9 for the proof.

Theorem 1.4.14 (Kedlaya–Liu plus Gabber’s method). If A is sheafy, then for any ratio-
nal localization (A,A+) → (B,B+), base extension from A to B defines an exact functor
PCohA → PCohB. In particular, if A is strongly noetherian, then A → B is flat (because
every finitely generated module belongs to PCohA by Corollary 1.1.15).

Corollary 1.4.15. Suppose that A is sheafy. For any rational localization (A,A+)→ (B,B+)
and any M ∈ PCohA, we have TorA1 (M,B) = 0.

Proof. By Remark 1.4.9, if we write M as F/N for some finite free A-module F , then
N ∈ PCohA. The claim thus follows from Theorem 1.4.14. �
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Theorem 1.4.14 makes it possible to consider sheaves constructed from pseudocoherent
modules, starting with the following statement which in the Tate case is [118, Theorem 2.5.1].
See again §1.9 for the proof.

Theorem 1.4.16 (Kedlaya–Liu plus Gabber’s method). If A is sheafy, then for any M ∈
PCohA, the presheaf M̃ is an acyclic sheaf.

Definition 1.4.17. A pseudocoherent sheaf on X is a sheaf F of O-modules on X which
is locally of the form M̃ for M a stably pseudocoherent module. In other words, there
exists a finite covering {Ui}ni=1 of X by rational subspaces such that for each i, Mi :=
F(Ui) ∈ PCohO(Ui) and the canonical morphism M̃i → F|Ui

of sheaves of O|Ui
-modules

is an isomorphism. Let PCohX denote the category of pseudocoherent sheaves on X; by
Theorem 1.4.14, the functor PCohA → PCohX taking M to M̃ is exact.

In case A is strongly noetherian, we refer to pseudocoherent sheaves also as coherent
sheaves, and denote the category of them also by CohX .

When A is Tate, the following result is due4 to Kedlaya–Liu [118, Theorem 2.5.5]. Some-
what surprisingly, the strongly noetherian case cannot be found5 in Huber’s work. See again
§1.9 for the proof.

Theorem 1.4.18 (Kedlaya–Liu plus Gabber’s method). If A is sheafy, then the functor
PCohA → PCohX taking M to M̃ is an exact (by Theorem 1.4.14) equivalence of cate-
gories, with quasi-inverse taking F to F(X). In particular, by Theorem 1.4.16, every sheaf
in PCohX is acyclic.

Corollary 1.4.19. In Theorem 1.2.22, if O(V ) is strongly noetherian for each V ∈ V, then
so is Ã.

Proof. It suffices to check that Ã is noetherian, as we may then apply the same logic to the
pullback coverings of the spectra of A〈T1, . . . , Tn〉 for all n. We may further assume that
Ã = A.

Let I be any ideal of A and put M := A/IA. For V ∈ V, O(V ) is strongly noetherian
and so M ⊗A O(V ) ∈ PCohO(V ); this means that M̃ ∈ PCohX . By Theorem 1.4.16 and
Theorem 1.4.18, we have M = H0(X, M̃) ∈ PCohA. Hence I is finitely generated; since I
was arbitrary, it follows that A is noetherian. �

Using similar methods, we obtain the following result. See again §1.9 for the proof.

Theorem 1.4.20 (original). Suppose that A is sheafy. Let I be a closed ideal of A which is
pseudocoherent as an A-module. Then A/I is sheafy if and only if A/I ∈ PCohA.

Remark 1.4.21. For example, if A and A〈T 〉 are both sheafy, then Theorem 1.4.20 implies
that A ∈ PCohA〈T 〉 and hence, by Remark 1.4.9, that TA〈T 〉 ∈ PCohA〈T 〉. It is not at all
obvious how to give a direct proof of this assertion.

4A very general result along these lines is included as part of the overall development of adic spaces using
formal geometry in the book of Fuijwara–Kato [73, §I.7.2]. However, we have not checked whether the general
result actually implies Theorem 1.4.18 as written.

5In [96], one finds a citation to a work in preparation by Huber called “Coherent sheaves on adic spaces”.
We have not seen any version of this paper.
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Remark 1.4.22. In algebraic geometry, one knows that the theory of quasicoherent sheaves
on affine schemes is “the same” whether one uses the Zariski topology or the étale topology,
in that both the category of sheaves and their cohomology groups are the same. Roughly
speaking, the same is true for adic spaces, but one needs to be careful about technical
hypotheses. See §1.10 for a detailed discussion.

At this point, we have completed the statements of the main results of this lecture. The
notes continue with some technical tools needed for the proofs; the reader impatient to get
to the main ideas of the proofs is advised to skip ahead to §1.6 at this point, coming back
as needed later.

1.5. Huber versus Banach rings. Although most of our discussion will be in terms of
Huber rings, which play the starring role in the study of rigid analytic spaces and adic
spaces, it is sometimes useful to translate certain statements into the parallel language of
Banach rings, which underlie the theory of Berkovich spaces. We explain briefly how these
two points of view interact, as in [117, 118] where most of the local theory is described in
terms of Banach rings. A key application will be to show that certain multiplication maps
on Tate algebras are strict; see Lemma 1.5.26.

Definition 1.5.1. By a Banach ring (more precisely, a nonarchimedean commutative Banach
ring), we will mean a ring B equipped with a function |•| : B → R≥0 satisfying the following
conditions.

(a) On the additive group of B, |•| is a norm (i.e., a nonarchimedean absolute value, so
that |x− y| ≤ max{|x| , |y|} for all x, y ∈ B) with respect to which B is complete.

(b) The norm on B is submultiplicative: for all x, y ∈ B, we have |xy| ≤ |x| |y|.
A ring homomorphism f : B → B′ of Banach rings is bounded if there exists c ≥ 0 such that
|f(x)|′ ≤ c |x| for all x ∈ B; the minimum such c is called the operator norm of f .

We view Banach rings as a category with the morphisms being the bounded ring homo-
morphisms. In particular, if two norms on the same ring differ by a bounded multiplicative
factor on either side, then they define isomorphic Banach rings.

As for Huber rings, we say that a Banach ring B is analytic if its topologically nilpotent
elements of B generate the unit ideal. (In [117], the corresponding condition is for B to be
free of trivial spectrum.)

Remark 1.5.2. In condition (b) of Definition 1.5.1, one could instead insist that there exist
some constant c > 0 such that for all x, y ∈ B, we have |xy| ≤ c |x| |y|. However, this adds no
essential generality, as replacing |x| with the operator norm of y 7→ xy gives an isomorphic
Banach ring which does satisfy (b).

In the category of Banach rings, we have the following analogue of Tate algebras.

Definition 1.5.3. For B a Banach ring and ρ > 0, let B〈T
ρ
〉 be the completion of B[T ] for

the weighted Gauss norm ∣∣∣∣∣
∞∑
n=0

xnT
n

∣∣∣∣∣
ρ

= max{|xn| ρn}.

For ρ = 1, this coincides with the usual Tate algebra B〈T 〉.
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If we define the associated graded ring

GrB :=
⊕
r>0

{x ∈ B : |x| ≤ r}
{x ∈ B : |x| < r}

,

then GrB〈T
ρ
〉 is the graded ring (GrB)[T ] with T placed in degree ρ. One consequence of

this (which generalizes the usual Gauss’s lemma) is that if the norm on B is multiplicative,
then GrB is an integral domain, as then is (GrB)[T ], so the weighted Gauss norm on B〈T

ρ
〉

is multiplicative. (See Lemma 1.8.1 for another use of the graded ring construction.)

Remark 1.5.4. As usual, let A be an analytic Huber ring. Choose a ring of definition A0 of
A (which must be open in A) and an ideal of definition I (which must be finitely generated).
Using these choices, we can promote A to a Banach ring as follows: for x ∈ A, let |x| be the
infimum of e−n over all integers n for which xIm ⊆ Im+n for all nonnegative integers m for
which m+ n ≥ 0.

Note that this works even if A is not analytic; in particular, any Huber ring is metrizable
and in particular first-countable. However, even analytic Huber rings need not be second-
countable; consider for example Qp〈T1, T2, . . . 〉.

Remark 1.5.5. In the other direction, starting with a Banach ring B, it is not immediately
obvious that its underlying topological ring is a Huber ring; the difficulty is to find a finitely
generated ideal of definition. However, this is always possible if B is analytic: if x1, . . . , xn are
topologically nilpotent elements of B generating the unit ideal, then for any ring of definition
A0, for any sufficiently large m the elements xm1 , . . . , xmn of A belong to A0 and generate an
ideal of definition.

Example 1.5.6. The infinite polynomial ring Q[T1, T2, . . . ] admits a submultiplicative norm
where for x 6= 0, |x| = e−n where n is the largest integer such that x ∈ (T1, T2, . . . )

n. Let B
be the Banach ring obtained by taking the completion with respect to this norm. Then the
underlying ring of B is not a Huber ring.

As an example of viewing a Banach ring as a Huber ring, we give an example of a Huber
ring which is analytic but not Tate. Of course this example can be described perfectly well
without Banach rings, but we find the presentation using norms a bit more succinct.

Example 1.5.7. Equip Z with the trivial norm, choose any ρ > 1, and equip

A := Z
〈
a

ρ
,
b

ρ
,
x

ρ−1
,
y

ρ−1

〉
/(ax+ by − 1)

with the quotient norm; this is an analytic Banach ring (because x and y are topologically
nilpotent), so it may be viewed as a Huber ring. If we view A as a filtered ring, the associated
graded ring is Z[a, b, x, y]/(ax+by−1) with a, b placed in degree −1 and x, y placed in degree
+1. Since the graded ring is an integral domain and its only units are ±1, it follows that the
norm on A is multiplicative and every unit in A has norm 1. In particular, A is not Tate.

In order to explain the extent to which passage between Huber and Banach rings can be
made functorial, we need to introduce the notion of a Banach module.
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Remark 1.5.8. Let B be an analytic Banach ring and let M be a complete metrizable
topological B-module. Then M may be equipped with the structure of a Banach module
over B, i.e., a module complete with respect to a norm |•|M satisfying

(1.5.8.1) |bm| ≤ |b| |m| (b ∈ B,m ∈M).

Namely, if one chooses a bounded (in the sense of Definition 1.2.12) open neighborhood
M0 of 0 in M , one can define a surjective morphism N → M of topological B-modules by
taking N to be the completed direct sum of BM0 for the supremum norm, then mapping the
generator of N corresponding to m ∈M0 to m ∈M . By Theorem 1.1.9, this morphism is a
strict surjection, so the quotient norm from N defines the desired topology on M .

In case B is a nonarchimedean field equipped with a multiplicative norm, one can say
more: for b ∈ B nonzero, we also have

|m| ≤ |bm|
∣∣b−1

∣∣ = |bm| |b|−1 ,

which upgrades (1.5.8.1) to an equality

(1.5.8.2) |bm| = |b| |m| (b ∈ B,m ∈M).

Remark 1.5.9. Let B be an analytic Banach ring, and let M1,M2 be Banach modules
over B. Let f : M1 → M2 be a morphism of B-modules. We say that f is bounded if there
exists c > 0 such that |f(m)| ≤ c |m| for all m ∈ M1. If f is bounded, then evidently f is
continuous.

Conversely, if B is a nonarchimedean field equipped with a multiplicative norm and f is
continuous, then f is bounded. To see this, let u be a topologically nilpotent unit of B, so that
0 < |u| < 1. If f fails to be bounded, then for every positive integer n there exists an element
xn ∈M1 such that |f(xn)| > 2n |xn|. Choose an integer mn such that |u|mn |xn| ∈ [|u| , 1]. By
(1.5.8.2), we have

|umnxn| ≤ 1, |umnf(xn)| > 2n |u| ,
so {umnxn} is a bounded sequence inM1 whose image inM2 is not bounded. This contradicts
the continuity of f .

For general B, it is not the case that f being continuous implies that f is bounded. For
example, it is possible for the same Huber ring A to arise as the underlying ring of two
Banach rings B1, B2 in such a way that the composition B1 → A → B2 is not a bounded
morphism of B1-modules. To make a concrete example, choose any ρ ∈ (0, 1), let k be a field
equipped with the trivial norm, and define

B1 := k

〈
x,
y

ρ
,
y−1

ρ−1
, T, U

〉
/(y − Tx, x2 − Uy),

B2 := k

〈
x

ρ
,
x−1

ρ−1
, y, T, U

〉
/(y − Tx, x2 − Uy).

Then there is a k-linear homeomorphism f : B1 → B2 identifying x and y on both sides, but
in B1 we have |y−n| = ρ−n while in B2 we have |y−n| = ρ−2n; hence f is not bounded.

Nonetheless, from the previous discussion plus Remark 1.5.8, we see that for general B, the
forgetful functor from Banach modules over B to complete metrizable topological modules
over B admits a (highly noncanonical) left adjoint; namely, for each module M in the target
category, choose a bounded open neighborhood M0 of 0 in M and run the construction of
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Remark 1.5.8. To check that this functor indeed turns continuous morphisms into bounded
morphisms, we proceed in two steps.

• First, we check that if M ′
0 is another bounded open neighborhood of 0 in M , then

the identity map on M is bounded for the norms defined by M0 and M ′
0. To this end,

choose topologically nilpotent units x1, . . . , xn ∈ B generating the unit ideal; then
for any sufficiently large integer m, we have xmi M0 ⊆ M ′

0 for i = 1, . . . , n. Choose
elements b1, . . . , bn ∈ B such that xm1 b1 + · · ·+xmn bn = 1; if x ∈M0, then x−mi x ∈M ′

0

and so the norm of x with respect to M ′
0 is at most maxi{

∣∣x−mi bi
∣∣}, and similarly in

the opposite direction.
• Second, we note that if f : M1 → M2 is continuous, then we may choose open
bounded neighborhoodsM1,0,M2,0 of 0 inM1,M2 in such a way that f(M1,0) ⊆M2,0.
We thus get a bounded morphism for the corresponding norms, and hence for any
other choice of norms (by the previous point). The adjoint property follows similarly.

Remark 1.5.10. Let B be an analytic Banach ring, and let B → A be a (continuous)
morphism of Huber rings. We may then take M = A in Remark 1.5.8; this amounts to
promoting A to a Banach ring using an ideal of definition extended from B. By Remark 1.5.9,
the map B → A is bounded; this remains true if we replace the norm on A with its associated
operator norm as per Remark 1.5.2, since the norm topology does not change. To summarize,
the forgetful functor from Banach rings over B to Huber rings over B admits a left adjoint,
and is even an equivalence of categories if B is itself a Banach algebra over a nonarchimedean
field (by Remark 1.5.9).

We now continue to introduce basic structures associated to Banach rings, keeping an eye
on the relationship with Huber rings.

Definition 1.5.11. For B a Banach ring, the spectral seminorm on B is the function |•|sp :
B → R≥0 given by

|x|sp = lim
n→∞

|xn|1/n (x ∈ B).

(Using submultiplicativity, it is an elementary exercise in real analysis to show that the
limit exists.) In general, the spectral seminorm is not a norm; for example, it maps all
nilpotent elements to 0. The spectral seminorm need not be multiplicative, but it is power-
multiplicative: for any x ∈ B and any positive integer n, |xn|sp = |x|nsp.

Even if the spectral seminorm is a norm, it need not define the same topology as the original
norm. This does however hold if B satisfies the equivalent conditions of Exercise 1.5.13 below;
in this case, we say that B is uniform. If B is uniform, then it is reduced.

Exercise 1.5.12. Let B be a Banach ring. Then x ∈ B is topologically nilpotent if and only
if |x|sp < 1.

Exercise 1.5.13. For any integer m > 1, the following conditions on a Banach ring B are
equivalent.

(a) There exists c > 0 such that |x|sp ≥ c |x| for all x ∈ B.
(b) There exists c > 0 such that |xm| ≥ c |x|m for all x ∈ B.

If the underlying topological ring of B is a Huber ring, then these conditions also imply the
following equivalent conditions.
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(c) The spectral seminorm defines the same topology as the original norm (and in par-
ticular is a norm).

(d) The underlying Huber ring of B is uniform (in the sense of Definition 1.2.12).
In addition, if B is analytic and is the promotion of a Huber ring as per Remark 1.5.4
(e.g., because it is an algebra over a nonarchimedean field), then all four conditions are
equivalent. More precisely, if B is analytic, then (d) still implies the restricted form of (a)
where x is limited to some bounded neighborhood of 0 in B, the constant c depending on
this neighborhood; assuming that B is the promotion of a Huber ring, one may extend (a)
to larger x.

Beware that it is falsely claimed in [117, Definition 2.8.1] that if B is Tate, then (a)–(d)
are equivalent. For a counterexample, start with a nonarchimedean field K with norm |•|,
then take B to be a copy of K equipped with the new norm

x 7→

{
|x| if |x| ≤ 1

|x| (1 + log |x|) if |x| > 1.

Definition 1.5.14. For B a Banach ring, let M(B) denote the Gelfand spectrum6 of B,
which as a set consists of the multiplicative seminorms on B which are bounded by the given
norm. Under the evaluation topology (i.e., the subspace topology from the product topology
on RB),M(B) is compact.

Remark 1.5.15. For (A,A+) a Huber ring with A promoted to a Banach ring B as per
Remark 1.5.4, there is a natural map M(B) → Spa(A,A+) obtained by viewing a multi-
plicative seminorm as a valuation; however, this map is not continuous. If A is analytic, this
map is a section of a continuous morphism Spa(A,A+) → M(B) which takes a valuation
v to the bounded multiplicative seminorm defining the topology on the residue field (whose
underlying valuation is the maximal generization of v). This map identifiesM(B) with the
maximal Hausdorff quotient of Spa(A,A+).

The following is [13, Theorem 1.2.1], with essentially the same proof.

Lemma 1.5.16. For B a Banach ring, B = 0 if and only ifM(B) = ∅.
Proof. The content is that if B 6= 0, thenM(B) 6= ∅. Note that for any maximal ideal m of
B, m is closed (see Remark 1.1.1) andM(B/m) may be identified with a subset ofM(B);
we may thus assume that B is a field. (This does not by itself imply that B is complete for
a multiplicative norm; see Remark 1.2.17.)

By Zorn’s lemma, we may construct a minimal bounded seminorm β on B; it will suffice
to check that β is multiplicative. Note that β must already be power-multiplicative, or else
we could replace it with its spectral seminorm and violate minimality.

We can now finish in (at least) two different ways.
• Here is the approach taken in [13, Theorem 1.2.2]. Suppose x ∈ B is nonzero. For
any ρ < β(x), the map B → B〈T

ρ
〉/(T −x) must be zero: otherwise, we could restrict

the quotient norm on the target to get a seminorm on B bounded by β and strictly
smaller at x, contradicting minimality. Since B is nonzero, the map can only be zero

6This definition is usually attributed to Berkovich [13], who established many key properties. However,
one finds isolated references to it in earlier literature, notably in the work of Guennebaud [83]. We thank
Ofer Gabber for bringing this fact to our attention.
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if the target is the zero ring, or equivalently if T − x = −x(1− x−1T ) has an inverse
in B〈T

ρ
〉, or equivalently if the unique inverse

∑∞
n=0−x−n−1T n in BJT K converges in

B〈T
ρ
〉. That is, we must have

lim
n→∞

β(x−n)ρn = 0 for all ρ ∈ (0, β(x)),

and in particular β(x−n) < ρ−n for n sufficiently large. By power-multiplicativity,
this implies that β(x−1) ≤ β(x)−1. For all y ∈ B, we now have

β(xy) ≤ β(x)β(y) ≤ β(x−1)−1β(y) ≤ β(xy);

hence β is multiplicative, as needed.
• Another approach (suggested by Zonglin Jiang) is to use Exercise 1.5.17 below to
show that for any nonzero x ∈ B, the formula

β′(y) = lim
n→∞

β(xny)

β(xn)

defines a power-multiplicative seminorm β′ on B. For all y ∈ B, we have β′(y) ≤ β(y)
and β(xy) = β(x)β(y); by minimality, we must have β = β′, proving multiplicativity.

Using either approach, the proof is complete. �

Exercise 1.5.17. Prove [23, Proposition 1.3.2/2]: for any uniform Banach ring B equipped
with its spectral norm and any nonzero x ∈ B, the limit

|y|x := lim
n→∞

|yxn|
|xn|

exists and defines a power-multiplicative seminorm |•|x on B.

We now recover [94, Proposition 3.6(i)].

Corollary 1.5.18. For (A,A+) a (not necessarily analytic) Huber pair with A 6= 0, we have
Spa(A,A+) 6= ∅.

Proof. Promote A to a Banach ring as per Remark 1.5.4, then apply Lemma 1.5.16. �

Corollary 1.5.19. For B a nonzero Banach ring, an ideal I of B is trivial if and only if
for each β ∈ M(B), there exists x ∈ I with β(x) > 0. In particular, an element x of B is
invertible if and only if β(x) 6= 0 for all β ∈M(B).

Proof. By Remark 1.1.1, we may assume that I is closed. If I is trivial, then obviously x = 1
satisfies β(x) > 0 for all β ∈ M(B). Otherwise, B/I is a nonzero Banach ring (since I is
now closed),M(B/I) is nonempty by Lemma 1.5.16, and any element ofM(B/I) restricts
to an element β ∈M(B) with β(x) = 0 for all x ∈ I. �

Corollary 1.5.20. For (A,A+) a (not necessarily analytic) Huber pair, an ideal I of A is
trivial if and only if for each v ∈ Spa(A,A+), there exists x ∈ I with v(x) > 0. In particular,
x ∈ A is invertible if and only if v(x) > 0 for all v ∈ Spa(A,A+).

Proof. Promote A to a Banach ring as per Remark 1.5.4, then apply Corollary 1.5.19. �

The following is an analogue of the maximum modulus principle in rigid analytic geometry
[23, Proposition 6.2.1/4]. The proof is taken from [13, Theorem 1.3.1].
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Lemma 1.5.21. For B a Banach ring, the spectral seminorm of B equals the supremum
overM(B).

Proof. In one direction, it is obvious that any multiplicative seminorm bounded by the
original norm is also bounded by the spectral seminorm. In the other direction, we must
check that if x ∈ B, ρ > 0 satisfy β(x) < ρ for all β ∈ M(B), then |x|sp < ρ. The input
condition implies that 1−xT vanishes nowhere on the spectrum of B〈 T

ρ−1 〉, hence is invertible
by Corollary 1.5.19. In the larger ring BJT K, the inverse of 1−xT equals 1+xT +x2T 2 + · · · ;
the fact that this belongs to B〈 T

ρ−1 〉 implies that |x|sp < ρ as in the proof of Lemma 1.5.16. �

Corollary 1.5.22. Let B be a Banach ring. If the uniform completion of B (i.e., the sepa-
rated completion of B with respect to the spectral seminorm) is zero, then so is B itself.

Proof. By Lemma 1.5.21 the given condition implies that M(B) = ∅, at which point
Lemma 1.5.16 implies that B = 0. �

Corollary 1.5.23. For B a Banach ring, an element x ∈ B is topologically nilpotent if and
only if β(x) < 1 for all β ∈M(B).

Proof. This is immediate from Exercise 1.5.12, Lemma 1.5.21, and the compactness ofM(B).
�

This immediately yields the following corollary of Lemma 1.5.21; see also [26, Lemma 5]
for a purely topological proof.

Corollary 1.5.24. Let (A,A+) be a (not necessarily analytic) Huber pair. Then the kernel
of A→ H0(X,O) contains only topologically nilpotent elements.

Proof. Promote A to a Banach ring as per Remark 1.5.4. Then any x ∈ A mapping to zero
in H0(X,O) satisfies α(x) = 0 for all α ∈ M(A); by Corollary 1.5.23, x is topologically
nilpotent. �

Remark 1.5.25. Lemma 1.5.21 implies that for any covering V of X, the map A →⊕
V ∈VO(V ) is an isometry for the spectral seminorms on all terms. In particular, if A

is uniform, then A → O(X) is injective; by Remark 1.5.4, the same statement holds for
Huber rings.

This can be used to prove the following key lemma (compare [26, Lemma 3]).

Lemma 1.5.26. Suppose that A is uniform. Choose x =
∑∞

n=0 xnT
n ∈ A〈T 〉 such that the

xn generate the unit ideal. Then multiplication by x defines a strict inclusion A〈T 〉 → A〈T 〉.
(The analogous statement for A〈T±〉 also holds, with an analogous proof.)

Proof. Using Remark 1.5.4, we may reduce to considering the analogous problem where A is a
uniform Banach ring. For α ∈M(A), write α̃ ∈M(A〈T 〉) for the Gauss extension; note that
the latter is the maximal seminorm on A〈T 〉 restricting to β onM(A). By Lemma 1.5.21,
we may then compute the spectral seminorm on A〈T 〉 as the supremum of α̃ as α runs over
M(A).

Choose n ≥ 0 such that x0, . . . , xn generate the unit ideal in A; then the quantity

c := inf
α∈M(B)

{α(x0), . . . , α(xn)}
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is positive. For all y ∈ A〈T 〉, we have

sup
α∈M(A)

{α̃(xy)} = sup
α∈M(A)

{α̃(x)α̃(y)} ≥ c sup
α∈M(A)

{α̃(y)};

this proves the claim. �

Exercise 1.5.27. Let {Ai}i∈I be a filtered direct system of uniform Banach rings, equipped
with their spectral norms, and let A be the completed direct limit of the Ai. Prove that
every finite projective module on A is the base extension of some finite projective module
over some Ai. (See [118, Lemma 5.6.8].)

Remark 1.5.28. It is possible to construct a version of the theory of adic spaces in which
Banach rings, rather than Huber rings, form the building blocks; this is the theory of reified
adic spaces described in [112]. The main structural distinction is that valuations do not map
into totally arbitrary value groups; rather, each value group must be normalized using a
fixed inclusion of the positive real numbers. In the reified theory, many occurrences of Tate
or analytic hypotheses can be relaxed, because the normalization of the value group can be
used in the place of topologically nilpotent elements. However, the open mapping theorem,
being a purely topological statement, provides a stumbling block.

1.6. A strategy of proof: variations on Tate’s reduction. We next collect some general
observations that will be used to complete the omitted proofs from earlier in the lecture.
The reader is again reminded to keep in mind the analogy with affine schemes, as many of
the ideas are similar.

To begin, we reduce the sheafy property, and the acyclicity of sheaves, to a statement
about sufficiently fine coverings of and by basic open subsets.

Definition 1.6.1. By a cofinal family of rational coverings, we will mean a function C
assigning to each rational subspace U of X a set of finite coverings of U by rational subspaces
which is cofinal : every covering of U by open subspaces is refined by some covering in C(U).
For example, since U is quasicompact, one obtains a cofinal family of rational coverings by
taking C(U) to be all finite coverings by rational subspaces.

Definition 1.6.2. We use the following notation for Čech cohomology groups. For F a
presheaf on X, U ⊆ X open, V = {Vi}i∈I a covering of U by open subspaces, and j a
nonnegative integer, let Čj(U,F ;V) be the product of F(Vi0 ∩ · · · ∩ Vij) over all distinct
i0, . . . , ij ∈ I. Let dj : Čj(U,F ;V)→ Čj+1(U,F ;V) be the map given by the formula

(si0,...,ij)i0,...,ij∈I 7→

(
j+1∑
k=0

(−1)ksi0,...,îk,...,ij+1

)
i0,...,ij+1∈I

;

with these differentials, Č•(U,F ;V) form a complex whose cohomology groups we denote
by Ȟ•(U,F ;V).

The following is the same standard argument used to establish the basic properties of the
structure sheaf on affine schemes; compare [166, Tag 01EW].

Lemma 1.6.3. Let C be a cofinal family of rational coverings. Let F be a presheaf on X
with the property that for any open subset U , F(U) is the inverse limit of F(V ) over all
rational subspaces V ⊆ U .
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(a) Suppose that for every rational subspace U of X and every covering V ∈ C(U), the
natural map

F(U)→ Ȟ0(U,F ;V)

is an isomorphism. Then F is a sheaf.
(b) Suppose that F is a sheaf, and that for every rational subspace U of X and every

covering V ∈ C(U), we have Ȟ i(U,F ;V) = 0 for all i > 0. Then F is acyclic.

Proof. We start with (a). To show that F is a sheaf, we must check that F(U)→ Ȟ0(U,F ;V)
is an isomorphism for every open subspace U of X and every open covering V of U . We will
check injectivity, then surjectivity; note that each of these assertions follows formally from
the case where U is rational.

Suppose that U is rational and that V is a covering of U . Let V′ ∈ C(U) be a refinement
of V. The map F(U)→ Ȟ0(U,F ;V′) then factors as the map F(U)→ Ȟ0(U,F ;V) followed
by the restriction map Ȟ0(U,F ;V)→ Ȟ0(U,F ;V′). Since F(U)→ Ȟ0(U,F ;V′) is injective,
the map F(U)→ Ȟ0(U,F ;V) is injective for U rational, and hence for arbitrary U .

By the previous paragraph, the map Ȟ0(U,F ;V)→ Ȟ0(U,F ;V′) is also injective. Conse-
quently, the surjectivity of Ȟ0(U,F ;V)→ Ȟ0(U,F ;V′) implies the surjectivity of F(U)→
Ȟ0(U,F ;V) for U rational, and hence for arbitrary U . This completes the proof of (a).

To establish (b), we will show that H i(U,F) = 0 for all rational subspaces U and all i > 0;
we do this by induction on i. Given that F is a sheaf and that Hj(U,F) = 0 for all rational
subspaces U and all j < i, a standard spectral sequence argument [23, Corollary 8.1.4/3] pro-
duces a canonical morphism H i(U,F)→ Ȟ i(U,F ;V) for any open covering V of U , with the
property that if V′ is a refinement of V then the morphism H i(U,F)→ Ȟ i(U,F ;V′) factors
as H i(U,F)→ Ȟ i(U,F ;V) followed by the natural morphism Ȟ i(U,F ;V)→ Ȟ i(U,F ;V′).
With this in mind, we may imitate the proof of (a) to conclude. �

In order to maximally exploit this argument, we construct some special finite coverings of
rational subspaces, so as to cut down the required number of explicit calculations of Čech
cohomology.

Definition 1.6.4. For f1, . . . , fn ∈ A which generate the unit ideal, the sets

X

(
f1, . . . , fn

fi

)
(i = 1, . . . , n)

form a covering of X by rational subspaces; this covering is called the standard rational
covering defined by the parameters f1, . . . , fn. A standard rational covering with n = 2 will
be called a standard binary rational covering.

Although we have generically been assuming that A is analytic, the previous definition
makes sense without this hypothesis. However, in order for the sets X

(
f1,...,fn
fi

)
to form a

covering, the elements f1, . . . , fn must still generate the unit ideal in A, not an arbitrary open
ideal (because the condition that v ∈ X belongs to X

(
f1,...,fn
fi

)
includes the requirement that

v(fi) 6= 0).

We record the following statement for use in a subsequent lecture.

Lemma 1.6.5. The map X = Spa(A,A+) → Spa(A+, A+) (which by Corollary 1.1.4 is
injective) is an open immersion (i.e., a homeomorphism onto an open subset of the target).
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Proof. Let x1, . . . , xn ∈ A+ be topologically nilpotent elements which generate the unit ideal
in A. The image of X in Spa(A+, A+) can then be written as the union of the open subsets
Spa(A+, A+)(x1,...,xn

xi
) for i = 1, . . . , n; it is thus open. To complete the argument, we need

only check that each of these open subsets is itself homeomorphic to the rational subspace
X(x1,...,xn

xi
) of X; that is, we may reduce to the case where A is Tate.

Now suppose that x ∈ A+ is a topologically nilpotent unit in A. In this case, we must
check that for any f1, . . . , fn, g ∈ A which generate the unit ideal, the rational subspace
X
(
f1,...,fn

g

)
of X is the pullback of a rational subspace of Spa(A+, A+). To see this, let m

be an integer which is large enough that xmf1, . . . , x
mfn, x

mg ∈ A+; these parameters then
generate an open ideal in A+, and so define a rational subspace of Spa(A+, A+) of the desired
form. �

Definition 1.6.6. It will be useful to single out some special types of standard binary
rational coverings. The covering with parameters f1 = f , f2 = 1 will be called the simple
Laurent covering defined by f . The covering with parameters f1 = f , f2 = 1 − f will be
called the simple balanced covering defined by f ; note that the terms in this covering can be
rewritten as X( 1

f
), X( 1

1−f ).

Remark 1.6.7. The concept of a standard rational covering of X is the closest analogue in
this context to a covering of an affine scheme by distinguished open affine subschemes. That
is because for R a ring and f1, . . . , fn, g ∈ R generating the unit ideal, the ring obtained from
R by adjoining f1/g, . . . , fn/g is precisely R[1/g]; consequently, for f1, . . . , fn ∈ R generating
the unit ideal, the “rational covering” defined by f1, . . . , fn is nothing but the covering of
SpecR by SpecR[1/f1], . . . , SpecR[1/fn].

The previous remark suggests the following lemma, due in this form to Huber [95, Lemma 2.6];
see also [23, Lemma 8.2.2/2] for the case where A is an affinoid algebra over a nonarchimedean
field, or [117, Lemma 2.4.19(a)] for the case where A is Tate.

Lemma 1.6.8 (Huber). Every open covering of a rational subspace of X can be refined by
some standard rational covering.

Proof. Since every rational subspace of X is itself the spectrum of a Huber pair, it suffices to
consider coverings of X itself. Since X is quasicompact, we may start with a finite covering
V = {Vi}i∈I of X by rational subspaces. For i ∈ I, write

Vi = X

(
fi1, . . . , fini

gi

)
(i ∈ I)

for some fi1, . . . , fini
, gi which generate the unit ideal in A. Let S0 be the set of products∏

i∈I si with si ∈ {fi1, . . . , fini
, gi}; then S0 generates the unit ideal.

Let S be the subset of S0 consisting of those products
∏

i∈I si where si = gi for at least
one i ∈ I. These also generate the unit ideal: to see this, by Corollary 1.5.20 it suffices to
check that for each v ∈ X there exists some s ∈ S for which v(s) 6= 0. To see this, choose an
index i ∈ I for which v ∈ Vi, put si = gi, and for each j 6= i choose sj ∈ {fj1, . . . , fjnj

, gj}
to maximize v(sj). Since fj1, . . . , fjnj

, gj generate the unit ideal, we must have v(sj) 6= 0; it
follows that v(s) 6= 0.

We may thus form the standard covering by S. This refines the original covering: if s ∈ S
with si = gi, then X(S

s
) ⊆ Vi. �
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Remark 1.6.9. Using Lemma 1.6.8, we may see that the property of (A,A+) being sheafy
depends only on A, not on A+: both the collection of standard rational coverings, and the
assertions of the sheaf axiom for these coverings, depend only on A.

Remark 1.6.10. For A not necessarily analytic, a rational subspace of X is defined by
parameters which generate an open ideal of A, rather than the trivial ideal. Recall that
these two conditions coincide if and only if A is analytic (Lemma 1.1.3). For this reason, the
proof of Lemma 1.6.8 does not extend to the case where A is not analytic.

To see just how different the nonanalytic case is, we consider the following example. The
ring Ainf to be introduced later exhibits similar behavior; see Remark 3.1.10.

Example 1.6.11. Let k be a field, equip A := kJx, yK with the (x, y)-adic topology, and
put A+ := A. The space X then contains a unique valuation v with v(x) = v(y) = 0. The
only rational subspace of X containing v is X itself: for f1, . . . , fn, g ∈ A generating an open
ideal, we have v ∈ X

(
f1,...,fn

g

)
if and only if v(g) 6= 0, which forces g to be a unit. Thus in

this case the conclusion of Lemma 1.6.8 does turn out to be correct: any covering of X is
refined by the trivial covering of X by itself, whereas any proper rational subspace of X is
the spectrum of an analytic ring and so is subject to Lemma 1.6.8.

Continuing the analogy with affine schemes, we may further reduce the cofinal family
consisting of the standard rational coverings by considering compositions of special coverings.
The following argument is due to Gabber–Ramero (taken from [74]).

Lemma 1.6.12 (Gabber–Ramero). Every open covering of a rational subspace of X can be
refined by some composition of standard binary rational coverings.

Proof. Again, we need only consider coverings of X itself. By Lemma 1.6.8, there is no harm
in starting with the standard rational covering defined by some f1, . . . , fn ∈ A generating
the unit ideal. We induct on the smallest value of m for which some m-element subset of
{f1, . . . , fn} generates the unit ideal; there is nothing to check unless m ≥ 3. Without loss of
generality, we may assume that f1, . . . , fm generate the unit ideal, and choose g1, . . . , gm ∈ A
for which f1g1 + · · ·+ fmgm = 1. Now define

h =

bm/2c∑
i=1

figi, h′ =
m∑

i=bm/2c+1

figi

and form the standard binary rational covering generated by h, h′. On each of X〈 h
h′
〉 and

X〈h′
h
〉, the unit ideal is generated by a subset of f1, . . . , fm of size at most dm/2e ≤ m− 1;

we may thus apply the induction hypothesis to conclude. �

The following refinement of Lemma 1.6.12 will be useful for checking flatness.

Lemma 1.6.13. Every open covering of a rational subspace of X can be refined by some
composition of coverings, each of which is either a simple Laurent covering or a simple
balanced covering.

Proof. By Lemma 1.6.12, it suffices to prove the claim for the standard binary rational
covering of X defined by some f, g ∈ A which generate the unit ideal. Choose a, b ∈ A
with af + bg = 1. We then may refine the original covering by taking the simple balanced
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covering defined by af , and forming the simple Laurent coverings of X( 1
af

), X( 1
bg

) defined
by the respective parameters g/f, f/g. �

Remark 1.6.14. In the Tate case, one can do even better than Lemma 1.6.13: it is only
necessary to use simple Laurent coverings. This was shown for affinoid algebras in [23,
Lemma 8.2.2/3, Lemma 8.2.2/4] and in general in [95, Theorem 2.5, (II.1)(iv)], [117, Lemma 2.4.19].
In light of Lemma 1.6.12, one may see this simply by checking that for any f, g ∈ A gener-
ating the unit ideal, the simple balanced covering defined by f is refined by a composition
of simple Laurent coverings. To this end, choose a topologically nilpotent unit x ∈ X; then
for any sufficiently large integer n, we have

max{v(f/xn), v(g/xn)} ≥ 1 (v ∈ X).

From the ensuing equality (and its symmetric counterpart)

X

(
f

g

)
= X

(
f/xn

1

)(
1

g/xn

)
∪X

(
1

f/xn

)(
g/f

1

)
,

we see that the original covering is refined by a suitable composition of simple Laurent
coverings.

Let us now sketch how we will use the preceding lemmas to carry out the various proofs
that we are still due to provide.

Remark 1.6.15. To show that some particular A is sheafy (as in Theorem 1.2.11 or The-
orem 1.2.13), by Lemma 1.6.3 it suffices to check the isomorphism O(U) ∼= Ȟ0(U,O;V) for
every rational subspace U and every finite covering V by rational subspaces in some cofinal
family. By Lemma 1.6.12, we may take this collection to be the compositions of standard
binary rational coverings. Checking the isomorphism for such coverings immediately reduces
to checking for a single standard binary rational covering; by Lemma 1.6.13 it is even suf-
ficient to check for a simple Laurent covering and a simple balanced covering. That is, we
must show that for every rational localization (A,A+) → (B,B+) and every pair f, g ∈ B
with g ∈ {1, 1− f}, the sequence

(1.6.15.1) 0→ B → B

〈
f

g

〉
⊕B

〈
g

f

〉
→ B

〈
f

g
,
g

f

〉
→ 0

is exact at the left and middle.
In the same vein, if O is a sheaf, then the above sequence is known to be exact at the left

and middle; to show that O is acyclic, it suffices to check exactness at the right. Similarly,
to prove that M̃ is an acyclic sheaf for some given A-module M (as in Theorem 1.3.4 and
Theorem 1.4.16), it suffices to check that tensoring (1.6.15.1) over B with M ⊗A B gives
another exact sequence.

Remark 1.6.16. Given that A is sheafy and M̃ is acyclic for every finite projective A-module
M , to show that every vector bundle on X arises from some finite projective A-module (as
in Theorem 1.4.2), by Lemma 1.6.13 it suffices to consider a bundle which is specified by
modules on each term of a composition of simple Laurent coverings and simple balanced
coverings. It then suffices to check that for every rational localization (A,A+) → (B,B+)
and every pair f, g ∈ B with g ∈ {1, 1− f}, the functor

FPModB → FPModB〈 f
g
〉×FPMod

B〈 fg ,
g
f
〉
FPModB〈 g

f
〉

30



is an equivalence of categories. (Note that since we are only considering a covering by two
open sets, there is no need to impose a cocycle condition on the objects on the right-hand
side.) Similarly, given that M̃ is acyclic for every stably pseudocoherent A-moduleM , to show
that every pseudocoherent sheaf on X arises from some stably pseudocoherent A-module (as
in Theorem 1.4.18), we must check that for B, f, g as above, the functor

PCohB → PCohB〈 f
g
〉×PCoh

B〈 fg ,
g
f
〉
PCohB〈 g

f
〉

is an equivalence of categories. However, in order to even have such a functor, we must
first establish the preservation of stably pseudocoherent modules under base extension along
rational localizations; see Remark 1.6.17.

Remark 1.6.17. Given that A is sheafy and acyclic, to show that base extension along a
rational localization preserves the category of stably pseudocoherent modules (as in Theo-
rem 1.4.14) and is exact, we must proceed somewhat indirectly. Namely, we initially only
consider rational localizations which occur in compositions of simple Laurent and simple
balanced coverings, which for convenience we temporarily refer to as nice localizations. Let
PCohnice

A denote the category of pseudocoherent A-modules such that for any nice localiza-
tion (A,A+) → (B,B+), M ⊗A B is complete for its natural topology as a B-module; this
category contains PCohA, and by the end of the proof we will see that the two categories
coincide.

We first verify that for (A,A+) → (B,B+) a nice localization, base extension defines
an exact functor PCohnice

A → PCohnice
B . This reduces to a calculation for each term in a

simple Laurent covering or a simple balanced covering; note that the Laurent case implies
the balanced case because

X

(
f

1− f

)
= X

(
1

1− f

)
, X

(
1− f
f

)
= X

(
1

f

)
.

Next, let U = Spa(B,B+) be a not necessarily nice rational subspace. Let

0→ N → F →M → 0

be an exact sequence in PCohnice
A in which F is finite free. By Lemma 1.6.13, we can find a

covering V of U by rational subspaces which are nice in X (and hence in U). By the previous
paragraph, for each Spa(C,C+) ∈ V, tensoring over A with C converts the previous exact
sequence into an exact sequence in PCohnice

C . Glueing as in Remark 1.6.16 then yields an
exact sequence

0→ N ′ → F ′ →M ′ → 0

in PCohnice
B fitting into a natural diagram

N ⊗A B //

��

F ⊗A B //

��

M ⊗A B //

��

0

0 // N ′ // F ′ // M ′ // 0

in which the middle vertical arrow is an isomorphism, so the right vertical arrow must be
surjective. By repeating the argument with N playing the role previously played by M , we
see that the left vertical arrow must also be surjective. By the five lemma, the right vertical
arrow must be surjective; again, repeating the argument shows that the left vertical arrow is
surjective. In other words, the original exact sequence remains exact, and the terms remain
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complete for the natural topology, after tensoring over A with B. We thus conclude that
base extension defines an exact functor PCohnice

A → PCohnice
B , which in turn implies that

PCohnice
A = PCohA.

These arguments are summarized in [117, Proposition 2.4.20] as follows.

Lemma 1.6.18. Let Pan be the set of pairs (U,V) where U is a rational subspace and V
is a finite covering of U by rational subspaces. Suppose that P ⊆ Pan satisfies the following
conditions.

(i) Locality: if (U,V) admits a refinement in P, then (U,V) ∈ P.
(ii) Transitivity: Any composition of coverings in P is in P.
(iii) Every standard binary rational covering is in P.

Then P = Pan.

Remark 1.6.19. While glueing theorems fit neatly into the framework of Lemma 1.6.18,
writing the proofs of sheafiness and acyclicity theorems in this language still requires an
argument in the style of Lemma 1.6.3. See [117, Proposition 2.4.21] for a presentation of this
form.

1.7. Proofs: sheafiness. We now use the formalism we have set up to establish sheafiness
when A is strongly noetherian (Theorem 1.2.11) or stably uniform (Theorem 1.2.13).

Hypothesis 1.7.1. Throughout §1.7, let (A,A+)→ (B,B+) be a rational localization, and
let f, g ∈ B be elements which generate the unit ideal. We will use frequently and without
comment the fact that B〈f

g
〉 is the quotient of B〈T 〉 by the closure of the ideal (f − gT )

(and the same with f and g reversed), and similarly B〈f
g
, g
f
〉 is the quotient of B〈T±〉 by the

closure of the ideal (f − gT ).

Lemma 1.7.2. With notation as in Hypothesis 1.7.1, suppose that for each of the pairs

(R, x) = (B〈T 〉, f − gT ), (B〈T−1〉, g − fT−1), (B〈T±〉, f − gT ),

the ideal xR is closed. Then the sequence (1.6.15.1) is exact at the middle.

Proof. By hypothesis, we have a commutative diagram

(1.7.2.1) 0 // 0 //

��

B〈T 〉 ⊕B〈T−1〉 •+T−1• //

×(f−gT,g−fT−1)
��

B〈T±〉 //

×(f−gT )

��

0

0 // B //

��

B〈T 〉 ⊕B〈T−1〉 •−• //

��

B〈T±〉 //

��

0

0 // B //

��

B
〈
f
g

〉
⊕B

〈
g
f

〉
//

��

B
〈
f
g
, g
f

〉
//

��

0

0 0 0

in which all three columns, and the first two rows, are exact. By diagram-chasing, or applying
the snake lemma to the first two rows, we deduce the claim. �

At this point, it is easy to finish the proof of sheafiness in the stably uniform case.
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Lemma 1.7.3. With notation as in Hypothesis 1.7.1, if B is uniform, then (1.6.15.1) is
exact at the left and middle.

Proof. From Lemma 1.5.26, we see that on one hand, the criterion of Lemma 1.7.2 applies,
so (1.6.15.1) is exact in the middle; on the other hand, the middle and right columns in
(1.7.2.1) may be augmented to short exact sequences, so (1.6.15.1) is exact at the left. (To
obtain exactness at the left, one can also invoke Remark 1.5.25.) �

Proof of Theorem 1.2.13. By Remark 1.6.15, this reduces immediately to Lemma 1.7.3. �

In the strongly noetherian case, exactness at the middle is no issue, but we must do a bit of
work to check exactness at the left. Here we must essentially give Huber’s proof that rational
localization maps are flat in the strongly noetherian case [95, II.1], [96, Lemma 1.7.6]. We
warn the reader that [71, Lemma 4.2.5] is somewhat sketchy on this point.

Lemma 1.7.4. Suppose that A is strongly noetherian. With notation as in Hypothesis 1.7.1,
the maps B → B〈f

g
〉, B → B〈 g

f
〉 are flat.

Proof. By symmetry, we need only check the first claim. By Lemma 1.1.19, the map B[T ]→
B〈T 〉 is flat; we thus obtain a flat map

B =
B[T ]

(f − gT )
→ B〈T 〉

(f − gT )
= B

〈
f

g

〉
,

using Corollary 1.1.15 to make the last identification. �

Lemma 1.7.5. With notation as in Hypothesis 1.7.1, if the map B → B〈f
g
〉 ⊕B〈 g

f
〉 is flat,

then it is faithfully flat.

Proof. By [166, Tag 00HQ], it suffices to show that the image of the map

Spec

(
B

〈
f

g

〉
⊕B

〈
g

f

〉)
→ Spec(B)

includes every maximal ideal m of B. To see this, note that since m is necessarily closed
(see Remark 1.1.1), B/m is again a nonzero Huber ring and so has nonzero spectrum (by
Lemma 1.5.16); we can thus choose v ∈ Spa(B,B+) containing m in its kernel. The point
v must appear in the spectra of one of B〈f

g
〉 or B〈 g

f
〉; taking the kernel of the resulting

valuation gives a prime ideal of the corresponding ring which contracts to m. �

Lemma 1.7.6. Suppose that A is strongly noetherian. With notation as in Hypothesis 1.7.1,
(1.6.15.1) is exact at the left and middle.

Proof. By Corollary 1.1.15, every ideal of B〈T 〉 is closed; by Lemma 1.7.2, this means that
(1.6.15.1) is exact at the middle. To show exactness at the left, note that the map in question
is flat by Lemma 1.7.4, and hence faithfully flat by Lemma 1.7.5. �

Proof of Theorem 1.2.11. By Remark 1.6.15, this reduces immediately to Lemma 1.7.6. �

The following is proved in [85] assuming that A is Tate, but the argument generalizes
easily.
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Exercise 1.7.7. Suppose that A is uniform; f, g ∈ A generate the unit ideal; and A〈f
g
, g
f
〉 is

also uniform. Prove that A〈f
g
〉, A〈 g

f
〉 are uniform. (Hint: promote A to a Banach ring. Given

x ∈ A〈f
g
〉 such that x2 is “small”, produce y ∈ A such that y is “small’ in A〈 g

f
〉 and x− y is

“small” in A〈f
g
〉. Then bound α(y) for an arbitrary α ∈M(A).)

1.8. Proofs: acyclicity. We next turn to acyclicity of sheaves associated to finite projective
A-modules (Theorem 1.3.4). Throughout §1.8, continue to set notation as in Hypothesis 1.7.1.

Lemma 1.8.1. With notation as in Hypothesis 1.7.1, the map B〈f
g
〉 ⊕ B〈 g

f
〉 → B〈f

g
, g
f
〉 is

strict surjective, i.e., the sequence (1.6.15.1) is always strict exact at the right.

Proof. In the commutative diagram

B〈T 〉 ⊕B〈T−1〉 //

��

B〈T±〉

��

B
〈
f
g

〉
⊕B

〈
g
f

〉
// B
〈
f
g
, g
f

〉
both vertical arrows and the top horizontal arrow are strict surjections; this yields the claim.

�

Proof of Theorem 1.3.4. Since M is a direct summand of a finite free A-module, we may
assume without loss of generality that M = A. By Remark 1.6.15, this reduces immediately
to Lemma 1.8.1. �

To obtain acyclicity for M̃ for more general M , we must study the sequence (1.6.15.1) a
bit more closely. A key step is the following converse of sorts to Lemma 1.7.2.

Lemma 1.8.2. With notation as in Hypothesis 1.7.1, suppose that (1.6.15.1) is exact at the
left and middle (e.g., because A is sheafy). Then multiplication by f − gT defines injective
maps B〈T 〉 → B〈T 〉, B〈T±〉 → B〈T±〉 with closed image.

Proof. We treat the case of B〈T 〉, the case of B〈T±〉 being similar. We first argue that we
may check the claim after replacing B with each of B〈f

g
〉, B〈 g

f
〉, B〈f

g
, g
f
〉. Given these cases,

for x ∈ B〈T 〉, we may recover x from x(f − gT ) by doing so in each of B〈f
g
, T 〉 and B〈 g

f
, T 〉

and noting that the answers must agree in B〈f
g
, g
f
, T 〉. Since (1.6.15.1) is strict exact (by our

hypothesis plus Lemma 1.8.1 and Theorem 1.1.9), it follows that the map x(f − gT ) 7→ x is
continuous, as desired.

Now promote B to a Banach ring as per Remark 1.5.4, and let GrB denote the associated
graded ring (Definition 1.5.3), so that GrB〈T 〉 = (GrB)[T ] with T placed in degree 1.
By our initial reduction, we may assume that either g = 1 and |f | ≤ 1, or f = 1 and
|g| ≤ 1. (Namely, when passing from B to B〈f

g
〉 or B〈 g

f
〉, we replace f, g with f

g
, 1 or with

1, g
f
.) Consequently, we may assume that the image of g − fT in GrB〈T 〉 has the form

x = x0 + x1T with 1 ∈ {x0, x1}. It follows easily from this (by examining the effect of
multiplication by x on constant and leading coefficients; see also Exercise 1.8.5) that x is
not a zero-divisor in GrB〈T 〉. This in turn implies that multiplication by g− fT defines an
isometric (hence strict) inclusion of B〈T 〉 into itself, thus proving the claim. �
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Remark 1.8.3. Lemma 1.8.2 provides a key special case of Theorem 1.2.7: if either of the
ideals (T − f) or (1− fT ) in A〈T 〉 is not closed for some f ∈ A, then A is not sheafy. This
is precisely the mechanism of Mihara’s example [138, Proposition 3.14]; we have not checked
whether the same criterion applies directly to the example of Buzzard–Verberkmoes.

Remark 1.8.4. At this point, it is tempting to try to emulate the proof of [71, Lemma 4.2.5]
to show that the sequence (1.6.15.1), if it is exact, also splits in the category of topological
B-modules. However, this is not true in general; the proof of [71, Lemma 4.2.5] is corre-
spondingly incorrect, although the result stated there does turn out to be correct for other
reasons. A related phenomenon is that for R a ring and f ∈ R, in general the exact sequence

0→ R→ R

[
1

f

]
⊕R

[
1

1− f

]
→ R

[
1

f
,

1

1− f

]
→ 0

does not necessarily split in the category of A-modules.

We mention a purely algebraic fact related to the proof of Lemma 1.8.2.

Exercise 1.8.5. Let R be a ring. Let f ∈ R[T1, . . . , Tn] be a polynomial whose coefficients
generate the unit ideal in R. Prove that f is not a zero-divisor in R[T1, . . . , Tn].

1.9. Proofs: vector bundles and pseudocoherent sheaves. We finally establish the
local nature of sheafiness (Theorem 1.2.22), the base change property for pseudocoherent
modules (Theorem 1.4.14), the acyclicity of sheaves associated to pseudocoherent modules
(Theorem 1.4.16), the glueing theorems for vector bundles (Theorem 1.4.2) and pseudo-
coherent sheaves (Theorem 1.4.18), and corollaries (Theorem 1.2.7 and Theorem 1.4.20).
Throughout §1.9, continue to set notation as in Hypothesis 1.7.1; in order to address Theo-
rem 1.2.22, we refrain from globally assuming that A is sheafy.

In order to treat the two glueing theorems in parallel, we start with the base change and
acyclicity arguments. In the pseudocoherent case, we will temporarily work with a formally
different definition before reconciling it with the original one.

Definition 1.9.1. As in Remark 1.6.17, we say that a rational localization (A,A+) →
(B,B+) is nice if it occurs in a covering of Spa(A,A+) given by a composition of simple
Laurent and balanced coverings. Equivalently, B is obtained from A by repeatedly passing
from A to A〈f

g
〉 or A〈 g

f
〉 where g ∈ {1, 1− f}. We say that a rational subspace of X is nice

if it corresponds to a nice rational localization.
Let PCohnice

A be the category of pseudocoherent A-modules M such that for every nice
rational localization (A,A+) → (B,B+), M ⊗A B is complete for its natural topology as a
B-module.

Remark 1.9.2. We will use in a couple of places the fact that the analogue of the sequence
(1.6.15.1) with B, f, g replaced by B〈f

g
〉, f

g
, 1 is the sequence

0→ B

〈
f

g

〉
→ B

〈
f

g

〉
⊕B

〈
f

g
,
g

f

〉
→ B

〈
f

g
,
g

f

〉
→ 0,

which is trivially exact.

Lemma 1.9.3. With notation as in Hypothesis 1.7.1, suppose that g ∈ {1, 1 − f} and
(1.6.15.1) is exact (e.g., because A is sheafy). LetM be a B-module which is finitely presented
and complete for the natural topology. Then TorB1 (M,B〈 g

f
〉) = 0.
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Proof. As in Remark 1.6.17, we may use the equality B
〈

1−f
f

〉
= B

〈
1
f

〉
to reduce to the

case g = 1. By Lemma 1.1.18, we may identify M ⊗BB〈T 〉 with M〈T 〉. By Lemma 1.8.2, we
may identify B〈 1

f
〉 with B〈T 〉/(1−fT ). Now letMJT K be the set of formal sums

∑∞
n=0 xnT

n

with xn ∈M with no convergence condition on the sequence {xn}; on MJT K, multiplication
by 1 − fT has an inverse given by multiplication by 1 + fT + f 2T 2 + · · · . It follows that
multiplication by 1− fT on M〈T 〉 is injective, so TorB1 (M,B〈 1

f
〉) = 0 as desired. �

Lemma 1.9.4. With notation as in Hypothesis 1.7.1, suppose that g ∈ {1, 1 − f} and
(1.6.15.1) is exact. Let M be a finitely presented B-module such that for any nice rational
localization (B,B+)→ (C,C+), M ⊗B C is complete for its natural topology as a C-module.
Then TorB1 (M,B〈f

g
〉) = TorB1 (M,B〈f

g
, g
f
〉) = 0.

Proof. Let 0 → N → F → M → 0 be a short exact sequence of B-modules with F finite
free. (Note that even if M ∈ PCohB, we cannot yet invoke Remark 1.4.9 to assert that
N ∈ PCohB.) By Lemma 1.9.3, the sequence

0→ N ⊗B B
〈
g

f

〉
→ F ⊗B B

〈
g

f

〉
→M ⊗B B

〈
g

f

〉
→ 0

is exact. The module M ⊗B B〈 gf 〉 over B〈
g
f
〉 is again finitely presented and (by hypothesis)

complete for its natural topology. In light of Remark 1.9.2, we may apply Lemma 1.9.3 a
second time (replacing f, g with g, f if g = 1− f , or with 1, f−1 if g = 1) to see that

0→ N ⊗B B
〈
f

g
,
g

f

〉
→ F ⊗B B

〈
f

g
,
g

f

〉
→M ⊗B B

〈
f

g
,
g

f

〉
→ 0

is exact. This implies the equality TorB1 (M,B〈f
g
, g
f
〉) = 0; we may thus tensor (1.6.15.1) with

M to deduce that TorB1 (M,B〈f
g
〉) = 0. �

Corollary 1.9.5. Suppose that A is sheafy. Let M be a finitely presented A-module such that
for any nice rational localization (A,A+) → (B,B+), M ⊗A B is complete for the natural
topology. Then for any nice rational localization (A,A+)→ (B,B+), we have TorA1 (M,B) =
0.

Proof. This is immediate from Lemma 1.9.3 and Lemma 1.9.4. �

As a partial result, we now have a variant form of Theorem 1.4.14.

Corollary 1.9.6. Suppose that A is sheafy. Then for every (not necessarily nice) rational
localization (A,A+)→ (B,B+) and every nice rational localization (B,B+)→ (C,C+), base
extension defines an exact functor PCohnice

B → PCohnice
C .

Proof. This is immediate from Corollary 1.9.5. �

Lemma 1.9.7. With notation as in Hypothesis 1.7.1, suppose that g ∈ {1, 1 − f} and
(1.6.15.1) is exact. Let M be a finitely presented B-module such that for any nice rational
localization (B,B+)→ (C,C+), M ⊗B C is complete for its natural topology as a C-module.
Then tensoring (1.6.15.1) over B with M yields another exact sequence.

Proof. This is immediate from Lemma 1.9.4. �

This gives us a variant form of Theorem 1.4.16.
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Corollary 1.9.8. Suppose that A is sheafy and choose M ∈ PCohnice
A . Then M̃ is acyclic

on nice rational subspaces; that is, for any nice rational subspace U := Spa(B,B+) of X,

H0(U, M̃) = M ⊗A B, H i(U, M̃) = 0 (i > 0).

Proof. By Remark 1.6.15, this follows from Lemma 1.9.7. �

We now begin to work on glueing. The following lemma is essentially [117, Lemma 2.7.2];
compare [71, Lemma 4.5.3].

Lemma 1.9.9. With notation as in Hypothesis 1.7.1, there exists a neighborhood U of 0 in
B〈f

g
, g
f
〉 such that for every positive integer n, every matrix V ∈ GLn(B〈f

g
, g
f
〉) for which

V − 1 has entries in U can be factored as V1 · V2 with V1 ∈ GLn(B〈f
g
〉), V2 ∈ GLn(B〈 g

f
〉).

Proof. This is a direct consequence of Lemma 1.8.1 via a contraction mapping argument. �

The following lemma combines [117, Lemma 1.3.8, Lemma 2.7.4], together with some minor
modifications to work around the fact that we are not limiting ourselves to simple Laurent
coverings. (The relevant special feature of a Laurent covering is that the map B〈 1

f
〉 → B〈f, 1

f
〉

has dense image.)

Lemma 1.9.10. With notation as in Hypothesis 1.7.1, let M1,M2,M12 be finitely generated
modules over B〈f

g
〉, B〈 g

f
〉, B〈f

g
, g
f
〉, respectively, and let ψ1 : M1 ⊗B〈 f

g
〉 B〈

f
g
, g
f
〉 → M12,

ψ2 : M2 ⊗B〈 g
f
〉 B〈fg ,

g
f
〉 →M12 be isomorphisms.

(a) The map ψ : M1 ⊕M2 →M12 taking (v,w) to ψ1(v)− ψ2(w) is strict surjective.
(b) For M = ker(ψ), the induced maps

M ⊗B B
〈
f

g

〉
→M1, M ⊗B B

〈
g

f

〉
→M2

are strict surjective.

Proof. Let v1, . . . ,vn and w1, . . . ,wn be generating sets of M1 and M2, respectively, of the
same cardinality. We may then choose n × n matrices V and W over B〈f

g
, g
f
〉 such that

ψ2(wj) =
∑

i Vijψ1(vi) and ψ1(vj) =
∑

iWijψ2(wi).
Choose U as in Lemma 1.9.9. Since B〈f

g
〉[f−1] is dense in B〈f

g
, g
f
〉, we can choose a nonneg-

ative integer m and an n×n matrix W ′ over B〈 g
f
〉 so that V (f−mW ′−W ) has entries in U .

We may thus write 1 + V (f−mW ′ −W ) = X1X
−1
2 with X1 ∈ GLn(B〈f

g
〉), X2 ∈ GLn(B〈 g

f
〉).

We now define elements xj ∈M1 ⊕M2 by the formula

xj = (xj,1,xj,2) =

(∑
i

fm(X1)ijvi,
∑
i

(W ′X2)ijwi

)
(j = 1, . . . , n).

Then

ψ1(xj,1)− ψ2(xj,2) =
∑
i

(fmX1 − VW ′X2)ijψ1(vi) =
∑
i

fm((1− VW )X2)ijψ1(vi) = 0,

so xj ∈ M . Since X1 ∈ GLn(B〈f
g
〉), we deduce that the map M ⊗B B〈fg 〉 → M1 induces a

strict surjection onto fmM1.
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The induced map M ⊗B B〈fg ,
g
f
〉 → M12 is strict surjective (because f is invertible in

B〈f
g
, g
f
〉), so using Lemma 1.8.1 we obtain a strict surjection M ⊗B (B〈f

g
〉 ⊕ B〈 g

f
〉) → M12.

Since this map factors through ψ, we obtain (a).
For each v ∈M2, ψ2(v) lifts toM⊗B(B〈f

g
〉⊕B〈 g

f
〉) as above, so we can findw1 ∈M1,w2 ∈

M2 in the images of the base extension maps from M with ψ1(w1)− ψ2(w2) = ψ2(v). Then
(w1,v + w2) ∈ M , so both w2 and v + w2 are elements of M2 in the image of the base
extension map. This proves that M ⊗B B〈 gf 〉 → M2 is strict surjective; we may reverse the
roles of f and g to deduce (b). �

Lemma 1.9.11. With notation as in Lemma 1.9.10, suppose that (1.6.15.1) is exact and
that M1,M2,M12 are stably pseudocoherent modules over their respective base rings. Then
M is a pseudocoherent B-module.

Proof. By Lemma 1.9.10, we can choose a finite free B-module F and a (not necessarily
surjective) B-linear map F → M such that for F1, F2, F12 the respective base extensions of
F , the induced maps

F1 →M1, F2 →M2, F12 →M12

are surjective. Let N1, N2, N12 be the kernels of these maps and put N = ker(N1⊕N2 → N12);
by applying the snake lemma to the second and third columns in the diagram

(1.9.11.1) 0

��

0

��

0

��
0 // N //

��

N1 ⊕N2
//

��

N12
//

��

0

0 // F //

��

F1 ⊕ F2
//

��

F12
//

��

0

0 // M //

��

M1 ⊕M2
//

��

M12
//

��

0

0 0 0

we obtain the first column and its exactness (minus the dashed arrows). In particular, N =
ker(F →M).

By Remark 1.9.2 and Lemma 1.9.4, we have isomorphisms

N1 ⊗B〈 f
g
〉 B

〈
f

g
,
g

f

〉
∼= N12, N2 ⊗B〈 g

f
〉 B

〈
f

g
,
g

f

〉
∼= N12.

By the “two out of three” property of pseudocoherent modules (as in Remark 1.4.9), the
modules N1, N2, N12 again form an instance of the desired result; hence any general statement
we can make about M,M1,M2,M12 also applies to N,N1, N2, N12. This means that we may
apply Lemma 1.9.10 to see that the dashed arrows in the previous diagram are surjective.
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Also, in the diagram

N ⊗B B
〈
f
g

〉
//

��

F ⊗B B
〈
f
g

〉
//

��

M ⊗B B
〈
f
g

〉
//

��

0

0 // N1
// F1

// M1
// 0

with exact rows, we know from Lemma 1.9.10 that both outside vertical arrows are surjective.
Since the middle arrow is an isomorphism, we may apply the five lemma to obtain injectivity
of the right vertical arrow; this (and a similar argument with M1 replaced with M2) yields
that the maps

(1.9.11.2) M ⊗B B
〈
f

g

〉
→M1, M ⊗B B

〈
g

f

〉
→M2

are isomorphisms.
To prove that M is pseudocoherent, it will suffice to prove that for every positive integer

m, M admits a projective resolution in which the last m terms are finite projective modules.
This holds for m = 1 by Lemma 1.9.10 as above; however, given the claim for any given m,
it applies not only to M but also to N , which formally implies the claim about M for m+ 1.
We may thus conclude by induction on m. �

Lemma 1.9.12. With notation as in Hypothesis 1.7.1, the image of the map Spec(B〈f
g
〉 ⊕

B〈 g
f
〉)→ Spec(B) includes all maximal ideals.

Proof. By Remark 1.1.1 and Corollary 1.5.18, every maximal ideal m of B occurs as the
kernel of some valuation v. That valuation extends to one of B〈f

g
〉 or B〈 g

f
〉, and the kernel

of that extension is a prime ideal contracting to m. �

Lemma 1.9.13. With notation as in Hypothesis 1.7.1, suppose that A is sheafy.
(a) There is an exact functor

FPModB〈 f
g
〉×FPMod

B〈 fg ,
g
f
〉
FPModB〈 g

f
〉 → FPModB

given by taking equalizers. Moreover, the composition of this functor with the base
extension functor in the opposite direction is naturally isomorphic to the identity.

(b) There is an exact, fully faithful functor

PCohnice
B〈 f

g
〉×PCohnice

B〈 fg ,
g
f
〉
PCohnice

B〈 g
f
〉 → PCohnice

B

given by taking equalizers. Moreover, the composition of this functor with the base
extension functor in the opposite direction is well-defined (that is, for M ∈ PCohnice

B

in the essential image, we have M ⊗B B〈∗〉 ∈ PCohnice
B〈∗〉) and naturally isomorphic

to the identity.

Proof. To prove (b), set notation as in Lemma 1.9.11 and its proof; we know already that M
is pseudocoherent, and must prove that for any nice rational localization (B,B+)→ (C,C+),
M ⊗B C is complete for the natural topology. To this end, perform a base extension on the
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diagram (1.9.11.1) to get a new diagram

0

��

0

��

0

��
0 // NC

//

��

N1,C ⊕N2,C
//

��

N12,C
//

��

0

0 // FC //

��

F1,C ⊕ F2,C
//

��

F12,C
//

��

0

0 // MC
//

��

M1,C ⊕M2,C
//

��

M12,C
//

��

0

0 0 0

with exact rows and columns excluding the dashed arrows; here we are using sheafiness in
the second row and Corollary 1.9.6 in the second and third column. By diagram chasing, we
obtain exactness in the third row; consequently,MC = M⊗BC is the kernel of a strict surjec-
tive morphism, and so is complete for the subspace topology and hence (by Corollary 1.1.12)
for the natural topology.

To deduce (a), we may first apply (b) to obtain a module M ∈ PCohnice
B . To check that

M ∈ FPModB, note that M is finitely presented and Mm is a finite free Bm-module for
every maximal ideal m of B (by Lemma 1.9.12); by [166, Tag 00NX], M is a finite projective
B-module. �

For vector bundles, this glueing is all we need.

Proof of Theorem 1.4.2. By Remark 1.6.16, this reduces immediately to the statement that
with notation as in Hypothesis 1.7.1,

FPModB → FPModB〈 f
g
〉×FPMod

B〈 fg ,
g
f
〉
FPModB〈 g

f
〉

is an exact equivalence of categories. This functor is fully faithful by Theorem 1.3.4, exact
trivially, and essentially surjective by Lemma 1.9.13(a). �

For pseudocoherent sheaves, we must work harder to get rid of the distinction between
PCoh∗ and PCohnice

∗ .

Lemma 1.9.14. The nice rational subspaces form a neighborhood basis of X.

Proof. Since this is a local assertion on X, we may assume at once that A is Tate. In this
case, we argue as in Remark 1.6.14: given a rational subspace U = X(f1,...,fn

g
), if we choose

a topologically nilpotent x of A, then for every sufficiently large positive integer m we have
U ⊆ X( 1

x−mg
). We may thus reduce to the case where g is invertible in A, at which point U

becomes a nice rational subspace: it is the intersection of X(fig
−1

1
) for i = 1, . . . , n. �

Definition 1.9.15. Suppose that A is sheafy. For M ∈ PCohnice
A , let M̃nice denote the

sheafification of the presheaf M̃ . By Corollary 1.9.8, the values of M̃ and M̃nice coincide on
any nice rational subspace. Let PCohnice

X denote the category of sheaves which are locally of
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the form M̃nice; there is an obvious functor PCohnice
A → PCohnice

X taking M to M̃nice. For
any (not necessarily nice) rational subspace U = Spa(B,B+) of X, Lemma 1.9.14 implies
that U admits a neighborhood basis consisting of nice rational subspaces of X; consequently,
restriction of sheaves defines a functor PCohnice

X → PCohnice
Y .

We obtain a “nice” analogue of Theorem 1.4.18.

Lemma 1.9.16. If A is sheafy, then the functor PCohnice
A → PCohnice

X taking M to M̃nice

is an exact equivalence of categories, with quasi-inverse taking F to F(X).

Proof. By Remark 1.6.16, this reduces immediately to the statement that with notation as
in Hypothesis 1.7.1 with g ∈ {1, 1− f}, there is an exact equivalence of categories

(1.9.16.1) PCohnice
B → PCohnice

B〈 f
g
〉×PCohnice

B〈 fg ,
g
f
〉
PCohnice

B〈 g
f
〉 .

To begin with, by Corollary 1.9.6, we have exact base extension functors from PCohnice
B to

each of PCohnice
B〈 f

g
〉, PCohnice

B〈 g
f
〉, PCohnice

B〈 f
g
, g
f
〉. This yields an exact functor as in (1.9.16.1); this

functor is fully faithful by Lemma 1.9.7 and essentially surjective by Lemma 1.9.13(b). �

Lemma 1.9.17. If A is sheafy, then for any (not necessarily nice) rational localization
(A,A+) → (B,B+), base extension from A to B defines an exact functor PCohnice

A →
PCohnice

B .

Proof. Put U := Spa(B,B+), choose M ∈ PCohnice
A , choose a surjective morphism F →M

with F a finite free A-module, and put N := ker(F → M); note that N ∈ PCohnice
A , so as

in the proof of Lemma 1.9.13 every statement we prove about M will automatically hold for
N also. By Lemma 1.9.16, the exact sequence

0→ N → F →M → 0

corresponds to an exact sequence of sheaves on X

0→ Ñnice → F̃ nice → M̃nice → 0

which we may then restrict to U . By Corollary 1.9.8, taking sections over U yields an exact
sequence of B-modules; that is, in the commuting diagram

N ⊗A B //

��

F ⊗A B //

��

M ⊗A B //

��

0

0 // H0(U, Ñnice) // H0(U, F̃ nice) // H0(U, M̃nice) // 0

the rows are exact. By Theorem 1.3.4, the middle vertical arrow is an isomorphism, so the
right vertical arrow is surjective. The same is then true with M replaced by N , that is, the
left vertical arrow is surjective; by the five lemma, the right vertical arrow is an isomorphism.
That is, the base extension functor can be written as a composite of exact functors by going
around the 2-commuting diagram

PCohnice
A

//

��

PCohnice
B

��

PCohnice
X

// PCohnice
U
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in which the bottom horizontal arrow is exact, while the vertical arrows are exact equivalences
by Lemma 1.9.16. This proves the claim. �

At last, we may now eliminate the “nice” qualifier and establish the results we really want.

Corollary 1.9.18. The inclusion PCohA → PCohnice
A of categories is an equality.

Proof. By Lemma 1.9.17, for everyM ∈ PCohnice
A and every rational localization (A,A+)→

(B,B+), M ⊗A B ∈ PCohnice
B ; in particular, M ⊗A B is complete for the natural topology.

Since M is already assumed to be pseudocoherent, it is now stably pseudocoherent. �

Proof of Theorem 1.4.14. This follows by combining Lemma 1.9.17 with Corollary 1.9.18.
�

Proof of Theorem 1.4.16. We must check that for M ∈ PCohA, (A,A+) → (B,B+) a ra-
tional localization, and U := Spa(B,B+), we have H0(U, M̃) = M ⊗A B and H i(U, M̃) = 0
for i > 0. By Theorem 1.4.14, we have M ⊗A B ∈ PCohB. Since M̃nice is defined as the
sheafification of M̃ , by convention it has the same cohomology as M̃ . From the proof of
Lemma 1.9.17, we see that H0(U, M̃) = M ⊗A B. Since M̃ |B ∈ PCohU , Corollary 1.9.8
implies that H i(U, M̃) = 0 for i > 0. �

Proof of Theorem 1.4.18. By Corollary 1.9.18,PCohA = PCohnice
A andPCohX = PCohnice

X .
Consequently, the desired result follows immediately from Lemma 1.9.16,. �

Remark 1.9.19. One source of inspiration for our glueing arguments is the Beauville–Laszlo
theorem [11], [166, Tag 0BNI], [14], which asserts (among other things) that if R is a ring,
f ∈ R is not a zero-divisor, and R̂ is the f -adic completion of R, then the functor

FPModR → FPModRf
×FPMod

R̂f
FPModR̂

is an equivalence of categories. See [117, Remark 2.7.9] for further explanation of how this
result can be derived in the style of the arguments given above.

Another similarity that should be noted is that the Beauville–Laszlo theorem was origi-
nally introduced in order to construct and study affine Grassmannians associated to algebraic
groups in the context of geometric Langlands. The glueing results discussed here are them-
selves relevant for the construction and study of certain mixed-characteristic analogues of
affine Grassmannians, to be introduced in a later lecture (§4.6).

Remark 1.9.20. One difficulty in applying the previous results is the fact that if A is sheafy,
it does not follow that A〈T1, . . . , Tn〉 is sheafy. It may be useful to focus attention on rings
for which this does hold (see Definition A.5.1); here, we instead establish some variants of
the previous results incorporating extra series variables.

Definition 1.9.21. For n a nonnegative integer, let O〈T1, . . . , Tn〉 be the presheaf on X
defined as follows: for U ⊆ X open, let O〈T1, . . . , Tn〉 be the inverse limit of B〈T1, . . . , Tn〉
over all rational localizations (A,A+) → (B,B+) with Spa(B,B+) ⊆ U . By Theorem 1.3.4
and Lemma 1.6.3, O〈T1, . . . , Tn〉 is an acyclic sheaf.

Define the categoryPCohA〈T1, . . . , Tn〉 to be the category of pseudocoherentA〈T1, . . . , Tn〉-
modules M such that for each rational localization (A,A+) → (B,B+), M ⊗A〈T1,...,Tn〉
B〈T1, . . . , Tn〉 is complete for its natural topology as a B〈T1, . . . , Tn〉-module. (By con-
trast, the definition of PCohA〈T1,...,Tn〉 is quantified over rational localizations of the ring

42



A〈T1, . . . , Tn〉, and hence is more restrictive.) For such a module, let M̃ denote the associ-
ated presheaf on X (whose definition we leave to the reader).

Theorem 1.9.22. Suppose that A is sheafy and let n be a nonnegative integer.
(a) For any rational localization (A,A+) → (B,B+), base extension defines an exact

functor PCohA〈T1, . . . , Tn〉 → PCohB〈T1, . . . , Tn〉.
(b) For any M ∈ PCohA〈T1, . . . , Tn〉, the presheaf M̃ on X is an acyclic sheaf.
(c) The functor M 7→ M̃ defines an equivalence between PCohA〈T1, . . . , Tn〉 and the

category of sheaves of OX-modules locally of this form, with a quasi-inverse given by
the global sections functor.

Proof. This is a straightforward variation on the proofs of Theorem 1.4.14, Theorem 1.4.16,
and Theorem 1.4.18. We leave the details to the reader. �

With Theorem 1.9.22 in hand, we may complete the proof of Theorem 1.2.7.

Lemma 1.9.23. Suppose that A is sheafy. Then for any rational localization (A,A+) →
(B,B+) and any surjective homomorphism h : A〈T1, . . . , Tn〉 → B, we have B ∈ PCohA〈T1, . . . , Tn〉.

Proof. Choose parameters f1, . . . , fm, g defining the rational localization. (Note that we are
not assuming that m = n or that h is the surjection induced by these parameters.) By
Theorem 1.9.22, we may prove the claim locally on X; using the standard rational covering
defined by f1, . . . , fm, g, we reduce to the situation where one of f1, . . . , fm, g is itself a unit.
In this case (A,A+) → (B,B+) factors as a composition of rational localizations, each of
which occurs in a simple Laurent covering:

• if g is a unit, then the rational subspace is defined by the conditions v(f1/g) ≤
1, . . . , v(fn/g) ≤ 1;
• if f1 is a unit, then after imposing the condition v(g/f1) ≥ 1, g becomes a unit and
we may continue as in the previous case.

We are thus reduced to checking the claim in case m = 1 and (f1, g) ∈ {(f, 1), (1, f)}
for some f ∈ A. In these cases, we first identify B with the quotient of A〈U〉 generated by
the closure of the ideal I generated by U − f or 1 − fU , respectively, and check that B ∈
PCohA〈U〉. By Lemma 1.8.2, multiplication by U−f or 1−fU on A〈U〉 is a strict inclusion,
so B is pseudocoherent as an A〈U〉-module. By the same token, for any rational localization
(A,A+) → (C,C+), (B,B+) → (B⊗̂AC, (B⊗̂AC)+) is the corresponding localization of
(B,B+), so B⊗̂AC is the quotient of C〈U〉 by the principal ideal generated by either f − U
or 1− fU . In particular, this quotient equals B⊗A〈U〉C〈U〉, so the latter is complete for the
natural topology. We deduce that B ∈ PCohA〈U〉.

We finally check the claim about the original h (still assuming that m = 1 and (f1, g) ∈
{(f, 1), (1, f)}). Choose lifts y1, . . . , yn of g(T1), . . . , g(Tn) to A〈U〉. By considering the mor-
phism A〈T1, . . . , Tn, U〉 → A〈U〉 taking Ti to yi, we have A〈U〉 ∈ PCohA〈T1, . . . , Tn, U〉 and
hence B ∈ PCohA〈T1, . . . , Tn, U〉. Now choose a lift z to A〈T1, . . . , Tn〉 of the image of U in
B; we may then view A〈T1, . . . , Tn〉 as a quotient of A〈T1, . . . , Tn, U〉 via the map U 7→ z,
and then conclude that B ∈ PCohA〈T1, . . . , Tn〉. �

Proof of Theorem 1.2.22. There is no harm in refining the covering V; by Lemma 1.6.12, we
may reduce to the case where V is the simple binary rational covering generated by some
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f, g ∈ A. By hypothesis, the sequence

0→ Ã→ A

〈
f

g

〉
⊕ A

〈
g

f

〉
→ A

〈
f

g
,
g

f

〉
→ 0

is strict exact, as then is

0→ Ã〈T 〉 → A

〈
f

g
, T

〉
⊕ A

〈
g

f
, T

〉
→ A

〈
f

g
,
g

f
, T

〉
→ 0.

Using Lemma 1.8.2, we obtain a commutative diagram

0

��

0

��

0

��

0 // Ã〈T 〉 //

��

A
〈
f
g
, T
〉
⊕ A

〈
g
f
, T
〉

//

×g−fT
��

A
〈
f
g
, g
f
, T
〉

//

×g−fT
��

0

0 // Ã〈T 〉 //

��

A
〈
f
g
, T
〉
⊕ A

〈
g
f
, T
〉

//

��

A
〈
f
g
, g
f
, T
〉

//

��

0

0 // Ã
〈
f
g

〉
//

��

A
〈
f
g

〉
⊕ A

〈
f
g
, g
f

〉
//

��

A
〈
f
g
, g
f

〉
//

��

0

0 0 0

in which the first and second rows are exact, the second and third columns are exact, and the
left column is exact at the top and bottom (but not a priori in the middle). By diagram chas-
ing, the third row is exact. From this (and the analogous argument with f, g interchanged),
we obtain natural isomorphisms

A

〈
f

g

〉
∼= Ã

〈
f

g

〉
, A

〈
g

f

〉
∼= Ã

〈
g

f

〉
, A

〈
f

g
,
g

f

〉
∼= Ã

〈
f

g
,
g

f

〉
;

from this we deduce (a). Note that we cannot say that any rational subspace of Spa(Ã, Ã+)
arises by pullback from Spa(A,A+), since such a subspace is defined by parameters in Ã
which we cannot immediately replace with parameters in A.

In light of the previous arguments, to finish the proof of both (a) and (b), it now suf-
fices to check (b) in the case where Ã = A. To this end, let (A,A+) → (B,B+) be the
rational localization defined by the parameters h1, . . . , hn, k ∈ A, and identify B with the
quotient of A〈T1, . . . , Tn〉 by the closure of the ideal generated by kT1 − h1, . . . , kTn − hn.
By Lemma 1.9.23, for each nonempty subset ∗ of {f

g
, g
f
}, we obtain an exact sequence in

PCohA〈∗〉〈T1, . . . , Tn〉 of the form

(1.9.23.1) A〈∗, T1, . . . , Tn〉n → A〈∗, T1, . . . , Tn〉 → B〈∗〉 → 0

in which the first map takes the generators to kT1 − h1, . . . , kTn − hn.
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Although we do not presently know that either A or A〈T1, . . . , Tn〉 is sheafy, we do have
the exact sequence

0→ A〈T1, . . . , Tn〉 → A

〈
f

g
, T1, . . . , Tn

〉
⊕A

〈
g

f
, T1, . . . , Tn

〉
→ A

〈
f

g
,
g

f
, T1, . . . , Tn

〉
→ 0.

We may thus apply Lemma 1.9.11 to establish that B is a pseudocoherent A〈T1, . . . , Tn〉-
module, and in particular finitely presented; hence the closure of the ideal of A〈T1, . . . , Tn〉
generated by kT1 − h1, . . . , kTn − hn is finitely generated. By Corollary 1.1.14, the ideal
(kT1 − h1, . . . , kTn − hn) is itself closed; it follows that

B = ker

(
B

〈
f

g

〉
⊕B

〈
g

f

〉
→ B

〈
f

g
,
g

f

〉)
= H0(Spa(B,B+),O),

as desired. �

Lemma 1.9.24. Let I be a (not necessarily closed) ideal of A. For any f1, . . . , fn ∈ A which
generate the unit ideal in A/I, there exists a rational localization (A,A+) → (B,B+) such
that Spa(B,B+) contains the zero locus of I on Spa(A,A+) and f1, . . . , fn generate the unit
ideal in B.

Proof. By hypothesis, there exist b1, . . . , bn ∈ A such that a1b1 + · · ·+anbn ≡ 1 (mod I). The
rational localization corresponding to the subspace {v ∈ Spa(A,A+) : v(a1b1 + · · ·+ anbn) ≥
1} has the desired property. �

Lemma 1.9.25. Let I be a closed ideal of A such that A/I ∈ PCohA. Let (A,A+) →
(B,B+) be a rational localization.

(a) Put A := A/I and let A+ be the integral closure of the image of A+ in A. Let
(A,A

+
) → (B,B

+
) be the base extension of the given rational localization. Then

B ∼= B/IB.
(b) Suppose that Spa(B,B+) contains the zero locus of I on Spa(A,A+). Then A/IA ∼=

B/IB.

Proof. By Theorem 1.4.14, the sequence

0→ I → A→ A/I → 0

remains exact upon tensoring over A with B. In particular, IB ∼= I⊗B ∈ PCohB is a closed
ideal, so B/IB coincides with the completed tensor product B⊗̂AA/I; this proves (a). From
(a), (b) is obvious. �

Proof of Theorem 1.4.20. If A/I is sheafy, then Lemma 1.9.23 immediately implies that
A/I ∈ PCohA. We thus concentrate on the reverse implication.

Suppose that A/I ∈ PCohA; this implies I ∈ PCohA. Put A := A/I and let A+ be the
integral closure of the image of A+ in A. By Remark 1.6.15, it suffices to check that for any
rational localization (A,A

+
)→ (B,B

+
) and any f, g ∈ B with g ∈ {1, 1− f}, the sequence

0→ B → B

〈
f

g

〉
⊕B

〈
g

f

〉
→ B

〈
f

g
,
g

f

〉
→ 0

is exact. By Lemma 1.9.25, there is no harm in replacing (A,A+) with the rational localization
corresponding to a subspace containing the zero locus of I on X. By Lemma 1.9.24, we may
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thus ensure that some set of parameters in A defining the rational localization (A,A
+

) →
(B,B

+
) lift to elements of A which generate the unit ideal. By Lemma 1.9.25 again, there

is no harm in replacing (A,A+) by the corresponding rational localization; that is, we may
assume that (A,A

+
) = (B,B

+
).

Lift f, g to f, g ∈ A with g ∈ {1, 1− f}. In the diagram

0

��

0

��

0

��

0 // IA //

��

IA
〈
f
g

〉
⊕ IA

〈
g
f

〉
//

��

IA
〈
f
g
, g
f

〉
//

��

0

0 // A //

��

A
〈
f
g

〉
⊕ A

〈
g
f

〉
//

��

A
〈
f
g
, g
f

〉
//

��

0

0 // A //

��

A
〈
f
g

〉
⊕ A

〈
g

f

〉
//

��

A
〈
f
g
, g
f

〉
//

��

0

0 0 0

the second row is exact by the sheafiness of A, the first row is exact by Theorem 1.4.14,
the first column is exact by definition, and the second and third columns are exact by
Lemma 1.9.25. This implies exactness of the third row, as needed. �

Exercise 1.9.26. Suppose that A is sheafy. Let (A,A+) → (B,B+) be the rational local-
ization defined by the parameters f1, . . . , fn, g. Show that the Koszul complex corresponding
to the elements f1 − gT1, . . . , fn − gTn in A〈T1, . . . , Tn〉 is quasi-isomorphic to the singleton
complex A〈f1

g
, . . . , fn

g
〉. (Compare the case n = 1 with Lemma 1.8.2.)

1.10. Remarks on the étale topology. As promised at the end of §1.4, we include some
remarks about the étale topology on X.

Lemma 1.10.1. Suppose that A is uniform. Then every finite étale A-algebra is uniform
for its natural topology as an A-module.

Proof. In the case where A is Tate, this is [117, Proposition 2.8.16]. The analytic case can
be treated similarly, but can also be handled as follows. Extend A to a Huber pair (A,A+),
let B be a finite étale A-algebra of constant rank (it suffices to treat this case), and let B+

be the integral closure of A+ in B. Since B is finitely generated as an A-module and the
unit ideal of A is generated by topologically nilpotent elements, we can find b1, . . . , bn ∈ B+

which generate B as an A-module. We now see B+ is contained in the set

{b ∈ B : TraceB/A(bb1), . . . ,TraceB/A(bbn) ∈ A+},
which is bounded (because the trace pairing is nondegenerate); hence B is uniform. �

Remark 1.10.2. Let B be a finite étale A-algebra and let B+ be the integral closure of A+ in
B. If A is strongly noetherian, then so is B, so there are no technical issues with considering
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the étale site of X. On the other hand, if A is only sheafy, or even stably uniform, then
we cannot immediately infer the same about B: we have the sheaf axiom for coverings of
Spa(B,B+) arising by pullback from X, but any covering that separates points within some
fiber of the projection Spa(B,B+)→ X will fail to be refined by such a covering. (That said,
we do not have a counterexample in mind.)

In light of the previous remark, we make the following hypothesis.

Hypothesis 1.10.3. For the remainder of §1.10, let Xet be the site whose morphisms are
compositions of rational localizations and finite étale morphisms. (Note that this gives the
“right” definition of the étale site for analytic adic spaces, but not for schemes.) Assume that
Xet admits a basis B closed under formation of rational localizations and finite étale covers,
and consisting of subspaces of the form Spa(B,B+) where B is sheafy. For example, this
hypothesis is satisfied if A is perfectoid, or even sousperfectoid (see Remark 1.2.19).

For the étale topology, one has the following analogue of Lemma 1.6.18; however, the proof
is somewhat less straightforward, and uses a method introduced by de Jong–van der Put [37,
Proposition 3.2.2].

Lemma 1.10.4. Let Pet be the collection7 of pairs (U,V) where U ∈ B and V is a finite
covering of U in Xet by elements of B. Suppose that P ⊆ Pet satisfies the following conditions.

(i) Locality: if (U,V) admits a refinement in P, then (U,V) ∈ P.
(ii) Transitivity: Any composition of coverings in P is in P.
(iii) Every standard binary rational covering is in P.
(iv) Every finite étale surjective morphism, viewed as a covering, is in P.

Then P = Pet.

Proof. See [117, Proposition 8.2.20]. �

Remark 1.10.5. Using Lemma 1.10.4, it is straightforward to extend Theorems 1.3.4, and
1.4.2 to Xet. One can also extend 1.4.14, 1.4.16, and 1.4.18 to Xet provided that one modifies
the definition of a stably pseudocoherent module to quantify over étale localizations rather
than rational localizations. We leave the details to the reader (or see [118, §2.5]).

1.11. Preadic spaces. We end with a remark about how to formally build “spaces” out of
Huber pairs even when they are not sheafy. This discussion is taken from [161, §2], although
our terminology8 instead follows [117, §8.2]. (To keep within our global context, we build
only analytic preadic spaces here.)

Definition 1.11.1. For C a category equipped with a Grothendieck topology (so in particular
admitting fiber products), a sheaf on C is by definition a contravariant functor F from C to
some target category satisfying the sheaf axiom: for {Ui → X}i a covering in C, the sequence

F (X)→
∏
i

F (Ui)⇒
∏
i,j

F (Ui ×X Uj)

is an equalizer.

7This is not a set in general, but a proper class.
8In [161], what we call preadic spaces and adic spaces are called adic spaces and honest adic spaces,

respectively. We prefer to leave the term adic spaces with the original meaning specified by Huber.
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We say that C is subcanonical if for each X ∈ C, the representable functor hX : Y 7→
HomC(Y,X) is a sheaf. For example, the Zariski topology on schemes is subcanonical: this
reduces immediately to the corresponding statement for affine schemes, which asserts that
if R and S are rings and f1, . . . , fn ∈ R generate the unit ideal in R, then the diagram

Hom(S,R)→
∏
i

Hom(S,Rfi)⇒
∏
i,j

Hom(S,Rfifj)

is an equalizer; this follows from the sheaf axiom for the structure sheaf. By the same
reasoning, the étale, fppf, and fpqc topologies on the category of schemes are subcanonical.

Similarly, if C is a subcategory of the category of adic spaces admitting fiber products
(e.g., locally noetherian spaces, or perfectoid spaces), the analytic topology on C (i.e., the
site coming from the underlying topology on underlying spaces) is subcanonical. By contrast,
the analytic topology on the full category of Huber pairs is not subcanonical.

Definition 1.11.2. Let C be the opposite category of (analytic but not necessarily sheafy)
Huber pairs, equipped with the analytic topology. Let C∼ be the associated topos. For
(A,A+) ∈ C, let S̃pa(A,A+) ∈ C∼ be the sheafification of the representable functor on C
defined by (A,A+).

By an open immersion in C∼, we will mean a morphism f : F → G such that for every
(A,A+) ∈ C and every morphism S̃pa(A,A+) → G in C∼, there is an open subset U of
Spa(A,A+) such that

F ×G S̃pa(A,A+) = lim−→
V⊆U,V rational

S̃pa(OSpa(A,A+)(V ),O+
Spa(A,A+)(V )).

A preadic9 space, or more precisely an analytic preadic space, is an object F ∈ C∼ such that

F = lim−→
S̃pa(A,A+)→F open

S̃pa(A,A+).

The obvious functor from analytic adic spaces to analytic preadic spaces is a full embedding.
A morphism f : F → G is finite étale if for every (A,A+) ∈ C and every morphism

S̃pa(A,A+) → G in C∼, we have F ×G S̃pa(A,A+) ∼= S̃pa(B,B+) for some finite étale
morphism (A,A+) → (B,B+). Using finite étale morphisms and open immersions, we may
define the etale topology on analytic preadic spaces.

Remark 1.11.3. Similar sheaf-theoretic considerations give rise to other types of objects
that one might think of as analytic analogues of algebraic spaces (or more generally algebraic
stacks). Notably, they underlie the construction of diamonds, which are introduced in [177,
Lecture 3] and used in our subsequent lectures (see Definition 4.3.1 and beyond).

9Or pre-adic space if you prefer to hyphenate prefixes.
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2. Perfectoid rings and spaces

In this lecture, we define perfectoid rings and spaces, picking up from the discussion
of perfectoid fields in [177, Lecture 2]. As for fields, there is a “tilting” construction that
converts these spaces into related objects in characteristic p; however, this time the “Galois”
component of the tilting correspondence is augmented by a “spatial” component.

As in the first lecture, we state all of the main results first, then return to the proofs. Along
the way, we attempt to lay flat some of the tangled history10 surrounding these results. (See
also the introduction of [117] for a further comparison of that paper with [156].)

Hereafter, we fix a prime number p and consider only Huber rings in which p is topologically
nilpotent.

2.1. Perfectoid rings and pairs. We now define perfectoid rings and pairs, postponing
some proofs for the time being.

Definition 2.1.1. Let (A,A+) be a uniform analytic Huber pair; by uniformity, A+ is a ring
of definition of A. We say (A,A+) is perfectoid if there exists an ideal of definition I ⊆ A+

such that p ∈ Ip and ϕ : A+/I → A+/Ip is surjective (but not necessarily injective; see
Remark 2.3.16). This turns out to depend only on A (Corollary 2.3.10); we may thus say
also that A is a perfectoid ring.

Example 2.1.2. Recall that a ring A of characteristic p is perfect if its absolute Frobenius
map ϕ is a bijection; any such ring is reduced. It is a basic result of abstract algebra that a
field is perfect in the sense of Galois theory (i.e., every finite extension is separable) if and
only if either it is of characteristic 0, or it is of characteristic p and perfect in the present
sense.

Let (A,A+) be an analytic Huber pair of characteristic p. If A is uniform, then (A,A+) is
perfectoid if and only if A is perfect: if A is perfect, then A+ must also be perfect because it
is integrally closed in A.

In addition, if A is a perfect Huber ring of characteristic p, then A is automatically uniform
and hence a perfectoid ring. To see this, note that A can be written as the quotient of a
perfect uniform Huber ring, such as the completed perfect closure of a polynomial ring over
Fp, then apply Corollary 2.4.5. (A direct argument using the open mapping theorem is also
possible.)

Example 2.1.3. Any algebraically closed nonarchimedean field is a perfectoid ring. More
generally, recall that a perfectoid field is defined as a nonarchimedean field F which is not
discretely valued for which ϕ : oF/(p) → oF/(p) is surjective. If F is a perfectoid field,
then (F, oF ) is a perfectoid Huber pair; this is obvious in characteristic p (because F is then
perfect), and otherwise we may take I = (µ) for any topologically nilpotent element µ such
that µp divides p in oF (which exists because F is not discretely valued). Conversely, if A
is a perfectoid ring which is a field, then A is a perfectoid field; see Corollary 2.3.11 and
Theorem 2.9.1.

10I am reminded here of a famous quote of David Mumford [140, Preface]: “When I first started doing
research in algebraic geometry, I thought the subject attractive... because it was a small, quiet field where a
dozen people did not leap on each new idea the minute it became current.”
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Example 2.1.4. Let (A,A+) be any perfectoid Huber pair (e.g., (F, oF ) for F a perfectoid
field as in Example 2.1.3). Then for every nonnegative integer n,

(A〈T p
−∞

1 , . . . , T p
−∞

n 〉, A+〈T p
−∞

1 , . . . , T p
−∞

n 〉)

and
(A〈T±p

−∞

1 , . . . , T±p
−∞

n 〉, A+〈T±p
−∞

1 , . . . , T±p
−∞

n 〉)
are also perfectoid Huber pairs.

Remark 2.1.5. If (A,A+) is perfectoid, then ϕ : A+/((p) + I)→ A+/((p) + Ip) is surjective
for any ideal of definition I as in Definition 2.1.1. By Lemma 2.7.4, the same is true for any
ideal of definition I whatsoever. In particular, the criterion of Definition 2.1.1 is satisfied
for every ideal of definition I for which p ∈ Ip. However, the existence of such an ideal
of definition is a genuine condition; for instance, it precludes the case (Qp,Zp), for which
ϕ : A+/((p) + I)→ A+/((p) + Ip) is surjective for any ideal of definition I.

Note that the previous paragraph does not immediately imply that ϕ : A+/(p)→ A+/(p)
is surjective. However, this will follow from the tilting correspondence (Theorem 2.3.9); see
Remark 2.3.12.

Remark 2.1.6. Note that for A a perfectoid ring, the ring A〈T p
−∞

1 , . . . , T p
−∞

n 〉 of Exam-
ple 2.1.4 is evidently not noetherian: the ideal (T p

−n

1 : n = 0, 1, . . . ) is not finitely generated.
In fact, perfectoid rings can never be noetherian except in the trivial case where they are
finite direct sums of perfectoid fields; see Corollary 2.9.3.

This means that we cannot hope to use noetherian properties to show that perfectoid
rings are sheafy. Instead, we will have to show that they are stably uniform, by establishing
the preservation of the perfectoid property under rational localizations using the tilting
construction (Corollary 2.5.4).

Remark 2.1.7. For (A,A+) a perfectoid ring, I an ideal of definition as in Definition 2.1.1,
and (A,A+) → (B,B+) a morphism of uniform Huber pairs, the pair (B,B+) is perfectoid
if and only if ϕ : B+/IB+ → B+/IpB+ is surjective. This is a consequence of Remark 2.1.5,
which allows us to use IB+ as an ideal of definition to check the perfectoid condition.

We record some historical aspects of the definition of perfectoid fields and rings.

Remark 2.1.8. The term perfectoid was introduced by Scholze [156], but various aspects
of the general concept had appeared several times before then. Here we report on these
appearances.

The term perfectoid field was introduced by Scholze in [156]. A similar definition was given
independently11 by Kedlaya in [110] and incorporated into the work of Kedlaya–Liu [117];
while much of the work on [117] predates the appearance of [156], some terminology from
the latter was adapted in the published version of the former. See Remark 2.5.13 for more
details. It was subsequently discovered that Matignon–Reversat [137] had introduced the
same concept in 1984 as a hyperperfect field (corps hyperparfait), but the importance of this
development seems to have gone unnoticed at the time.

11The paper [110] was originally written as a supplement to the lecture notes from the 2009 Clay Mathe-
matics Institute summer school on p-adic Hodge theory. As of this writing, those notes remain unpublished.
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Some examples of perfectoid rings which are not fields appear in the hypothesis of the
almost purity theorem of Faltings [55, Theorem 3.1], [57, Theorem 4]. These examples served
as a key motivation for the general construction.

In [30, §5], Colmez introduces the concept of a sympathetic algebra (algèbre sympathique),
which in our terminology is a uniform connected Banach algebra A over an algebraically
closed perfectoid field in which every element of 1 + A◦◦ has a p-th root; any such ring
is perfectoid. He then uses sympathetic algebras to define what are commonly known as
Banach-Colmez spaces, which are discussed in [177, Lecture 4] and used in our student
project.

The term perfectoid ring was introduced by Scholze [156] to refer to a perfectoid ring
in the present sense over an arbitrary perfectoid field (of characteristic either 0 or p). The
concept of a perfectoid ring over Qp was introduced independently by Kedlaya–Liu [117],
with terminology adapted from [156]; some alternate characterizations of perfectoid rings
over Qp, phrased in terms of Witt vectors, can be found in [33].

On the characteristic p side, Kedlaya–Liu consider perfect uniform Banach Fp-algebras,
which in the present terminology are exactly the perfectoid rings which are Tate and of
characteristic p. Note that (by analogy with Definition 1.1.2) any such ring A is an algebra
over the completed perfect closure of Fp(($)) for any pseudouniformizer $ ∈ A, and hence
is a perfectoid ring in the sense of [156]. Moreover, the word uniform is redundant, as
any perfect Banach ring A of characteristic p is automatically uniform. (Uniformity at the
level of Huber rings follows from Example 2.1.2; since A is necessarily an algebra over a
nonarchimedean field, Exercise 1.5.13 then implies uniformity at the level of Banach rings.)

In his Bourbaki seminar on the work of Scholze, Fontaine [67] introduced the concept of
a Tate perfectoid ring, phrasing the definition in terms of condition (a) of Corollary 2.6.16.
As [67] is primarily a survey of [156], the theory of Tate perfectoid rings is not developed in
any detail there; this development was subsequently carried out by Kedlaya–Liu [118].

The definition of perfectoid rings used here, which allows for arbitrary analytic rings, is
original to these notes. For examples that separate the various definitions, see the following
references herein:

• for a perfectoid ring over Qp which is not an algebra over a perfectoid field, see
Exercise 2.4.8;
• for a perfectoid ring which is Tate but not a Qp-algebra, see the proof of Lemma 3.1.3;
• for a perfectoid ring which is analytic but not Tate, see Exercise 2.4.7.

The massive work-in-progress [74] should ultimately be even more inclusive, in ways we do
not attempt to treat here (for instance, it includes some rings which are not analytic).

2.2. Witt vectors. In order to say more about perfectoid rings, we need to recall some
basic facts about Witt vectors (compare [110, §1.1]).

Definition 2.2.1. A strict p-ring is a p-adically complete (so in particular p-adically sepa-
rated) ring S which is flat over Zp (that is, p is not a zero-divisor) with the property that
S/pS is perfect.

Example 2.2.2. The ring S := Zp is a strict p-ring with S/pS ∼= Fp. Similarly, for any finite
unramified extension F of Qp with residue field Fq, the integral closure S of Zp in F is a
strict p-ring with S/pS ∼= Fq. Similarly, for F the maximal unramified extension of Qp, the
completed integral closure S of Zp in F is a strict p-ring with S/pS ∼= Fp.
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Example 2.2.3. For n a nonnegative integer, the p-adic completion S of Z[T p
−∞

1 , . . . , T p
−∞

n ]

is a strict p-ring with S/pS ∼= Fp[T
p−∞

1 , . . . , T
p−∞

n ].

Lemma 2.2.4. For any ring R, any ideal I of R, and any nonnegative integer n, the map
x 7→ xp

n induces a morphism of multiplicative monoids

R/((p) + I)→ R/((p)n+1 + (p)nI + · · ·+ (p)Ip
n−1

+ Ip
n

).

Proof. This is an immediate consequence of the p-divisibility of binomial coefficients. �

Corollary 2.2.5. For S a strict p-ring, the map S → S/pS admits a unique multiplicative
section x 7→ [x], called the Teichmüller map. In particular, the element [x] ∈ S (called the
Teichmüller lift of x) is the unique lift of x which admits pn-th roots for all positive integers
n.

Corollary 2.2.6. For S a strict p-ring, every element x of S has a unique representation as
a p-adically convergent series

∑∞
n=0 p

n[xn] with xn ∈ S/pS. The xn are called the Teichmüller
coordinates of x.

Lemma 2.2.7. Let S be a strict p-ring. Let S ′ be any p-adically complete ring. Then every
ring homomorphism π : S/pS → S ′/pS ′ lifts uniquely to a homomorphism S → S ′.

Proof. By Lemma 2.2.4, π lifts uniquely to a multiplicative map π : S/pS → S ′. One then
shows that the formula

∞∑
n=0

pn[xn] 7→
∞∑
n=0

pnπ(xn)

defines the desired ring homomorphism, by checking additivity modulo pm by induction on
m. For details, see [110, Lemma 1.1.6]. �

Remark 2.2.8. By applying Lemma 2.2.7 in the case where S is as in Example 2.2.3, we
may see that arithmetic in a strict p-ring can be expressed in terms of certain universal
“polynomials” in the Teichmüller coordinates. For example, if one writes

[x] + [y] =
∞∑
n=0

pn[zn],

then zn is given by a certain homogeneous polynomial over Fp in xp−n
, yp

−n of degree 1 (for
the convention that deg(x) = deg(y) = 1) divisible by xp−n

yp
−n .

Remark 2.2.9. A corollary of the previous remark is that if S is a strict p-ring and I is a
perfect ideal of S/pS, then the set of x ∈ S whose Teichmüller coordinates all belong to I is
an ideal of S. Note that the quotient by this ideal is again a strict p-ring.

Theorem 2.2.10 (Witt). The functor S 7→ S/pS defines an equivalence of categories be-
tween strict p-rings and perfect Fp-algebras.

Proof. Full faithfulness follows from Lemma 2.2.7. To check essential surjectivity, we first
lift perfect polynomial rings over Fp in any (possibly infinite) number of variables as in
Example 2.2.3, then use Remark 2.2.9 to lift quotients of such rings. That covers all perfect
Fp-algebras. �
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Remark 2.2.11. There is no analogue of Theorem 2.2.10 for general Fp-algebras. For ex-
ample, if R is a field which is not perfect, then the Cohen structure theorem implies that R
can be realized as S/pS for some flat p-adically complete Zp-algebra S (any such S is called
a Cohen ring for R), but not functorially in R. For example, if R = Fp((T )), then the p-adic
completion S of Zp((T )) admits an isomorphism S/pS ∼= R taking the class of T to T , but
there are numerous automorphisms of S lifting the identity map on R; in fact, the group of
such automorphisms acts simply transitively on the inverse image of T .

One way to lift imperfect rings is to consider pairs (R,B) in which R is a reduced ring
of characteristic p and B is a finite subset of R such that {

∏
b∈B b

eb : eb ∈ {0, . . . , p − 1}}
is a basis for R as an Rp-module. (Such a set B is called a p-basis of R; the existence of
such a set implies that R is a finite projective Rp-module, which is to say that R is F-split.)
Then one can functorially lift (R,B) to a pair (S, B̃) in which S is a p-adically complete flat
Zp-algebra and B̃ is a finite subset of S lifting B.

Definition 2.2.12. For R a perfect ring of characteristic p, let W (R) denote the strict p-
ring with residue ring R; concretely, W (R) consists of sequences (x0, x1, . . . ) in R which are
identified with the convergent sums

∑∞
n=0 p

n[xn]. By functoriality (i.e., by Lemma 2.2.7), the
absolute Frobenius ϕ on R lifts to a unique automorphism of R. For I ⊆ R a perfect ideal,
let W (I) denote the ideal of W (R) described in Remark 2.2.9.

Remark 2.2.13. For conceptual purposes, it is sometimes useful to imagine the ring W (R)
as “the ring of power series in the variable p with coefficients in R.” This point of view must
of course be abandoned when one attempts to make any arguments involving calculations
in W (R); however, Remark 2.2.8 gives some control over the “carries” that occur in these
calculations.

2.3. Tilting and untilting. In order to say more about perfectoid rings, we describe a
fundamental construction that relates perfectoid rings to rings in characteristic p. This con-
struction has its roots in the foundations of p-adic Hodge theory (see Remark 2.3.18), and
the definition of perfectoid rings is in turn motivated by the construction.

Definition 2.3.1. For (A,A+) a perfectoid pair, define the tilt of A, denoted A[, as the set
lim←−x 7→xp A; it carries the structure of a monoid under multiplication. We equip A[ with the
inverse limit topology, so that in particular the map ] : A[ → A which projects onto the final
component is continuous; this gives A[ the structure of a topological monoid. (We sometimes
write x] instead of ](x).) Let A[+ be the submonoid lim←−x 7→xp A

+ of A[, which is the preimage
of A[+ under ].

We will see later (Theorem 2.3.9) that the formula

(2.3.1.1) (xn)n + (yn)n = (zn)n, zn := lim
m→∞

(xm+n + ym+n)p
m

defines a ring structure on A[ with respect to which it is a perfectoid ring of characteristic
p, in such a way that A[+ is a ring of integral elements. Another interpretation of the ring
structure on A[+ will come from the bijection

(2.3.1.2) A[+ ∼= lim←−
x 7→xp

(A+/I)

for any ideal of definition I as in Definition 2.1.1; note that the right-hand side of (2.3.1.2)
is obviously a perfect ring of characteristic p.
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In order to fill in the details of the previous construction, we describe an inverse construc-
tion using Witt vectors.

Definition 2.3.2. Let (R,R+) be a perfectoid pair in characteristic p. We will make frequent
use of the ring W (R+), which is commonly denoted Ainf(R,R

+) (although we will not use
this notation until the next lecture).

Let W b(R) denote the subset of W (R) consisting of series
∑∞

n=0 p
n[xn] for which the set

{xn : n = 0, 1, . . . } is bounded in R. By Remark 2.2.8, this forms a subring ofW (R) contain-
ing W (R+). We equip W b(R) with the topology of uniform convergence in the coordinates
(see Remark 2.6.3); any continuous map R→ S of perfectoid rings in characteristic p induces
a homomorphism W b(R)→ W b(S).

Remark 2.3.3. If R is Tate, then so is W b(R): for any pseudouniformizer $ in R, [$] is a
pseudouniformizer inW b(R). However, if R is analytic, it is not clear thatW b(R) is analytic;
compare Lemma 2.6.13.

The following construction provides something analogous to a Weierstrass-prepared power
series over a nonarchimedean field.

Definition 2.3.4. An element z =
∑∞

n=0 p
n[zn] ∈ W (R+) is primitive of degree 1 (or prim-

itive for short) if z0 is topologically nilpotent and z1 is a unit in R+; in other words,
z = [z0] + pz1 where z1 is a unit in W (R+). Note that multiplying a primitive element
by a unit gives another such element (e.g., using Remark 2.2.8); we say that an ideal of
W (R+) is primitive (of degree 1) if it is principal with some (hence any) generator being a
primitive element.

The primitive elements will play a role analogous to that played by the ideal (T − p) in
the isomorphism ZJT K/(T − p) ∼= Zp. In particular, they admit a form of Euclidean division
which is quite useful for getting control of elements of perfectoid rings; this will be studied
extensively in §2.6.

Remark 2.3.5. If z1, z2 ∈ W (R+) are primitive elements such that z1 = yz2 for some
y ∈ W (R+), then by Remark 2.2.8, z1,1 − y0z2,1 is topologically nilpotent. It follows that y
is a unit in W (R+).

Exercise 2.3.6. If R is Tate, then in some sources a primitive element ofW (R+) is assumed
to have the form p+ [$]α where $ ∈ R is a topologically nilpotent unit and α ∈ W (R+) is
arbitrary. Show that if z is a primitive element in the sense of Definition 2.3.4, then it has
some associate of the form p+ [$]α but need not have this form itself.

Before stating a general theorem, let us discuss a couple of key examples.

Example 2.3.7. Put R := Fp((T
p−∞

)) (i.e., the ring obtained by taking the T -adic comple-
tion of Fp[T

p−∞

] and then inverting T ) and R+ := R◦. The element z := p− [T ] is primitive,
and W b(R)/(z) is the completion of Qp(p

p−∞), which is a perfectoid field.

Example 2.3.8. Put R := Fp((T
p−∞

)), R+ := R◦. The element z :=
∑p−1

i=0 [1 + T ]i is
primitive (because it maps to p under W (R+)→ W (Fp)), and W b(R)/(z) is the completion
of Qp(µp∞), which is a perfectoid field.
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Theorem 2.3.9. The formula

(2.3.9.1) (R,R+, I) 7→ (A := W b(R)/IW b(R), A+ := W (R+)/I)

defines a equivalence of categories from triples (R,R+, I), in which (R,R+) is a perfectoid
pair of characteristic p and I is a primitive ideal of W (R+), to perfectoid pairs (A,A+).
(A morphism (R,R+, I) → (S, S+, J) in this category is a morphism (R,R+) → (S, S+)
of Huber pairs carrying I into J ; in fact, by Remark 2.3.5 the image always equals J .)
Furthermore, there is a quasi-inverse functor which takes (A,A+) to (A[, A[+, I) with the
ring structure on A[ given by (2.3.1.1).

Proof. By Lemma 2.6.14, it will follow that the equation (2.3.9.1) gives a well-defined functor.
By Lemma 2.7.9, we will obtain the quasi-inverse functor. �

Corollary 2.3.10. Let A be a perfectoid ring, that is, A is a Huber ring such that (A,A+)
is a perfectoid pair for some ring of integral elements A+. Then (A,A+) is a perfectoid pair
for every ring of integral elements A+.

Proof. By Theorem 2.3.9, we can write A = W b(R)/I for some perfectoid ring R of charac-
teristic p and some ideal I; more precisely, the ideal I admits a primitive generator inW (R+)
for some ring of integral elements R+ of R, and hence in W (R◦). By Example 2.1.2, every
ring of integral elements R+ of R is perfect, and so (R,R+) is a perfectoid pair which untilts
to a perfectoid pair (A,A+). It thus suffices to check that every A+ arises in this fashion.

Since A is uniform, every ring of integral elements is contained in the ring A◦ of power-
bounded elements and contains the set A◦◦ of topologically nilpotent elements, which is an
ideal of A◦. In fact, the rings of integral elements are in bijection with integrally closed sub-
rings of A◦/A◦◦. Similarly, the rings of integral elements of R are in bijection with integrally
closed subrings of R◦/R◦◦. By Lemma 2.7.10, the rings A◦/A◦◦ and R◦/R◦◦ are isomorphic;
this completes the proof. (See Remark 2.3.16 for a more refined version of the isomorphism
A◦/A◦◦ ∼= R◦/R◦◦). �

Corollary 2.3.11. A nonarchimedean field F is a perfectoid ring if and only if it is a
perfectoid field.

Proof. One direction is Example 2.1.3. In the other direction, if F is a perfectoid ring, then
by Corollary 2.3.10, (F, oF ) is a perfectoid pair. If F is of characteristic p, then F is perfect
(Example 2.1.2) and the valuation on F is nontrivial (hence not discrete by perfectness), so
F is a perfectoid field. If F is of characteristic 0, then (p) is an ideal of definition of oF , so
Remark 2.3.12 applies to show that ϕ : oF/(p) → oF/(p) is surjective. Since the valuation
on F [ is not discrete, neither is the valuation on F , so F is a perfectoid field. �

Remark 2.3.12. If (A,A+) is a perfectoid pair, then the existence of a surjective morphism
W (R+) → A+ as in Theorem 2.3.9 implies that ϕ : A+/(p) → A+/(p) is surjective: every
x ∈ A+/(p) lifts to some element y =

∑∞
n=0 p

n[yn] ∈ W (R+), and the image of [y
1/p
0 ] in

A+/(p) maps to x via ϕ.

Definition 2.3.13. With notation as in Theorem 2.3.9, the perfectoid pair (A,A+) corre-
sponding to the triple (R,R+, I) is called the untilt of (R,R+) corresponding to the primitive
ideal I.

55



Definition 2.3.14. Theorem 2.3.9 implies that for any perfectoid pair (A,A+), there is a
surjective map W (A[+)→ A+ whose kernel is primitive (and in particular principal), which
extends to a map W b(A[)→ A. These maps are traditionally denoted by θ.

Note that for any x ∈ R, the sequence (θ([xp
−n

])n forms an element of lim←−x 7→xp A = A[. In
the course of proving Theorem 2.3.9, we will see that the identification of A[ with R identifies
this sequence with x. In other words,

] = θ ◦ [•].

Example 2.3.15. With notation as in Theorem 2.3.9, the pair

(A〈T p
−∞

1 , . . . , T p
−∞

n 〉, A+〈T p
−∞

1 , . . . , T p
−∞

n 〉)

is the untilt of
(R〈T p

−∞

1 , . . . , T
p−∞

n 〉, R+〈T p
−∞

1 , . . . , T
p−∞

n 〉)
corresponding to the primitive ideal generated by I, with ](T i) = Ti. Similarly, the pair

(A〈T±p
−∞

1 , . . . , T±p
−∞

n 〉, A+〈T±p
−∞

1 , . . . , T±p
−∞

n 〉)

is the untilt of
(R〈T±p

−∞

1 , . . . , T
±p−∞
n 〉, R+〈T±p

−∞

1 , . . . , T
±p−∞
n 〉)

corresponding to the primitive ideal generated by I, again with ](T i) = Ti.

Remark 2.3.16. With notation as in Theorem 2.3.9, let z be a generator of I. For J an
ideal (resp. ideal of definition) of A+ containing p, the inverse image of J in W (R+) is an
ideal containing p and z, and so is also the inverse image of an ideal (resp. ideal of definition)
J [ of A[+ containing z. Conversely, every ideal (resp. ideal of definition) of A[+ containing z
arises in this fashion. From the construction, we have a canonical isomorphism

A+/J ∼= R+/J [.

We mention some related facts here.
• A perfectoid ring A is Tate if and only if A[ is Tate (Corollary 2.6.16). This implies
that if A is Tate, then A+ admits a principal ideal of definition J satisfying p ∈ Jp.
• For J an ideal of definition of A+ with p ∈ Jp, let J (p) be the ideal of A+ generated
by p together with xp for each x ∈ J ; this ideal is contained in Jp, but may be strictly
smaller unless J is principal. Then the surjective map ϕ : A+/J → A+/Jp induces a
bijective map A+/J → A+/J (p).

Remark 2.3.17. For A,B two perfectoid rings, it is not true in general that any homo-
morphism f [ : A[ → B[ lifts to a homomorphism f : A → B, because the image of
ker(θ : W b(A[) → A) need not be contained in ker(θ : W b(B[) → B). However, this im-
age is always a primitive ideal, so given A,B[, f [ there is a unique choice of an untilt B of
B[ for which f [ does lift to a homomorphism f : A → B. In other words, the categories of
perfectoid A-algebras and perfectoid A[-algebras are equivalent. For example, this comment
applies to the setting of [156], in which the only perfectoid rings are considered are algebras
over some fixed perfectoid field.

Again, we collect some historical notes.
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Remark 2.3.18. The operationA 7→ A[ was originally introduced by Fontaine–Wintenberger
[68, 69, 178, 179] in the case where A is the completion of an algebraic extension of Qp having
a certain property (of being strictly arithmetically profinite) which implies that A is perfec-
toid; by a theorem of Sen [163], this includes the completion of any infinitely ramified Galois
extension of Qp whose Galois group is a p-adic Lie group. (See [120] for further discussion
of this implication.) This construction is a key step in the Fontaine’s construction of the de
Rham and crystalline period rings [65, §2], [66].

The same construction for somewhat more general rings appeared in the work on Faltings
on the crystalline comparison isomorphism [56, §2], [57, §2b], as a key step in constructive
relative analogues of Fontaine’s rings; this direction was further pursued by Andreatta [7].
The terminology of tilting and untilting, and the notations [ and ], were introduced by
Scholze in [156]; previously these constructions did not have commonly used names (the
term inverse perfection for the construction A+ 7→ lim←−A

+/I is used in [117]).
Like other concepts in the theory of perfectoid spaces, the notion of a primitive element

can be found implicitly throughout the literature of p-adic Hodge theory, and somewhat
more explicitly in [62] and [109]. However, it does not appear at all in [156] because no
reference is made therein to Witt vectors: since only perfectoid algebras over a perfectoid
field are considered, one implicitly untilts using the primitive ideal coming from the base
field. In [117], the primitive elements considered (as per [117, Definition 3.3.4]) are those for
which z0 is a unit in R; this level of generality corresponds to the restriction that perfectoid
rings be Qp-algebras. The definition of primitive elements used here is the one introduced
by Fontaine in [67], and adopted by Kedlaya–Liu in [118, Definition 3.2.3].

The theta map (Definition 2.3.14) first appeared in the case where A is a completed
algebraic closure of Qp, in Fontaine’s construction of the ring BdR of de Rham periods [65,
§2] (see also Definition 4.6.5); it appears again in the work of Andreatta (see above).

Theorem 2.3.9 was established by Scholze [156, Theorem 5.2] for perfectoid rings over a
perfectoid field, (but without reference to Witt vectors; see above) and independently by
Kedlaya–Liu [117, Theorem 3.6.5] for perfectoid rings over Qp. It was extended to Tate rings
by Kedlaya–Liu [118, Theorem 3.3.8]. The extension to analytic rings is original to these
notes.

2.4. Algebraic aspects of tilting. We next describe the extent to which tilting is com-
patible with certain algebraic properties of morphisms of perfectoid rings.

The following argument shows that the category of perfectoid spaces admits fiber products,
which is not known for the full category of adic spaces (because a completed tensor product
of sheafy Huber rings is not known to again be sheafy).

Theorem 2.4.1. Let A→ B,A→ C be two morphisms of perfectoid rings. Then B⊗̂AC is
again a perfectoid ring, and its formation commutes with tilting.

Proof. See Lemma 2.8.7. �

Theorem 2.4.2. Let f : A → B be a morphism of perfectoid rings. Then f is a strict
inclusion if and only if f [ is a strict inclusion. (A similar statement holds for nonstrict
inclusions, but lies much deeper; see Corollary 2.9.13.)

Proof. From the definition of A[ as a topological space, it is obvious that if f is a strict
inclusion, then so is f [. Conversely, if f [ is a strict inclusion, then so is W b(A[)→ W b(B[).
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By Theorem 2.3.9, we have A ∼= W b(A[)/I and B ∼= W b(B[)/IW b(B[) for some primitive
ideal I of W b(A[). Using Lemma 2.8.1, we deduce that f is a strict inclusion. �

Theorem 2.4.3. Let f : A→ B be a morphism of Huber rings in which A is perfectoid.
(a) If B is uniform and f has dense image, then B is perfectoid.
(b) If B is perfectoid, then f has dense image if and only if f [ has dense image.

Proof. Part (a) will follow from Lemma 2.8.4. To check (b) in one direction, note that if f [
has dense image, then the composition W b(A[) → W b(B[) → B has dense image, so f has
dense image. The other direction will again follow from Lemma 2.8.4. �

Theorem 2.4.4. Let f : A→ B be a morphism of Huber rings in which A is perfectoid.
(a) If B is uniform and f is surjective, then B is perfectoid.
(b) If B is perfectoid, then f is surjective if and only if f [ is surjective.

Proof. Part (a) is a consequence of Theorem 2.4.3(a). To check (b) in one direction, note
that if f [ is surjective, then the composition W b(A[) → W b(B[) → B is surjective, so f
is surjective. In the other direction, if f is surjective, then Lemma 2.8.6 implies that f [ is
surjective. �

Corollary 2.4.5. For A a perfectoid ring, the map I 7→ I[ defines a bijection between closed
ideals of A with A/I uniform and closed perfect ideals of A[.

Proof. In light of Theorem 2.4.4, it suffices to check that if R is a perfectoid ring of char-
acteristic p and I is a perfect ideal of R, then R/I is uniform (this being the case of the
desired statement where A = A[ = R). To this end, promote R to a uniform Banach ring
as per Remark 1.5.4. Then note that if x̃ ∈ R lifts x ∈ R/I, then x̃1/p lifts x1/p ∈ R/I, so∣∣x1/p

∣∣ ≤ |x|1/p. From Definition 1.5.11, it follows that R/I is uniform. �

Corollary 2.4.6. For A a perfectoid ring and I a closed ideal of A, A/I is uniform (and
hence perfectoid) if and only if there exists some subset S of A[ such that I is the closure of
the ideal generated by ](xp−n

) for all x ∈ S and all nonnegative integers n.

Proof. Suppose that A/I is uniform; it is then perfectoid by Theorem 2.4.4(a). By Corol-
lary 2.4.5, I[ is a closed perfect ideal of A[, so A[/I[ is perfectoid and (A/I)[ ∼= A[/I[. We
may then take S to be the set {](x) : x ∈ I[}.

Conversely, suppose that there exists S of the specified form. Let J be the closure of the
ideal of A[ generated by xp−n for all x ∈ S and all nonnegative integers n; note that xp−n ∈ I[,
so J ⊆ I[. Since the set of generators of J is stable under taking p-th roots, J is perfect, so
A[/J is perfectoid. By Theorem 2.4.4(b), the morphism A[ → A[/J untilts to a surjective
morphism, whose kernel is the closed ideal of A generated by ](xp−n

) for all x ∈ S and all
nonnegative integers n. It follows that this kernel equals I, so A/I is perfectoid. �

Exercise 2.4.7. Using Corollary 2.4.6, adapt Example 1.5.7 to give an example of a perfec-
toid ring in characteristic p which is analytic but not Tate. Note that no such example can
exist over Qp, but one can construct mixed-characteristic examples by untilting.

Exercise 2.4.8. In this exercise, we exhibit a perfectoid ring over Qp which is not an algebra
over a perfectoid field.
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(a) Prove that the completions of Qp(p
p−∞) and Qp(µp∞) have no common subfield larger

than Qp. One way to do this is to use the Ax–Sen–Tate theorem [10] to show that any
complete subfield of either of these two fields is itself the completion of an algebraic
extension of Qp.

(b) Let F be the completed perfect closure of Fp((T 1)). Put R := F 〈T p
−∞

2 〉, R+ := R◦.
Let R1 be the quotient of R by the closure of the ideal (T

p−n

2 : n = 0, 1, . . . ) and put
R+

1 = R◦1. Let R2 be the quotient of R by the closure of the ideal (T
p−n

2 − 1 : n =
0, 1, . . . ) and put R+

2 = R◦2. Prove that there exists a primitive element z ∈ W (R+)
which maps to p− [T 1] in W (R+

1 ) and to
∑p−1

i=0 [1 + T 1]i in W (R+
2 ).

(c) Combine (a), (b), Example 2.3.7, and Example 2.3.8 to obtain the desired example.

In Corollary 2.4.5, it is easy to see that the condition that A/I be uniform is necessary,
by the following trivial example.

Example 2.4.9. Let K be a perfectoid field. The quotient of K〈T p−∞〉 by the closed ideal
(T ) is not uniform (or even reduced), and hence not perfectoid. By contrast, the quotient by
the closure of the ideal (T p

−n
: n = 0, 1, . . . ) is the field K again.

A far less trivial example is the following.

Example 2.4.10. Let Cp be the completion of an algebraic closure of Qp and choose an
element ε = (. . . , ζp, 1) ∈ C[

p in which ζpn is a primitive pn-th root of unity. Take A :=

Cp〈T±p
−∞〉 and let I be the ideal (T −1) of A. The ideal I is closed, so the quotient A/I is a

Banach ring. Let B be the uniform completion of A/I (i.e., the completion with respect to the
spectral seminorm); we may identify B with the ring Cont(Zp,Cp) of continuous functions
from Zp to Cp in such a way that the natural map f : A → B takes T p−n to the function
γ → ζγpn .

These rings were analyzed, in different language, by Fresnel and de Mathan [70]. In par-
ticular, they showed [70, Theorems 1–3] that f is surjective and the kernel of the induced
map A/I → B consists of the closure of the nilradical. In particular, we have the highly
nonobvious fact that I is not a radical ideal.

Remark 2.4.11. Theorem 2.4.1 was proved by Scholze [156, Proposition 6.18] for perfectoid
rings over a perfectoid field, and independently by Kedlaya–Liu [117, Theorem 3.6.11] for
perfectoid rings over Qp. This was extended to Tate perfectoid rings by Kedlaya–Liu [118,
Theorem 3.3.13]. The extension to analytic rings is original to these notes.

Theorem 2.4.3 and Theorem 2.4.4 were proved for perfectoid rings over Qp in [117, The-
orem 3.6.17], and for Tate rings in [118, Theorem 3.3.18]. The extensions to analytic rings
are original to these notes.

2.5. Geometric aspects of tilting. We now describe the interaction of the perfectoid
condition with rational and étale localization. This will allow us to define perfectoid spaces
and the étale topology on them.

Theorem 2.5.1. For (A,A+) a perfectoid pair, the formula v 7→ v ◦ ] defines a bijection
Spa(A,A+) ∼= Spa(A[, A[+) which identifies rational subspaces on both sides; in particular,
this map is a homeomorphism.
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Proof. By Theorem 2.3.9, (A,A+) is the untilt of (A[, A[+) corresponding to some prim-
itive ideal. We may thus apply Lemma 2.6.12 to show that the map is well-defined, and
Corollary 2.6.15 to show that it is bijective. It is easy to see that the rational subspace
of Spa(A[, A[+) defined by the parameters f 1, . . . , fn, g corresponds to the rational sub-
space of Spa(A,A+) defined by the parameters ](f 1), . . . , ](fn), ](g); in the other direction,
Lemma 2.6.17 implies that every rational subspace of Spa(A,A+) corresponds to a rational
subspace of Spa(A[, A[+). �

Remark 2.5.2. One of the remarkable features of Theorem 2.5.1 is the fact that ] : A[ → A
is not a ring homomorphism (it is multiplicative but not additive), and yet pullback by ]
defines a morphism of spectra. We like to think of ] as defining a “homotopy equivalence”
between A[ and A instead of a true morphism.

Theorem 2.5.3. Let (A,A+) be a perfectoid pair.
(a) For (A,A+)→ (B,B+) a rational localization, (B,B+) is again a perfectoid pair.
(b) The functor (B,B+)→ (B[, B[+) defines an equivalence of categories between ratio-

nal localizations of (A,A+) and of (A[, A[+).

Proof. For (R,R+) a perfectoid pair of characteristic p and (R,R+) → (S, S+) a rational
localization, we may apply the universal property of a rational localization to the composition
(R,R+)

ϕ−1

→ (R,R+) → (S, S+) to refactor it as (R,R+) → (S, S+) → (S, S+). Composing
the second morphism on either side with ϕ : (S, S+) → (S, S+) yields a morphism which
fixes the image of R in S, and by extension the inverse of any element of this image which
is a unit in S; by continuity, the composition is the identity on S, so (S, S+) is a perfectoid
pair.

By the previous paragraph plus Theorem 2.5.1, to prove both (a) and (b) it suffices to
check that the untilt of any rational localization is again a rational localization. This requires
some argument because the universal property of a rational localization is quantified over
arbitrary Huber pairs, not just perfectoid pairs or uniform pairs; see Lemma 2.8.8. �

Corollary 2.5.4. Any perfectoid ring is stably uniform, and hence sheafy by Theorem 1.2.13.

Corollary 2.5.5. Let A be a Huber ring admitting a continuous homomorphism A→ B to a
perfectoid ring which splits in the category of topological A-modules (a/k/a a sousperfectoid
ring; see Remark 1.2.19). Then A is stably uniform.

Proof. Combine Corollary 2.5.4 with Lemma 1.2.18. �

Definition 2.5.6. In light of Corollary 2.5.4, for any perfectoid pair (A,A+) the space
Spa(A,A+) admits the structure of an adic space. An adic space locally of this form is called
a perfectoid space.

Corollary 2.5.7. For (A,A+) a perfectoid pair, the residue field of every point of Spa(A,A+)
is a perfectoid field. (See also Corollary 2.9.14 for a related result.)

Proof. Let x ∈ Spa(A,A+) be a point with residue field K. Then K contains as a dense
subring the direct limit of B over all rational localizations (A,A+) → (B,B+) for which
x ∈ Spa(B,B+). (More precisely, x corresponds to a valuation on each B; these valuations
are compatible with localizations, and K is the completion of the direct limit with respect
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to the topology defined by the induced valuation.) By Theorem 2.5.3, each pair (B,B+) is
again perfectoid.

From the previous paragraph, one may deduce that K is a perfectoid ring. One way to see
this is to note that the completion in K of the direct limit of the rings B+ is contained in K◦,
and the quotient is killed by any topologically nilpotent unit of K (that is, it is almost zero;
see Definition 2.9.4); one may then check the perfectoid property by a direct calculation.
Alternatively, form the product of B over all rational localizations (A,A+) → (B,B+) for
which x ∈ Spa(B,B+), take the A-subalgebra generated by the direct sum, and complete for
the supremum norm; this yields a perfectoid ring which maps to K with dense image, and K
is uniform because it is a nonarchimedean field, so K is a perfectoid ring by Theorem 2.4.3
(compare [118, Corollary 3.3.22]).

In any case, K is both a nonarchimedean field and a perfectoid ring, so by Corollary 2.3.11
it is a perfectoid field. �

Exercise 2.5.8. Here is a rare example of a ring which can be shown to be stably uniform
despite not being (directly) susceptible to Corollary 2.5.5. Let K be an algebraically closed
perfectoid field of characteristic p > 2. Put

A0 := K〈T p−∞〉, A := A0[T 1/2], A′ := K〈(T 1/2)p
−∞〉.

Equip these rings with the Gauss norm.
(a) Show that for i ∈ 1

2
Z[p−1], if i ≥ 1

2
then T i ∈ A. Deduce that the natural map A→ A′

does not split in the category of A-modules.
(b) Show that the map Spa(A′, A′◦) → Spa(A,A◦) is a homeomorphism and identifies

rational subspaces on both sides.
(c) Show that Spa(A,A◦) contains a unique point v0 with v0(T ) = 0, whose complement

is a perfectoid space. Note that the residue field of v0 isK, so A satisfies the conclusion
of Corollary 2.5.7 but not the hypothesis.

(d) Using (b), show that a general rational subspace of Spa(A,A◦) containing v0 has the
form

{v ∈ Spa(A,A◦) : v(λ0T
1/2) ≤ 1, v(λ1T

1/2 − µ1) ≥ 1, . . . , v(λnT
1/2 − µn) ≥ 1}

for some nonnegative integer n and some λ0, . . . , λn, µ1, . . . , µn ∈ K with λi ≥ 1 for
i ≥ 0 and λi ≥ µi ≥ 1 for i > 0.

(e) Let (A,A◦) → (B,B+) be the rational localization corresponding to a rational sub-
space as in (d) with λ0 = 1. (It turns out that B+ = B◦, but this isn’t crucial for
what follows.) A general element of B can be written in the form

a0 +
n∑
i=1

∞∑
j=1

ai,j(λiT
1/2 − µi)−j

for some a0, ai,j ∈ A0. Prove that each ai,j can be replaced by an element with all
exponents in [0, 1] without increasing the quotient norm (i.e., the maximum of the
norms of a0 and all of the ai,j).

(f) Put B′ = B⊗̂AA′. Show that for

x = a0 +
n∑
i=1

∑
j∈Z[p−1],j>0

ai,j(λiT
1/2 − µi)−j ∈ B′

61



with a0 ∈ A0, ai,j ∈ K, the spectral norm of x is equal to the maximum of the norms
of a0 and the ai,j.

(g) Show that B → B⊗̂AA′ is a strict inclusion. Deduce that A is stably uniform.

Theorem 2.5.9. Let A be a perfectoid ring.
(a) For A → B a finite étale morphism, B is again a perfectoid ring for its natural

topology as an A-module. (Note that Lemma 1.10.1 implies that B is uniform.)
(b) The functor B 7→ B[ defines an equivalence of categories between finite étale algebras

over A and over A[.

Proof. See Lemma 2.8.11. �

Corollary 2.5.10. For (A,A+) a perfectoid pair, there is a functorial homeomorphism
Spa(A,A+)et

∼= Spa(A[, A[+)et.

Remark 2.5.11. It was conjectured in [158, Conjecture 2.16] that if (A,A+) is a Huber pair
over a perfectoid field and Spa(A,A+) is a perfectoid space, then A is a perfectoid ring. This
is refuted by the first example of Buzzard–Verberkmoes cited in Remark 1.2.24.

However, it is possible that a similar question with slightly different hypotheses does admit
an affirmative answer. For an example of a partial result in this direction, Theorem 1.2.22
implies that if (A,A+) is a Huber pair such that Spa(A,A+) is a perfectoid space and
A = H0(Spa(A,A+),O), then A is sheafy.

Exercise 2.5.12. Extend the proof of Corollary 2.5.7 to show that for any nonempty subset
S of Spa(A,A+), the completion (for the supremum norm over S) of the stalk of the structure
sheaf of Spa(A,A+) at S is a perfectoid ring.

Remark 2.5.13. For A a perfectoid ring promoted to a Banach ring, the homeomorphism
M(A) ∼= M(A[) induced by Theorem 2.5.1 (by restricting to valuations of height 1) was
first described in [109, Corollary 7.2] (and alluded to in [107]).

Theorem 2.5.3 was proved for perfectoid rings over a perfectoid field by Scholze [156,
Theorem 6.3], and independently for perfectoid rings over Qp by Kedlaya–Liu [117, The-
orem 3.6.14]. It was generalized to Tate rings by Kedlaya–Liu [118, Theorem 3.3.18]. The
extension to analytic rings is original to these notes, but uses similar methods.

For perfectoid fields, Theorem 2.5.9 generalizes the field of norms correspondence of
Fontaine–Wintenberger [68, 69]. The result in this case originated from a private commu-
nication between this author and Brian Conrad after the 2009 Clay Mathematics Institute
summer school on p-adic Hodge theory; this argument was subsequently reproduced in [110,
Theorem 1.5.6] and [117, Theorem 3.5.6]. (The key special case of algebraically closed perfec-
toid fields amounts to an argument we learned from Robert Coleman in 1998, as documented
in [101, §4].) The result was obtained independently by Scholze using a different approach
based on almost ring theory; see [156, Theorem 3.7] for a side-by-side treatment of both
approaches.

Theorem 2.5.3 is a generalization of (part of) the almost purity theorem of Faltings, which
appears implicitly in [55] and somewhat more explicitly in [57]. It was proved for perfectoid
rings over a perfectoid field by Scholze [156, Theorem 7.9], and independently for perfectoid
rings over Qp by Kedlaya–Liu [117, Theorem 3.6.21]. It was generalized to Tate rings by
Kedlaya–Liu [118, Theorem 3.3.18]. The extension to analytic rings is original to these notes,
but uses similar methods. (See [117, Remark 5.5.10] for some additional discussion.)
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2.6. Euclidean division for primitive ideals. In order to prove most of our main results,
we need to establish a version of Euclidean division for primitive elements. Our presentation
of this construction follows [109].

Hypothesis 2.6.1. Throughout §2.6, let (R,R+) be a perfectoid pair of characteristic p,
and let z ∈ W (R+) be a primitive element. Promote R to a uniform Banach ring as per
Remark 1.5.4.

Note that by definition, these hypotheses imply that R is analytic. However, we will only
need that hypothesis starting with Lemma 2.6.13; the results before that require only that R
be perfect and uniform. This will be important in §2.7, where we must make some calculations
with a putative perfectoid ring of characteristic p before establish its analyticity.

Definition 2.6.2. Define the Gauss norm on W b(R) by the formula∣∣∣∣∣
∞∑
n=0

pn[xn]

∣∣∣∣∣ = sup{|xn| : n = 0, 1, . . . , };

note that the supremum is in general not achieved. Using Remark 2.2.8, it can be shown
that the Gauss norm is a power-multiplicative norm, or even a multiplicative norm in case
the norm on R is multiplicative [109, Lemma 4.2]; moreover, W (R+) and W b(R) are both
complete with respect to this norm.

For z a primitive element, for the Gauss norm we have |pz1| = 1 > |z − pz1|, so for all
x ∈ W b(R), we have |zx| = |x|. Consequently, the ideals zW (R+) and zW b(R) are closed in
their respective rings, and using the quotient norms we may equipW (R+)/(z) andW b(R)/(z)
with the structure of Banach (and Huber) rings. Note also that zW b(R)∩W (R+) = zW (R+),
so the map W (R+)/(z)→ W b(R)/(z) is injective.

Remark 2.6.3. The topology induced by the Gauss norm on W b(R) can be interpreted as
the topology of uniform convergence in the Teichmüller coordinates. On W (R+), this can
also be interpreted as the I-adic topology for I = ([x1], . . . , [xn]) where x1, . . . , xn ∈ R+

generate the unit ideal in R, although it requires some care to show this when n > 1.
As in [109, 117, 118], one can also consider weighted Gauss norms on W b(R) given by

formulas of the form ∣∣∣∣∣
∞∑
n=0

pn[xn]

∣∣∣∣∣
ρ

= max{ρ−n |xn| : n = 0, 1, . . . , }

for some ρ ∈ (0, 1). (Note that the supremum becomes a maximum as soon as ρ < 1.) On
W (R+), the topology induced by a weighted Gauss norm can be interpreted as the (p, I)-adic
topology for I as above.

For z a primitive element, the quotient norms on W b(R)/(z) induced by the Gauss norm
and any weighted Gauss norm coincide. This will follow from the fact that every nonzero
element of the quotient admits a prepared representative (Lemma 2.6.9).

For primitive elements, we have a useful analogue of Euclidean division. The following
discussion is taken from [109, §5].
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Definition 2.6.4. Let z = [z0] + pz1 ∈ W (R+) be primitive. For x =
∑∞

n=0 p
n[xn] ∈ W b(R),

define the Euclidean quotient and remainder of x modulo z as the pair (q, r) where

x1 := p−1(x− [x0]), q := z−1
1 x1, r := x− qz = [x0]− [z0]

∞∑
n=0

z−1
1 pn[xn+1].

Definition 2.6.5. An element x =
∑∞

n=0 p
n[xn] ∈ W b(R) is prepared if |x0| ≥ |xn| for all

n > 0. (This corresponds to the definition of stable in [109, §5], but we need to save that term
for another meaning later; this terminology is meant to suggest the Weierstrass preparation
theorem.)

Lemma 2.6.6. For z ∈ W (R+) primitive, no nonzero multiple of z in W b(R) is prepared.

Proof. Suppose by way of contradiction that x =
∑∞

n=0 p
n[xn] ∈ W b(R) is nonzero and zx is

prepared. On one hand, the reduction of zx equals z0x0, so x0 6= 0 and
|zx| = |z0x0| < |x0| ≤ |x| .

On the other hand, as described in Definition 2.6.2 we have |zx| = |x|, a contradiction. �

Lemma 2.6.7. Let z ∈ W (R+) be primitive. If x ∈ W b(R) is prepared, then the quotient
norm of the class of x in W b(R)/(z) is equal to |x|.
Proof. Suppose to the contrary that there exists y ∈ x+ zW b(R) with |y| < |x|. Then x− y
is a nonzero prepared multiple of z, so Lemma 2.6.6 yields a contradiction. �

Corollary 2.6.8. Let z ∈ W (R+) be primitive. For x ∈ R, the quotient norm of the class
of [x] in W b(R)/(z) equals |x|.
Lemma 2.6.9. For z primitive and x ∈ W b(R) not divisible by z, form the sequence
x0, x1, . . . in which x0 = x and xm+1 is the Euclidean remainder of xm modulo z. Then
for every sufficiently large m, xm is prepared.

Proof. If |xm+1| > |z0| |xm| for some m, then xm+1 is prepared; in addition, |xm+2| = |xm+1|,
so xm+2, xm+3, . . . are also prepared. Otherwise, for qm the Euclidean quotient of xm modulo
z, the sum

∑∞
m=0 qm converges to a limit q satisfying x = qz, so x represents the zero class

in the quotient ring, contradiction. �

Corollary 2.6.10. For z primitive, the quotient norm onW b(R)/(z) is power-multiplicative.
If in addition the norm on R is multiplicative, then the quotient norm on W b(R)/(z) is
multiplicative.

Proof. Combine Lemma 2.6.7 with Lemma 2.6.9. (Note that we are implicitly using parts
(a) and (b) of Exercise 2.6.11 below.) �

Exercise 2.6.11. Let x1, . . . , xn ∈ W b(R) be prepared elements.
(a) Suppose that the norm on R is multiplicative. Show that x1 · · ·xn is prepared.
(b) Suppose that x1 = · · · = xn. Show that x1 · · ·xn is prepared. (Hint: combine (a) with

Lemma 1.5.21.)
(c) Give an example in which x1 · · ·xn is not prepared. (Hint: take R to be a product of

two perfectoid fields.)

Lemma 2.6.12. For z primitive, A := W b(R)/(z), π : W b(R) → A the quotient map,
A+ = W (R+)/(z), and v ∈ Spa(A,A+) arbitrary, we have v ◦ π ◦ [•] ∈ Spa(R,R+).
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Proof. The nontrivial point is that v ◦ π ◦ [•] satisfies the strong triangle inequality; this
follows from Remark 2.2.8. �

Up to now, none of the arguments have required the hypothesis that R be analytic. We
add that hypothesis now.

Lemma 2.6.13. For R analytic and z primitive, W b(R)/(z) is analytic.

Proof. Put A = W b(R)/(z), A+ = W (R+)/(z). Let π : W b(R) → A denote the quotient
map. For v ∈ Spa(A,A+), by Lemma 2.6.12 the formula x 7→ v(π([x])) defines a valuation
w ∈ Spa(R,R+). By Lemma 1.1.3, there exists x ∈ R such that w(x) 6= 0; hence v(π([x])) 6=
0. By Lemma 1.1.3 again, A is analytic. �

Lemma 2.6.14. The formula (2.3.9.1) defines a functor from triples (R,R+, I), in which
(R,R+) is a perfectoid pair of characteristic p and I is a primitive ideal of W (R+), to
perfectoid pairs (A,A+).

Proof. By Corollary 2.6.10 and Lemma 2.6.13, A is uniform and analytic. Let z be a generator
of I. Let J be an ideal of definition of R+ such that z0 ∈ Jp (this exists because R is perfect).
Then the set of x =

∑∞
n=0 p

n[xn] ∈ W (R+) with x0 ∈ J maps to an ideal of definition J̃ of
A+ with p ∈ J̃p such that ϕ : A+/J̃ → A+/J̃p is surjective. Hence (A,A+) is a perfectoid
pair. �

Corollary 2.6.15. For (R,R+, I) corresponding to (A,A+) as in Lemma 2.6.14, the con-
struction of Lemma 2.6.12 defines a bijective map Spa(A,A+)→ Spa(R,R+).

Proof. For v ∈ Spa(R,R+) corresponding to the pair (K,K+), the triple (K,K+, IW (K+))
corresponds via Lemma 2.6.14 to a pair (L,L+). By Corollary 2.6.8, L is an analytic field;
this pair then corresponds to the unique valuation in Spa(A,A+) mapping to v. �

Corollary 2.6.16. For (A,A+) a uniform analytic Huber pair, the following conditions are
equivalent.

(a) There exists a pseudouniformizer $ ∈ A such that $p divides p in A+ and ϕ :
A+/($)→ A+/($p) is surjective.

(b) The ring A is Tate and perfectoid.
(c) The ring A is perfectoid and the ring A[ is Tate.
(d) The ring A is perfectoid and there exists a uniformizer $ ∈ A[ such that ]($)p divides

p in A+ and ϕ : A+/(]($))→ A+/(]($p)) is surjective.

Proof. Since all four conditions imply that (A,A+) is perfectoid (using Corollary 2.3.10), we
may assume this from the outset. It is clear that (a) implies (b), (c) implies (a), and (d)
implies (c); it thus remains to check that (b) implies (d).

Let $ ∈ A be any pseudouniformizer. Lift $ to some x0 ∈ W (A[+), then form the
sequence x0, x1, . . . as in Lemma 2.6.9. Write xm =

∑∞
n=0 p

n[xm,n] with xm,n ∈ A[+. For
each v ∈ Spa(A,A+), corresponding to w ∈ Spa(A[, A[+) via Corollary 2.6.15, we may apply
Lemma 2.6.7 and Lemma 2.6.9 to see that for m sufficiently large, w(xm,0) = v($) 6= 0;
in particular, there exists a neighborhood U of w in Spa(A[, A[+) on which xm,0 does not
vanish. Since Spa(A[, A[+) is quasicompact, we may make a uniform choice of m for which
xm,0 vanishes nowhere on Spa(A[, A[+). By Corollary 1.5.20, xm,0 is a pseudouniformizer in
A[, and we may take $ = xp

−k

m,0 for k sufficiently large to achieve the desired result. �
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Lemma 2.6.17. For (R,R+, I) corresponding to (A,A+) as in Lemma 2.6.14, under the bi-
jection Spa(A,A+)→ Spa(R,R+) of Corollary 2.6.15, every rational subspace of Spa(A,A+)
arises from some rational subspace of Spa(R,R+).

Proof. Choose f1, . . . , fn, g ∈ A generating the unit ideal. By Exercise 1.2.2, for ε > 0
sufficiently small, perturbing f1, . . . , fn, g by elements of norm at most ε does not change the
resulting rational subspace. For y = f1, . . . , fn, g in turn, choose x0 ∈ W b(R) lifting y and
define the sequence x0, x1, . . . as in Lemma 2.6.9; then for sufficiently large m we have

max{(α ◦ ])(y), ε} = max{α(xm), ε} (α ∈M(R)).

By replacing y with ](xm) in the list of parameters for our rational subspace, we achieve the
desired result. �

Remark 2.6.18. The idea of performing Euclidean division in rings of Witt vectors has a
long history. For Witt vectors over a valuation ring, some early instances can be found in
work of the author [103, Lemma 3.28], [105, Lemma 2.6.3]; the thread was then picked up
by Fargues–Fontaine (see [62, Preface, §1.1] for further historical context). For Witt vectors
over more general topological rings, an early source is [109, Lemma 5.5]; the point of view
taken therein led to the treatment of perfectoid fields given in [110] and the treatment of
perfectoid rings in [117, 118].

By contrast, the original work of Scholze [156] did not rely on Euclidean division for Witt
vectors, this being supplanted by systematic use of almost commutative algebra in the sense
of Faltings.

2.7. Primitive ideals and tilting. We now show that the construction of Lemma 2.6.14
accounts for all perfectoid pairs, completing the proof of Theorem 2.3.9.

Lemma 2.7.1. For (A,A+) a uniform Huber pair in which p is topologically nilpotent,
topologize the set A[ := lim←−x 7→xp A as in Definition 2.3.1.

(a) Let (xn)n, (yn)n ∈ A[ be elements. The limit in the formula

(2.7.1.1) (xn)n + (yn)n =
(

lim
m→∞

(xm+n + ym+n)p
m
)
n

exists and defines an element of A[.
(b) Using (2.7.1.1) to define addition, A[ is a perfect uniform Huber ring of characteristic

p.
(c) The subset A[+ := lim←−x 7→xp A

+ is a subring of A[. Moreover, for any ideal of definition
I of A+ for which p ∈ Ip, the map

A[+ = lim←−
x 7→xp

A+ → lim←−
x 7→xp

(A+/I)

of topological rings, for the inverse limit of discrete topologies on the target, is an
isomorphism.

Proof. In the ring W (Fp[xp
−∞
, yp

−∞
]), we have

(2.7.1.2) [x+ y] = lim
m→∞

([xp
−m

] + [yp
−m

])p
m

;

from this equality, we easily deduce (a).
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In A[, it is obvious that addition is commutative, multiplication distributes over addition,
the p-power map is a bijection, and adding something to itself p times gives zero; using
(2.7.1.2), we also see that addition is associative and continuous. It follows that A[ is a
perfect topological ring of characteristic p and that x 7→ |x]| is a norm defining the topology
of A[; in particular, A[ is a uniform Huber ring. This proves (b), from which (c) follows easily
using Lemma 2.2.4. �

Hypothesis 2.7.2. For the remainder of §2.7, let (A,A+) be a perfectoid pair. Keep in
mind that we do not yet know that A[ is analytic; this will be established in Lemma 2.7.8.
Consequently, we need to be a bit wary about applying results from §2.6 to avoid creating a
vicious circle (see Hypothesis 2.6.1).

Definition 2.7.3. By Lemma 2.2.7, there exists a unique homomorphism θ : W (A[+)→ A+

satisfying θ([x]) = ](x) for all x ∈ A[+. Since A+/((p) + I)→ A+/((p) + Ip) is surjective for
an ideal of definition I as in Definition 2.1.1 (see Remark 2.1.5), θ is surjective. The map θ
extends to a homomorphism W b(A[)→ A which we also call θ; however, we do not yet know
that this map is surjective (this will follow from Lemma 2.7.9).

Lemma 2.7.4. For any ideal of definition I of A+ with p ∈ Ip, there exist topologically
nilpotent elements x1, . . . , xn of A[+ such that ](x1), . . . , ](xn) generate I.

Proof. Choose generators x1, . . . , xn of I. The surjectivity of θ implies that x1, . . . , xn can be
chosen so that xi − ](xi) ∈ Ip for i = 1, . . . , n; this yields the claim. �

Lemma 2.7.5. The ideal ker(θ) ⊆ W (A[+) is primitive.

Proof. It suffices to exhibit a single primitive generator. Choose x1, . . . , xn as in Lemma 2.7.4.
Since p ∈ Ip, we can write p in the form

∑n
i=1 yi](xi) for some yi ∈ A+. Lift each yi to

ỹi ∈ W (A[+) and put

z := p−
n∑
i=1

ỹi[xi] ∈ W (A[+);

then z is evidently primitive.
It remains to show that z generates ker(θ). If on the contrary y ∈ ker(θ) is not divisible by z,

then we may apply Lemma 2.6.9 (which does not require A[ to be analytic) to produce a pre-
pared element y′ ∈ W (A[+) congruent to y modulo z; in particular, y′ also belongs to ker(θ)
and is not zero. We now obtain a contradiction by a variant of the proof of Lemma 2.6.6. Let
y′ ∈ A[+ be the reduction of y′; since y′ is prepared, we have |p−1(y′ − [y′])| ≤ |y′|. Applying
θ, we obtain |−p−1](y′)| ≤ |](y′)|, which is only possible if ](y′) = 0 and hence y′ = 0. This
contradicts the assertion that y′ is nonzero and prepared. �

Lemma 2.7.6. The map v 7→ v ◦ ] defines an injective map Spa(A,A+)→ Spa(A[, A[+).

Proof. The map is well-defined by Lemma 2.7.5 and Lemma 2.6.12 (or simply imitating the
proof of the latter). Since the image of ] : A[+ → A+ generates a dense Z-subalgebra of
A+, the map Spa(A+, A+) → Spa(A[+, A[+) is injective. Combining this observation with
Corollary 1.1.4 yields the injectivity of Spa(A,A+)→ Spa(A[, A[+). �

Lemma 2.7.7. Suppose that A is Tate and admits a pseudouniformizer $ such that $p

divides p in A+ and ϕ : A+/($)→ A+/($p) is surjective. Then A[ is Tate (hence perfectoid)
and the map of Lemma 2.7.6 is bijective.
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Proof. By the proof of Lemma 2.7.4 in the case n = 1, we can find $ ∈ A[+ such that
$ − ]($) ∈ $pA+ and hence $A+ = ]($)A+. It follows that $ is a pseudouniformizer
of A[, so A[ is Tate. By Lemma 2.7.1, (A[, A[+) is a perfectoid pair; in fact, the triple
(A[, A[+, ker(θ)) corresponds to (A,A+) as in Lemma 2.6.14. By Corollary 2.6.15, the map
of Lemma 2.7.6 is bijective. �

Lemma 2.7.8. With notation as in Lemma 2.7.4, the elements x1, . . . , xn generate the unit
ideal in A[. In particular, A[ is analytic.

Proof. Apply Lemma 2.7.5 to construct a primitive generator z of ker(θ). Promote A to a
uniform Banach ring as per Remark 1.5.4; pulling back along ] then provides a norm pro-
moting A[. Since ](x1), . . . , ](xn) generate the unit ideal in A, we may form the associated
standard rational covering of Spa(A,A+); namely, for i = 1, . . . , n, let (A,A+)→ (Bi, B

+
i ) be

the rational localization defined by the parameters ](x1), . . . , ](xn), ](xi). By Lemma 2.7.1,
B[
i is a uniform Huber ring containing xi as a pseudouniformizer (because ](xi) is invert-

ible in Bi), and hence a Tate perfectoid ring of characteristic p. (This did not yet re-
quire Lemma 2.7.7 because we already had a choice of $ in mind.) The surjective map
W b(A[)〈T1, . . . , Tn〉 → A〈T1, . . . , Tn〉 → B factors through W b(B[

i )→ Bi via the map taking
Ti to [f i/g], so W b(B[

i ) → Bi is surjective. Let (B′i, B
′+
i ) be the untilt of (B[

i , B
[+
i ) corre-

sponding to the ideal (z), which is perfectoid by Lemma 2.6.14; we now have a surjective
map B′i → Bi. The map Spa(Bi, B

+
i )→ Spa(B′i, B

′+
i ) is thus a closed immersion, and hence

a homeomorphism of Spa(Bi, B
+
i ) onto a closed subset of Spa(B′i, B

′+
i ). On the other hand,

by Corollary 2.6.15, the image of Spa(B′i, B
′+
i )→ Spa(A,A+) consists entirely of points v for

which v(](xj)) ≤ v(](xi)) for j = 1, . . . , n, and hence is contained in Spa(Bi, B
+
i ). It follows

that B′i → Bi must in fact be an isomorphism, and so (Bi, B
+
i ) is perfectoid.

For some suitably large m, $ := ](gp
−m

) is a pseudouniformizer of Bi such that $p divides
p in B+

i and ϕ : B+
i /($)→ B+

i /($
p) is bijective. We may thus apply Lemma 2.7.7 to deduce

that Spa(Bi, B
+
i )→ Spa(B[

i , B
[+
i ) is bijective, and hence thatM(Bi)→M(B[

i ) is bijective.
For α ∈M(A[) with α(x1), . . . , α(xn) not all zero, we can find an index i ∈ {1, . . . , n} for

which max{α(x1), . . . , α(xn)} = α(xi) 6= 0, and then α belongs to the image of M(B[
i ). In

particular, the joint zero locus Z of x1, . . . , xn inM(A[), which is closed, has as complement
the image of M(B[

1 ⊕ · · · ⊕ B[
n) in M(A[), which is also closed (because the image of a

continuous map from a quasicompact space to a Hausdorff space is closed). Consequently,
Z is a closed-open subset of M(A[); since A[ is a Banach algebra over the trivially valued
field Fp, we may apply [13, Theorem 7.4.1] to realize Z as the zero locus of some idempotent
element e ∈ A[. Put e = ](e); then e is an idempotent of A which vanishes nowhere, and so
e = 1. It follows that e = 1, Z = ∅, and A[ is analytic. �

Lemma 2.7.9. The formula

(A,A+) 7→ (R := A[, R+ := A[+, I := ker(θ : W (R+)→ A+))

defines a functor from perfectoid pairs (A,A+) to triples (R,R+, I), in which (R,R+) is a
perfectoid pair of characteristic p and I is a primitive ideal of W (R+). This functor and the
functor from Lemma 2.6.14 are quasi-inverses of each other, so they are both equivalences of
categories.

Proof. By Lemma 2.7.1 and Lemma 2.7.8, (R,R+) is a perfectoid pair of characteristic p. By
Lemma 2.7.5, I is a primitive ideal. It is evident that applying the functor from Lemma 2.6.14
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followed by this functor yields a functor naturally isomorphic to the identity; to complete the
proof, we must verify that the composition in the other direction is also naturally isomorphic
to the identity.

Notate the composite functor as (A,A+) 7→ (B,B+); then the map θ : W b(A[) → A
factors through an injective morphism B → A which (by the discussion of Definition 2.7.3)
restricts to an isomorphism B+ → A+. Fix elements x1, . . . , xn ∈ A[+ as in Lemma 2.7.4
(for some ideal of definition); for any y ∈ A, there exists a nonnegative integer m such that
](x1)my, . . . , ](xn)my ∈ A+ = B+ ⊆ B. Since ](x1), . . . , ](xn) generate the unit ideal in B, it
follows that y ∈ B, and so B → A is surjective. This proves the claim. �

We have now established Theorem 2.3.9, and thus are free to invoke it in subsequent
proofs.

Lemma 2.7.10. The map θ : W b(R) → A induces a surjection W (R◦) → A◦ and an
isomorphism R◦/R◦◦ → A◦/A◦◦. (Recall that A◦◦ denotes the set of topologically nilpotent
elements of A.)

Proof. It is clear that θ(W (R◦)) ⊆ A◦; we establish the reverse implication as follows. Start
with an element y ∈ A◦, choose a lift x ∈ W b(R) of y, form the sequence x0, x1, . . . as
in Lemma 2.6.9, and choose m for which xm is prepared. The reduction xm of xm satisfies
|p−1(xm − [xm])| ≤ |xm|, and so |y − ](xm)| < |](xm)|. This forces |xm| = |y| ≤ 1; since xm
is prepared, this in turn implies xm ∈ W (R◦).

This produces the surjectionW (R◦)→ A◦; since p is topologically nilpotent in A, the map
W (R◦)→ A◦ → A◦/A◦◦ factors through a surjection R◦/R◦◦ → A◦/A◦◦. Using Lemma 2.6.9
again, we see that this map is injective. �

2.8. More proofs. We continue to establish the basic properties of perfectoid rings.

Lemma 2.8.1. Let f : (A,A+) → (B,B+) be a morphism of perfectoid Huber pairs such
that f [ is strict. (By Theorem 2.4.2 this is equivalent to f being strict, but this lemma is
used in the proof of that statement.) Let z ∈ W (A[+) be a generator of ker(θ). Then within
W b(B[) we have the equalities

zW (B[+) ∩W (A[+) = zW (A[+), zW b(B[) ∩W b(A[) = zW (B[)

Proof. We check the first assertion, the second being similar. If x ∈ W (A[+) can be written
in W (B[+) as yz for some y, then from the shape of z we see that y is congruent modulo
[z] to an element of W (A[+). Writing y = w0 + [z]y1 with w0 ∈ W (A[+), we may repeat the
argument to see that y1 is congruent modulo [z] to an element of W (A[+), and so on. Since
W (A[+) is complete for the [z]-adic topology, we deduce the claim. �

We have now established Theorem 2.4.2, and thus are free to use it in subsequent proofs.

Lemma 2.8.2. Let (A,A+) be a perfectoid Huber pair. Then for any positive integer m,
there exists an ideal of definition Im of A+ such that p ∈ Ipmm .

Proof. The case m = 1 is included in Definition 2.1.1. Given an ideal of definition Im such
that p ∈ Ip

m , choose generators x1, . . . , xn of Im. By Remark 2.1.5, there exist elements
y1, . . . , yn of A+ such that ypi ≡ xi (mod Ipm); it follows easily that yp1, . . . , ypm are topologically
nilpotent and generate Im. Hence the ideal Im+1 of A+ generated by y1, . . . , ym is also an
ideal of definition and satisfies Ipm+1 = Im; hence p ∈ Ip

m+1 as desired. �
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The following metric criterion for the perfectoid property is adapted from [117, Proposi-
tion 3.6.2].

Lemma 2.8.3. Let (A,A+) be a uniform Huber pair and let I be an ideal of definition of A+

such that p ∈ Ip. Using the ideal I, promote A to a uniform Banach ring as per Remark 1.5.4.
Then A is perfectoid if and only if there exists some c ∈ (0, 1) such that for every x ∈ A,
there exists y ∈ A with |x− yp| ≤ c |x|.

Proof. If there exists some c as described, then for m sufficiently large, the ideal of definition
Im given by Lemma 2.8.2 has the property that ϕ : A◦/Im → A◦/Ipm is surjective, so A
is perfectoid. Conversely, suppose that A is perfectoid. By Theorem 2.3.9, the map θ :
W b(A[)→ A is surjective with kernel generated by some primitive element z ∈ W (A[+). Put
c := |z0|. By Lemma 2.6.9, for each x ∈ A there exists y ∈ A[ such that |x− ](y)| ≤ c |x|;
we may then take y = ](y1/p). �

Lemma 2.8.4. Let f : A → B be a morphism of uniform Banach rings with dense image.
If A is perfectoid, then B is perfectoid and f [ has dense image.

Proof. By arguing as in Lemma 2.7.1, we see that B[ is a uniform Huber ring which is perfect
of characteristic p; it is also analytic because it receives the continuous map f [ from A[. By
Theorem 2.3.9, we have A ∼= W b(A[)/(z) for some primitive element z ∈ W (A[+). Let B[

0

be the closure of the image of A[ in B[, which is a perfectoid ring of characteristic p, and
set B0 := W b(B[

0)/(z). Since the composition W b(A[) → A → B has dense image, so does
the induced map B0 → B. We may thus use B0 to verify that B satisfies the condition of
Lemma 2.8.3, so B is perfectoid. The map B[

0 → B[ is a strict inclusion, as then is B0 → B
by Theorem 2.4.2; since the latter map also has dense image, it is an isomorphism. Hence f [
has dense image. �

Lemma 2.8.5. Let f : A → B be a surjective morphism of perfectoid Banach rings. Then
the quotient norm induced by the spectral norm on A coincides with the spectral norm on B.
(In other words, B+/f(A+) is an almost zero B+-module; see Definition 2.9.4 below.)

Proof. We adapt the argument from [117, Proposition 3.6.9(c)]. Since f is surjective, the
induced mapM(B) →M(A) is injective; by Lemma 1.5.21, it follows that f has operator
norm at most 1 (i.e., it is submetric). By Theorem 1.1.9, the quotient norm on B is bounded
by some constant c > 1 times the given norm. It will suffice to check that c can be replaced
by c1/p; in fact, it further suffices to check that for every b ∈ B, there exists a ∈ A such that
|a| ≤ c |b| and |b− f(a)| ≤ p−1/p |b| (as we may then iterate the construction).

To begin, lift bp to a′ ∈ A with |a′| ≤ c |bp|. Choose some lift x of a′ to W b(A[), then
construct the sequence xm as in Lemma 2.6.9 with respect to a primitive generator of ker(θ :
W b(A[)→ A) provided by Lemma 2.7.5. For m sufficiently large,

(2.8.5.1) α(a′ − ](xm,0)) ≤ p−1 max{α(a′), |bp|} (α ∈M(A)).

We claim that a := ](x
1/p
m,0) has the desired property. To see this, we may use Lemma 1.5.21

to reformulate the desired inequality as

(2.8.5.2) β(b− f(a)) ≤ p−1/pβ(b) (β ∈M(B)).

To check this, we first deduce from (2.8.5.1) that β(bp − f(a)p) ≤ p−1 |bp|. If β(p) > 0, we
may deduce (2.8.5.2) from a simple analysis of the p-th power map in a mixed-characteristic
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nonarchimedean field [108, Lemma 10.2.2]. If instead β(p) = 0, we may instead deduce
(2.8.5.2) more trivially. �

Lemma 2.8.6. Let f : A→ B be a surjective morphism of perfectoid rings. Then f [ is also
surjective.

Proof. We adapt the argument from [117, Proposition 3.6.9(d)]. Promote A and B to uniform
Banach rings (equipped with their spectral norms) as per Remark 1.5.4. It will suffice to check
that each b ∈ B[ can be lifted to some a ∈ A[ with |a| ≤ p1/2

∣∣b∣∣; in fact, it further suffices
to check that there exists a with |a| ≤ p1/2

∣∣b∣∣ and ∣∣b− f [(a)
∣∣ ≤ p−1/2

∣∣b∣∣ (as we may then
iterate the construction).

Apply Lemma 2.8.5, we may lift ](b) ∈ B to a′ ∈ A with |a′| ≤ p1/2
∣∣b∣∣. Using Lemma 2.6.9

as in the proof of Lemma 2.8.5, we can lift a′ to x ∈ W b(A[) so that

|a′ − ](x0)| ≤ p−1 max{|a′| ,
∣∣b∣∣}.

We claim that a := x0 has the desired property. To see this, apply Remark 2.2.8 to deduce
that ∣∣](b)− ](f [(a))− ](b− f [(a))

∣∣ ≤ p−1/2
∣∣b∣∣ .

From this, it follows that ∣∣b− f [(a)
∣∣ =

∣∣](b− f [(a))
∣∣ ≤ p−1/2

∣∣b∣∣
as desired. �

Lemma 2.8.7. Let (A,A+) be a perfectoid pair. Let z be a generator of ker(θ : W (A[+) →
A+). Let (A,A+)→ (B,B+), (A,A+)→ (C,C+) be two morphisms of perfectoid pairs. Then
(B⊗̂AC,B+⊗̂A+C+) is the untilt of (B[⊗̂A[C[, B[+⊗̂A[+C[+) corresponding to the ideal (z).

Proof. This is clear in the case where C is equal to the perfectoid Tate algebra A〈T p−∞s : s ∈
S〉 for some possibly infinite index set S (i.e., the completion of the perfect polynomial ring
A[T p

−∞
s : s ∈ S] for the Gauss norm) and C+ = A+〈T p−∞s : s ∈ S〉, as then the completed

tensor product is obtained by substituting B for A, and likewise on the tilt side.
To handle the general case, put

C̃ = A〈T p−∞s : s ∈ C[+〉, C̃+ = A+〈T p−∞s : s ∈ C[+〉;
then there is a morphism (C̃, C̃+) → (C,C+) sending T p

−n

s to ](sp
−n

). The tilt of this
morphism has image containing all of C[+, and hence is surjective (compare the proof of
Lemma 2.7.9); it is thus surjective by Theorem 2.4.4. By the previous paragraph, (B⊗̂AC̃, B+⊗̂A+C̃+)
is the untilt of (B[⊗̂A[C̃[, B[+⊗̂A[+C̃[+) corresponding to the ideal (z). Since C̃[ → C[ is
strict surjective by Theorem 1.1.9, so is B[⊗̂A[C̃[ → B[⊗̂A[C[; by Theorem 2.4.4(b), we can
thus untilt the surjective morphism (B[⊗̂A[C̃[, B[+⊗̂A[+C̃[+) → (B[⊗̂A[C[, B[+⊗̂A[+C[+)
to get a surjective morphism (B⊗̂AC̃, B+⊗̂A+C̃+) → (D,D+). By the same token, C̃ →
C is strict surjective, as then is B⊗̂AC̃ → ⊗̂AC; we thus obtain a surjective morphism
(B⊗̂AC,B+⊗̂A+C+)→ (D,D+).

To see that this map is an isomorphism, it suffices to do so at the level of the rings
of integral elements. To do this, first observe that D[+ is isomorphic to the completion of
B[+ ⊗A[+ C[+ with respect to an ideal of definition of A[+ (this being obviously true with
C replaced by C̃; the general case follows because C̃[+ → C[+ is surjective). It follows that
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D+ is isomorphic to the completion of B+ ⊗A+ C+ with respect to an ideal of definition of
A+. This in turn implies that we get the same answer when completing with with respect to
the spectral norm, which yields the desired result. (Compare [118, Theorem 3.3.13], or [156,
Proposition 6.18] for a different approach using almost commutative algebra.) �

Lemma 2.8.8. Suppose that f 1, . . . , fn, g ∈ A[ are elements such that ](f 1), . . . , ](fn), ](g)
generate the unit ideal in A. Let (A,A+) → (B,B+) be the rational localization defined by
these parameters. Then

B ∼= A〈T p
−∞

1 , . . . , T p
−∞

n 〉/(](gp−j

)T p
−j

i − ](fp
−j

) : i = 1, . . . , n; j = 0, 1, . . . )∧.

In particular, (B,B+) is an untilt of the localization of (A[, A[+) defined by f 1, . . . , fn, g.

Proof. We emulate [117, Remark 3.6.16]. Denote the quotient being compared to B as B′.
Choose h1, . . . , hn, k ∈ A such that h1](f 1) + · · · + hn](fn) + k](g) = 1. For i1, . . . , in ∈
Z[p−1]≥0, T i11 · · ·T inn represents the same class in B′ as

(k + h1T1 + · · ·+ hnTn)n](f
i1−bi1c
1 ) · · · ](f in−bincn )](gn−(i1−bi1c+···+in−binc))T

bi1c
1 · · ·T bincn .

We thus construct an inverse of the map B → B′. �

Lemma 2.8.9. Theorem 2.5.9 holds in the case where A is a perfectoid field. Moreover, the
tilting operation preserves the degrees of field extensions.

Proof. See [177, Lecture 2] or the references in Remark 2.5.13. �

Lemma 2.8.10. Let R → S be a finite (resp. finite étale) morphism of perfectoid rings of
characteristic p. Then any untilt of this morphism is finite (resp. finite étale).

Proof. Let A → B be an untilt of R → S. Choose x1, . . . , xn which generate S as an R-
module. By the open mapping theorem, the resulting map Rn → S is strict; it follows easily
from this that [x1], . . . , [xn] generate W b(S) over W b(R), and hence that ](x1), . . . , ](xn)
generate B over A.

Suppose now that R→ S is finite étale. Since A is uniform, as in [117, Proposition 2.8.4]
we may check that A → B is finite flat by checking that its rank is locally constant, which
follows from Lemma 2.8.9. (Note that this argument uses essentially the fact that A is
reduced; compare [52, Exercise 20.13].)

Now recall that R→ S is finite étale if and only if both R→ S and S⊗R S → S are finite
flat. (The “only if” direction is obvious. The “if” direction holds because S ⊗R S → S being
flat implies that R → S is formally unramified [166, Tag 092M]. See also the discussion of
weakly étale morphisms in [166, Tag 092A].) By the compatibility of untilting with tensor
products (Lemma 2.8.7), we may repeat the previous argument to see that B ⊗A B → B is
finite flat, and then deduce that A→ B is finite étale. �

Lemma 2.8.11. Let (A,A+) be a perfectoid pair. Let z be a generator of ker(θ : W (A[+)→
A+). Then the functor B[ 7→ W b(B[)/(z) defines an equivalence of categories between finite
étale B[-algebras and finite étale B-algebras.

Proof. The functor is well-defined by Lemma 2.8.10, and fully faithful by Theorem 2.3.9;
it thus suffices to check essential surjectivity. In the case where A is a perfectoid field,
essential surjectivity follows from Lemma 2.8.9. In the general case, given a finite étale
morphism A→ B, we may combine the field case with the henselian property of local rings
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(Remark 1.2.5) to produce a rational covering {(A,A+) → (Ai, A
+
i )} such that for each i,

B ⊗A Ai is the untilt of some finite étale Ai-algebra. By full faithfulness, these modules
collate to give a finite étale O-module on Spa(A[, A[+). Since Spa(A[, A[+) is sheafy by
Corollary 2.5.4, we may apply Theorem 1.4.2 (or Remark 1.4.3) to obtain a finite étale
A[-module B[ which untilts to B. In particular, B is perfectoid. �

Exercise 2.8.12. Let A be a perfectoid ring. Note that in general, not every finite A-algebra
is perfectoid, even if we restrict to characteristic p (trivially by adjoining nilpotents to destroy
uniformity, or less trivially as in Exercise 2.5.8 where the result is still uniform). Nonetheless,
show that B → B[ defines an equivalence of categories between perfectoid finite A-algebras
and perfectoid finite A[-algebras.

2.9. Additional results about perfectoid rings. We mention some additional results
whose proofs lie outside the scope of these notes.

Theorem 2.9.1 (Kedlaya). Any perfectoid ring whose underlying ring is a field is a perfec-
toid field. (That is, it is not necessary to assume in advance that the topology is given by a
multiplicative norm.)

Proof. Any such ring is Tate (not just analytic), so [113, Theorem 4.2] applies. �

Corollary 2.9.2. Let A be a perfectoid ring. Let I be a maximal ideal of A (which is auto-
matically closed; see Remark 1.1.1). If A/I is uniform, then it is a perfectoid field.

Proof. If A/I is uniform, it is again a perfectoid ring by Theorem 2.4.4, and so Theorem 2.9.1
applies. �

The following corollary is analogous to a standard fact about perfect rings.

Corollary 2.9.3. Any noetherian perfectoid ring is a finite direct sum of perfectoid fields.

Proof. Let A be a noetherian perfectoid ring. For x ∈ A[, the sequence of ideals (](xp
−n

))n of
A forms an ascending chain, and hence must stabilize. That is, there exists a positive integer
n such that for y = ](xp

−n
), we have y = wyp for some w ∈ A. For such w, yp−1w is an

idempotent in A, which defines a splitting A ∼= A1⊕A2 of perfectoid rings by projecting onto
A1. Since y(yp−1w) = y, y must project to a unit in A1 and to zero in A2; consequently, x
must project to a unit in A[1 and to zero in A[2. In other words, every element of A[ equals a
unit times an idempotent. Since idempotent ideals in A[ satisfy the ascending chain condition
(as seen by applying ]), we deduce that A[ is a finite direct sum of fields, each of which must
be a perfectoid field by Theorem 2.9.1. �

Definition 2.9.4. For A a perfectoid ring, an A+-moduleM is almost zero if it is annihilated
by every topologically nilpotent element of A+. Such modules form a thick Serre subcategory
of the category of A+-modules, so one may form the quotient category.

Theorem 2.9.5. Let (A,A+) be a perfectoid pair. Then for each i > 0, the A+-modules
H i(Spa(A,A+),O+) and H i(Spa(A,A+)et,O+) are almost zero.

Proof. See [156, Lemma 6.3(iv)] in the case where A is an algebra over a perfectoid field,
[117, Lemma 9.2.8] in the case where A is an algebra over Qp, or [118, Corollary 3.3.20] in
the case where A is Tate. The analytic case is similar. �

In the Tate case, the following statement is [118, Theorem 3.7.4].
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Exercise 2.9.6. A seminormal ring is a ring R in which the map

R→ {(y, z) ∈ R×R : y3 = z2}, x 7→ (x2, x3)

is an isomorphism. This definition is due to Swan [168]. Using Theorem 2.9.5, show that
any perfectoid ring is seminormal. (Hint: work locally around a point v ∈ Spa(A,A+),
distinguishing between the cases where v(y), v(z) are both zero or both nonzero.)

Theorem 2.9.7. Let A be a uniform analytic Huber ring such that some faithfully finite
étale (i.e., faithfully flat and finite étale) A-algebra is perfectoid. Then A is perfectoid.

Proof. In the case where A is Tate, this is [118, Theorem 3.3.25]; the analytic case is similar.
�

Problem 2.9.8. Does Theorem 2.9.7 remain true if “étale” is weakened to “flat”?

Theorem 2.9.9. Let (A,A+) be a (not necessarily sheafy) Huber pair in which A is Tate and
p is topologically nilpotent, and put X := Spa(A,A+). Then there exists a directed system
(A,A+) → (Ai, A

+
i ) of faithfully finite étale morphisms such that the completion of lim−→i

Ai
for the seminorm induced by the spectral seminorm on each Ai is a perfectoid ring. (Note
that the transition morphisms are isometric for the spectral seminorms.)

Proof. For A a Huber ring over Qp, this follows from an argument of Colmez: for X affinoid,
it suffices to repeatedly adjoin p-power roots of units. See [157, Proposition 4.8] (nominally in
the locally noetherian case, but the argument does not depend on this) or [117, Lemma 3.6.26,
Lemma 9.2.5]. In the Tate case, a modification of Colmez’s argument by Scholze applies; see
[118, Lemma 3.3.28]. �

Remark 2.9.10. It is far from clear whether Theorem 2.9.9 remains true if we assume only
that A is analytic, rather than Tate; there is no obvious mechanism to ensure in this case
that A has “enough” finite étale extensions. Nonetheless, Theorem 2.9.9 implies that in any
analytic adic space (or preadic space; see Definition 1.11.2) on which p is topologically
nilpotent, in the pro-étale topology (to be introduced in Weinstein’s third lecture [177,
Lecture 3], but see also Definition 3.8.1) there exists a neighborhood basis consisting of
perfectoid spaces. This fact underpins the use of perfectoid spaces in p-adic Hodge theory, as
in the lectures of Bhatt [16] and Caraiani [27]; it also gives rise to the functor from analytic
adic spaces in which p is topologically nilpotent to diamonds (Definition 4.3.1).

We next establish an observation of Bhatt about quotients of perfectoid rings, using a key
lemma of André from the proof of the direct summand conjecture (see Remark 4.3.19).

Lemma 2.9.11 (André). Let A be a perfectoid ring, let $ ∈ A be a pseudouniformizer, and
let g ∈ A be an element. Let B be the completion of

lim−→
n→∞

A〈T p−∞〉
〈
T − g
$n

〉
for the infimum of the spectral norms (which does not depend on $). Then B is perfectoid
and A◦/($) → B◦/($) is almost faithfully flat; that is, for any A◦/($)-module M , the
groups Tor

A◦/($)
i (M,B◦/($)) are almost zero A◦-modules for all i > 0.

Proof. See [6, §2.5] or [15, Theorem 2.3]. �
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Theorem 2.9.12 (Bhatt). Let A be a perfectoid ring, let I be a closed ideal of A, and let
B be the uniform completion of A/I. Then B is perfectoid and the natural map f : A→ B
is surjective.

Proof. By Theorem 2.4.3(a), B is perfectoid. Choose a pseudouniformizer $ ∈ A[ such that
$ := ]($) divides p in A◦. By repeated application of Lemma 2.9.11, we may construct a
morphism A → A′ with A′ perfectoid such that A◦/($) → A′◦/($) is almost faithfully flat
and every g ∈ I admits a coherent sequence of p-power roots {gp−n}n in A′. Let J be the
closure of the ideal of A′ generated by the gp−n for all g and n; by Corollary 2.4.6, A′/J is
perfectoid.

By Theorem 2.4.1, B′ := B⊗̂AA′ is again perfectoid. Note that B′ is the uniform comple-
tion of the quotient of A′ by the closed ideal generated by I; since each gp−n projects to a
nilpotent element of A′/IA′, B is also the uniform completion of A′/J . Since the latter is
already perfectoid, it is in fact isomorphic to B′; that is, f ′ : A′ → B′ is surjective.

By Theorem 2.4.4(b), f ′[ : A′[ → B′[ is also surjective. By the open mapping theo-
rem (Theorem 1.1.9) and perfectness, the map A′[◦ → B′[◦ is almost surjective; the map
A′[◦/($)→ B′[◦/($) is thus almost surjective. This is the same map as A′◦/($)→ B′◦/($);
since A◦/($) → A′◦/($) is almost faithfully flat and B′◦/($) is almost isomorphic to
B◦/($) ⊗A◦/($) A

′◦/($), we deduce that A◦/($) → B◦/($) is almost surjective. This is
the same map as A[◦/($) → B[◦/($); applying this repeatedly, we deduce that A[◦ → B[◦

is almost surjective. Consequently, f [ is surjective; by Theorem 2.4.4, f is also surjective. �

Corollary 2.9.13. Let f : A→ B be a morphism of perfectoid rings. Then f is injective if
and only if f [ : A[ → B[ is injective.

Proof. It is obvious that if f [ fails to be injective, then so does f : if x ∈ ker(f [), then
](x) ∈ ker(f). Conversely, suppose that f has nonzero kernel I. Since B is uniform, any
homomorphism A/I → B of Banach rings factors uniquely through the uniform completion
of A/I; however, by Theorem 2.9.12, the latter has the form A/J for some closed ideal J
containing I, and is again perfectoid. By Theorem 2.4.4, A[ → (A/J)[ is surjective, and
cannot be an isomorphism because J 6= 0; it thus has nonzero kernel by Corollary 2.4.5.
Since f [ factors as A[ → (A/J)[ → B[, it too has nonzero kernel. �

We obtain the following refinement of Theorem 2.9.1, which was left as an open problem
in [113].

Corollary 2.9.14. Let A be a perfectoid ring. Then for every maximal ideal I of A, the
quotient A/I is a perfectoid field. In particular, there is exactly one point of M(A) with
residue field A/I.

Proof. Since I is maximal, it is closed (Remark 1.1.1), so A/I is a nonzero Banach ring.
In particular, the uniform completion of A/I is also nonzero (Corollary 1.5.22); by Theo-
rem 2.9.12, it has the form A/J for some closed ideal J of A containing I. By maximality,
we must have I = J ; hence A/I is a perfectoid ring. By Theorem 2.9.1, A/I is a perfectoid
field. �

Remark 2.9.15. Theorem 2.9.12 implies that in the language of [159], there is no difference
between closed immersions and strongly closed immersions of perfectoid spaces (though the
two concepts do differ for uniform adic spaces). That is, for any perfectoid pair (A,A+), any
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closed subset of Spa(A,A+) which is the zero locus of some ideal ofA has the form Spa(B,B+)
where B is a perfectoid quotient of A. Nonetheless, there remain some open questions about
the zero loci of perfectoid power series; for further discussion, see the student project of
Weinstein [177].

Remark 2.9.16. In Theorem 2.9.12, we do not know whether the ideal J/I of A/I is always
equal to the closure of the nilradical. See Example 2.4.10 for a nontrivial example where this
does in fact occur.

Remark 2.9.17. We postpone one more result until we have discussed fundamental groups:
an amazing recent theorem of Achinger that asserts that adic affinoid spaces on which p
is topologically nilpotent have no higher étale homotopy groups. See Theorem 4.1.26 and
Corollary 4.1.27.

Remark 2.9.18. For discussion of various foundational problems concerning perfectoid rings
and spaces in the spirit of the Scottish Book12, see [115]. Another apt analogue in point-set
topology is the book [167].

12The Scottish Book is an artifact of the Lwów School of Mathematics, which was active in the 1930s and
included Stefan Banach, Stanis law Mazur, Hugo Steinhaus, Stanis law Ulam, and other Polish mathemati-
cians. The book records many problems that arose in the development of modern functional analysis. Mazur
famously offered a live goose as the reward for the solution of a particular problem; when this problem was
finally resolved by Per Enflo in the 1970s, Mazur dutifully presented Enflo with the promised prize in a
ceremony broadcast on Polish television. The book was created at and named for the Scottish Café in Lwów;
the city is now Lviv, Ukraine and the site of the Café now houses the Szkocka restaurant, where one can
view a replica of the original book (as confirmed by the author in 2018).
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3. Sheaves on Fargues–Fontaine curves

We next pick up on a topic introduced in Weinstein’s lectures [177]: the construction
of Fargues–Fontaine which gives rise to a “moduli space of untilts” of a given perfectoid
space. In this lecture, we study vector bundles and coherent sheaves on Fargues–Fontaine
curves (associated to a perfectoid field) and relative Fargues–Fontaine curves (associated to
a perfectoid ring or space), and a profound relationship between these sheaves and étale
local systems. We will see in the final lecture how these results can be formally recast in
a more suggestive manner that suggests how to put the analogy between mixed and equal
characteristic on a firm footing.

Whereas in the first two lectures these notes constitute a fairly self-contained treatment
of the material, some of the material in the last two lectures is far beyond the scope of what
can be treated here. We thus revert to a more conventional order of presentation, in which
we either prove statements on the spot or defer to external references.

3.1. Absolute and relative Fargues–Fontaine curves. We begin by recalling the con-
struction of Fargues–Fontaine [59, 60, 61, 62] associated to a perfectoid field, and its gener-
alization to perfectoid rings and spaces by Kedlaya–Liu [117, §8.7–8.8]. This generalization
appears in a somewhat different guise also in [162, §11.2].

Hypothesis 3.1.1. Throughout §3.1, let (R,R+) be a perfectoid pair of characteristic p and
put S = Spa(R,R+). Note that only the case where R is Tate is treated in [117].

Definition 3.1.2. Define the ring Ainf := W (R+). It is complete for the adic topology
defined by the inverse image of some ideal of definition of R+.

Lemma 3.1.3. Choose topologically nilpotent elements x1, . . . , xn ∈ R+ which generate the
unit ideal in R.

(a) For the p-adic topology on Ainf , the ring Ainf [p
−1]〈 [x1]

p
, . . . , [xn]

p
〉 is stably uniform.

(b) For i = 1, . . . , n, for the [xi]-adic topology onAinf , the ringAinf [[xi]
−1]〈 p

[xi]
, [x1]

[xi]
, . . . , [xn]

[xi]
〉

is stably uniform.

Proof. We will verify both claims using Corollary 2.5.5. Let S be the p-adic completion
of Zp[pp

−∞
]; the natural morphism Zp → S is split in the category of Zp-modules by the

morphism S → Zp taking all fractional powers of p to zero. By the same token, every
element of the p-adic completion of Ainf ⊗Zp S has a unique representation as a sum

x =
∑

t∈Z[p−1]≥0

xtp
t (xt ∈ Ainf)

where for every positive integer m, there are only finitely many indices t for which xt 6≡ 0
(mod pm). From this, it follows that the p-adic topology is induced by a power-multiplicative
norm, namely the one taking x to the maximum of p−m−t over all t ∈ Z[p−1]≥0 and all
nonnegative integers m for which xt is not divisible by pm.

Note that the Frobenius map on (Ainf ⊗Zp S)/(p) is surjective, On one hand, this implies
that the ring (Ainf⊗̂ZpS)[p−1], taking the completed tensor product for the p-adic topology,
is uniform (by the previous paragraph) and hence perfectoid. We may thus tensor the mor-
phism S → Zp over Zp with Ainf [p

−1] to get a splitting of Ainf [p
−1] → (Ainf⊗̂ZpS)[p−1]. By

Corollary 2.5.5, Ainf [p
−1] is stably uniform, yielding (a).
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On the other hand, the ring (Ainf〈 p
[xi]
〉⊗̂ZpS)[x−1

i ], taking the completed tensor product
for the [xi]-adic topology, is also perfectoid (note that this is an example of a perfectoid ring
which is Tate but not a Qp-algebra); we may thus tensor the morphism S → Zp over Zp with
Ainf〈 p

[xi]
〉[x−1

i ] to get a splitting of Ainf〈 p
[xi]
〉[x−1

i ]→ (Ainf〈 p
[xi]
〉⊗̂ZpS)[x−1

i ]. By Corollary 2.5.5,
Ainf〈 p

[xi]
〉[x−1

i ] is stably uniform, yielding (b). (Compare [162, Proposition 11.2.1] for a similar
argument.) �

Remark 3.1.4. The ring appearing in Lemma 3.1.3(b) can be viewed as a subring ofW (Ri)
where (R,R+) → (Ri, R

+
i ) is the rational localization with parameters x1, . . . , xn, xi. In

particular, every element has a unique expansion
∑∞

n=0 p
n[yn] with yn ∈ Ri. By contrast,

elements of the ring appearing in Lemma 3.1.3(a) do not necessarily admit expansions of the
form

∑
n∈Z p

n[yn].

Definition 3.1.5. For the topology described in Definition 3.1.2, Spa(Ainf ,Ainf) is not an-
alytic; the analytic locus Spa(Ainf ,Ainf)

an consists of those v for which either v(p) 6= 0 or
there exists a topologically nilpotent element x of R+ for which v([x]) 6= 0. For x1, . . . , xn
topologically nilpotent elements of R+ which generate the unit ideal in R, Spa(Ainf ,Ainf)

an

can also be described as the set of v for which v(p), v([x1]), . . . , v([xn]) are not all zero. By
Lemma 3.1.3, Spa(Ainf ,Ainf)

an is a stably uniform adic space.
Let YS be the subspace of Spa(Ainf ,Ainf)

an consisting of those v for which v(p) 6= 0 and
there exists a topologically nilpotent element x of R+ for which v([x]) 6= 0. Again, the latter
condition need only be tested for x running over a finite set of elements which generate the
unit ideal in R.

The action of ϕ on YS is properly discontinuous. The quotient space XS := YS/ϕ
Z in the

category of locally ringed spaces is the adic (relative) Fargues–Fontaine curve over S, which
we also denote by FFS (especially in cases where we want to use X to mean another space).

Exercise 3.1.6. Prove that for any perfectoid space X over Qp, X ×Qp FFS is a perfectoid
space.

Remark 3.1.7. With some effort, it can be shown thatAinf is sheafy and hence Spa(Ainf ,Ainf)
is itself a (nonanalytic) adic space (see Problem A.6.2). For the case where R is a nonar-
chimedean field, see Remark 3.1.10.

Remark 3.1.8. When developing the theory of relative Fargues–Fontaine curves, it is gen-
erally necessary to also consider the quotient of YS by ϕnZ for n a positive integer; this gives
a finite étale covering of XS with Galois group Z/nZ. To simplify the exposition, we (mostly)
omit further mention of this construction.

Remark 3.1.9. Suppose that R is Tate, and let $ ∈ R be a pseudouniformizer. We can
then make the description of XS somewhat more explicit. To begin with, YS is the subspace
of v ∈ Spa(Ainf ,Ainf) for which v(p[$]) 6= 0. This space can be covered by the subspaces

Un := {v ∈ YS : v(p)cp
n ≤ v($) ≤ v(p)p

n},

Vn := {v ∈ YS : v(p)p
n+1 ≤ v($) ≤ v(p)cp

n} (n ∈ Z),

where c ∈ (1, p) ∩Q is arbitrary. The action of ϕ permutes the Un (among themselves) and
the Vn (among themselves), and hence is properly discontinuous. The spaces U0 and V0 map
isomorphically to their images in XS and cover the latter. In particular, XS can be covered by
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two affinoid subspaces, so for every pseudocoherent sheaf F on XS we have H i(XS,F) = 0
for all i > 1.

Remark 3.1.10. Suppose that R = F is a nonarchimedean field and R+ = oF . Then for any
pseudouniformizer $ of F , the ring Ainf [[$]−1]〈 p

[$]
〉 admits euclidean division, and hence is

a principal ideal domain; see [111, Corollary 2.10]. (This result appeared previously in [105,
Lemma 2.6.3], but the proof contains several errors; see the online errata.) In addition, the
ring Ainf [[$]−1]〈 p

[$]
〉 is strongly noetherian [111, Theorem 3.2]; consequently, in this case XS

is a noetherian adic space.
There is a useful illustration of the space Spa(Ainf ,Ainf) in the lectures of Bhatt [16]. To

summarize, as in Example 1.6.11 there is a unique point v ∈ Spa(Ainf ,Ainf) which is not
analytic, namely the one with v(p) = v([$]) = 0, and the only rational subspace containing
v is the whole of Spa(Ainf ,Ainf). We may thus deduce that Spa(Ainf ,Ainf) is an adic space.

By contrast, if R is not a finite direct sum of perfectoid fields, then R itself cannot be
noetherian (Corollary 2.9.3), and it is easily shown that XS is not noetherian either. Also,
one should not expect a particularly explicit description of XS in this case, by analogy with
the structure of Berkovich analytic spaces: these are reasonable to describe combinatorially
in dimension 1 (or dimension 2 over a trivially valued base field) and unreasonable in higher
dimensions.

Remark 3.1.11. The space YS is not affinoid, because it is not quasicompact. However, it
is a quasi-Stein space in the category of adic spaces: it is a direct limit of affinoid subspaces
where the transition maps induce dense inclusions of coordinate rings. For example, if R
contains a pseudouniformizer $, then the subspaces {v ∈ YS : v(p) ≤ v($)n, v($) ≤ v(p)n}
for n = 0, 1, . . . form an ascending sequence of the desired form. Quasi-Stein spaces behave
somewhat like affinoid spaces in that certain sheaves on them can be interpreted in terms of
modules over coordinate rings. See [118, §2.6] for a detailed discussion.

The category of vector bundles on XS can be interpreted as the category of ϕ-equivariant
vector bundles on YS. In light of the previous paragraph, the latter can be interpreted as
finite projective O(YS)-modules equipped with ϕ-action.

Remark 3.1.12. As described in [162, Example 11.2.2], each point of XS corresponds to
a Huber pair (K,K+) in which K is a perfectoid field; the tilting operation thus defines a
map XS → S which turns out to be a projection of topological spaces. (See [162, Propo-
sition 11.2.1] for a description of the corresponding map YS → S, keeping in mind that ϕ
acts trivially on |S|.) This construction commutes with base change; in particular, for F a
nonarchimedean field and Spa(F, oF )→ S a morphism, the fiber of XS over Spa(F, oF ) coin-
cides with the adic Fargues–Fontaine curve over F . In this sense, XS is a “family of curves”
over S. However, this projection map is not a morphism of adic spaces. (It will acquire an
interpretation in the language of diamonds; see Definition 4.3.7.)

Given an untilt (A,A+) of (R,R+), Theorem 2.3.9 produces a primitive element z of
W (R+) such thatW (R+)/(z) ∼= A+ via the theta map. If A is a Qp-algebra, then the element
z gives rise to a closed immersion of Spa(A+, A+) into Spa(Ainf ,Ainf), which restricts (using
Lemma 1.6.5) to a closed immersion of Spa(A,A+) into XS. If we identify Spa(A,A+) with
Spa(R,R+) via Theorem 2.5.1, then this closed immersion becomes a section of the projection
|XS| → |S| in the category of topological spaces.
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Remark 3.1.13. Promote R to a uniform Banach ring with norm |•| as per Remark 1.5.4.
The coordinate ring O(YS) can then be interpreted as the Fréchet completion of Ainf [p

−1]
for the family of Gauss norms (as in Definition 2.6.2) corresponding to the norms |•|r for all
r > 0. In [117], this ring appears under the notation R̃∞R and is an example of an extended
Robba ring, named by analogy with Remark 3.5.4.

Using the norm on R, one can construct a deformation retract of the maximal Hausdorff
quotient of the space XS (see Remark 1.5.15) onto a suitable section of |XS| → |S|; this
implies that |XS| → |S| has contractible fibers. See [109, Theorem 7.8].

Definition 3.1.14. Let O(1) be the line bundle on XS corresponding to the trivial line
bundle on YS on a generator v, with the isomorphism ϕ∗O(1) ∼= O(1) given by 1⊗v 7→ p−1v.

Via the following theorem, the sheaf O(1) may be viewed as an ample line bundle on XS.
This makes it possible to compare XS to a schematic construction.

Theorem 3.1.15. Suppose either that R is Tate and F is a vector bundle on XS, or that
(R,R+) = (F, oF ) for some nonarchimedean field F and F is a coherent sheaf on XS. For
n ∈ Z, define the twisted sheaf F(n) := F ⊗ O(1)⊗n. Then for all sufficiently large n, the
following statements hold.

(a) We have H1(XS,F(n)) = 0.
(b) The sheaf F(n) is generated by finitely many global sections.

Proof. See [117, Lemma 8.8.4, Proposition 8.8.6]. �

Definition 3.1.16. Define the graded ring

PS :=
∞⊕
n=0

PS,n, PS,n := H0(XS,O(n)).

The scheme Proj(PS) is called the schematic Fargues–Fontaine curve over S. By construction,
there is a morphism XS → Proj(PS) of locally ringed spaces.

By analogy with Serre’s GAGA theorem for complex algebraic varieties [164], we have the
following result.

Theorem 3.1.17. The morphism XS → Proj(PS) has the following properties.
(a) Suppose that R is Tate. Then pullback of vector bundles from Proj(PS) to XS defines

an equivalence of categories.
(b) Suppose that (R,R+) = (F, oF ) for some nonarchimedean field F . Then pullback of

coherent sheaves from Proj(PS) to XS is an equivalence of categories.
(c) In both (a) and (b), the pullback functor preserves sheaf cohomology.

Proof. As in the usual GAGA theorem, the strategy is to first prove preservation of H1, then
preservation of H0, then full faithfulness of the pullback functor, then essential surjectivity
of the pullback functor. At each stage, one uses Theorem 3.1.15 to reduce to considering the
sheaves O(n) for n ∈ Z, which one studies by comparing O(n) with O(n + 1). For more
details, see [117, Theorem 6.3.12] for (a) and [118, Theorem 4.7.4] for (b). �

Lemma 3.1.18. Let s ∈ H0(XS,O(1)) be a section which does not vanish on any fiber of
XS (that is, its pullback to XSpa(F,oF ) does not vanish for any nonarchimedean field F ). Let
I ⊂ O be the image of s ⊗ O(−1) in O. Then the zero locus Z of I is an untilt of S, and
the projection |XS| → |S| restricts to a homeomorphism |Z(I)| ∼= |S|.
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Proof. We may work locally on S. For starters, we may assume S admits a pseudouniformizer
$; as per Remark 3.1.9, we may further assume that Z is contained in the affinoid subspace
U = {v ∈ YS : v(p)c ≤ v($) ≤ v(p)} for some c ∈ (1, p) ∩Q. We may also assume that Z is
cut out by a single element f ∈ H0(U,O).

In the case where S is a point, we can perform a Weierstrass factorization using the Newton
polygon of f , as in [105, Lemma 2.6.7], to write f as a multiple of a primitive element; using
this primitive element, we may realize Z as an untilt of S. In the general case, we may
make the same argument in a suitably small neighborhood of any particular x ∈ S, and thus
deduce the claim. (See also [162, Proposition 11.3.1].) �

Remark 3.1.19. It is unclear whether Theorem 3.1.15 and Theorem 3.1.17 extend to
the case where R is analytic, not just Tate. One serious difficulty in that case is that by
Corollary 2.6.16, if R is not Tate then it admits no untilts over Qp, so by Lemma 3.1.18,
H0(XS,O(1)) cannot contain an element which does not vanish identically on any fiber. As
a result, even the nonvanishing of H0(XS,O(n)) for n large is unclear.

Remark 3.1.20. Suppose that R = F is a nonarchimedean field and R+ = oF . Let K be
an untilt of F . As in Remark 3.1.12, the map θ : W (oF ) → oK is surjective with kernel
generated by some primitive element z. If K is of characteristic p, then K = F and we may
take z = p.

Suppose hereafter that K is of characteristic 0. The zero locus of z in YS is a single point;
projecting this point from YS to XS amounts to forgetting the difference between F and its
images under powers of Frobenius. From an algebraic point of view, this makes sense to do
because Frobenius commutes with all automorphisms, and so this forgetting does not mess
up any functoriality.

However, not all points ofXS arise in this fashion, even if F is algebraically closed. Consider
by way of analogy the points on the adic projective line over F . There, the points of height
1 are conventionally divided into four types (following [13, Example 1.4.3]):

1. rigid-analytic points over a completed algebraic closure of F ;
2. generic points of (virtual) closed discs of rational radius;
3. generic points of (virtual) closed discs of irrational radius;
4. points which witness the failure of F to be spherically complete (i.e., equivalence

classes of descending chains of closed discs with empty rigid-analytic intersection).

The points of higher height are considered to be a fifth type; the type 5 points are special-
izations of type 2 points (see [156, Example 2.20] for an illustration).

The structure of XS is quite analogous to this. For example, see [109, Theorem 8.17]
for a classification of the height 1 points which reproduces many features of the Berkovich
classification.

Remark 3.1.21. The previous construction globalizes to give an adic (relative) Fargues–
Fontaine curve over any perfectoid space of characteristic p. Better yet, one may take the
base space to be a suitably nice stack on the category of perfectoid spaces, such as a diamond;
see Definition 4.3.7.
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Remark 3.1.22. Although [62] shows a 2018 publication date, the original construction
of Fargues–Fontaine dates back13 to 2006. As this origin precedes the general promulga-
tion of the theory of perfectoid fields, the original construction involved only algebraically
closed nonarchimedean fields, and yielded only the schematic curves (Definition 3.1.16); the
published version of [62] includes both the schematic and adic viewpoints.

The relative Fargues–Fontaine curves, in both the schematic and adic versions over a Tate
base ring, were introduced by Kedlaya–Liu in [117].

3.2. An analogy: vector bundles on Riemann surfaces. We continue with an analogy
from classical algebraic geometry that will inform our work.

Definition 3.2.1. Let X be a smooth proper curve over a field k. Recall that the degree of
a line bundle on X is defined as the degree of the divisor associated to any nonzero rational
section (noting that any two such divisors differ by a principal divisor, whose degree is 0).
Define the degree of a vector bundle V of rank n as the degree of ∧nV , denoted deg(V ).
Define the slope of a nonzero vector bundle V as the ratio

µ(V ) :=
deg(V )

rank(V )
;

we say V is semistable (resp. stable) if V contains no proper nonzero subbundle V ′ with
µ(V ′) > µ(V ) (resp. µ(V ′) ≥ µ(V )). Every semistable bundle is a successive extension of
stable bundles of the same slope.

One can think of stable vector bundles as the building blocks out of which arbitrary vector
bundles are built. One result in this direction is a theorem of Harder–Narasimhan [87], to
the effect that every bundle admits a certain canonical filtration with semistable quotients.
We will see a more general version of this result later (Theorem 3.4.11).

Remark 3.2.2. When X ∼= P1
k, then Pic(X) ∼= Z with the inverse map being n 7→ O(n),

and a theorem of Grothendieck [80, 91] states that every vector bundle splits (nonuniquely)
as a direct sum of line bundles. A nonzero vector bundle V is semistable if and only if it
splits (noncanonically) as a direct sum O(n)⊕m for some m,n; in particular, every semistable
bundle has integral slope. (These statements were extended by Harder [86] to G-bundles on
P1
k, for G a split reductive algebraic group.)
This example is somewhat misleading in its simplicity. In general, not every semistable

bundle has integral slope; in particular, not every bundle splits as a direct sum of line bundles.
For example, if X is a curve of genus 1 and k is algebraically closed of characteristic 0, a
theorem of Atiyah [9] implies that for any line bundle L on X of odd degree, there is a unique
stable vector bundle V of rank 2 such that ∧2V ∼= L.

Remark 3.2.3. Because the definitions of stable and semistable vector bundles are nonex-
istence criteria, rather than existence criteria, they can be problematic to work with. For
example, it is not apparent from the definition that the pullback of a (semi)stable bundle
along a morphism of curves is again (semi)stable: the pullback bundle may have a subbundle
that witnesses the failure of (semi)stability but is not itself the pullback of a subbundle on

13The history given in the preface to [62] starts in 2009; however, it is my understanding that the initial
discussions between Fargues and Fontaine began at a conference in Venice in 2006, at which I was also
present (but not privy to their conversations).
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the original curve. For another example, for any two nonzero bundles V, V ′ on X we have

µ(V ⊗ V ′) = µ(V ) + µ(V ′),

but it is not apparent that the tensor product of two semistable bundles is again semistable.
The subtlety of this point is illustrated by the fact that the situation depends crucially

on the characteristic of k. In characteristic 0, both pullback and tensor product preserve
semistability; this can be proved either algebraically (see [98, Chapter 3]) or by using the
Lefschetz principle to reduce to the case k = C, then appealing to a “positive” but transcen-
dental characterization of semistability (see Theorem 3.2.4). By contrast, in characteristic p,
semistability is preserved by pullback along separable morphisms [98, Lemma 3.2.2] but not
along Frobenius (see [148] for further discussion of this phenomenon); semistability is also
not preserved by tensor products, as first shown by Gieseker [76].

In characteristic 0, the issues in the previous remark are resolved by the following theorem
of Narasimhan–Seshadri [143], later reproved by Donaldson [45].

Theorem 3.2.4. Assume that k = C, and choose a closed point x0 ∈ X. Then a vector
bundle V of rank n on X is stable of slope 0 if and only if it admits a connection ∇ : V →
V ⊗OX

ΩX/k whose holonomy representation ρ : π1(Xan, x0)→ GLn(C) (i.e., the one from the
Riemann–Hilbert correspondence, obtained by analytic continuation of local sections in the
kernel of ∇) is irreducible and unitary. In the latter case, ∇ and ρ are uniquely determined
by V .

Remark 3.2.5. The use of the terms stable and semistable in this manner stems from the
original context in which these notions were studied, via geometric invariant theory. Assume
(for simplicity) that k is of characteristic 0. For G ⊆ GL(n)k a reductive k-algebraic group,
a point x ∈ An

k is stable for the action of G if its stabilizer in G is finite and its G-orbit is
closed in An

k (the finite-stabilizer condition is comparable to the definition of a stable curve
as one with a finite automorphism group) Given a vector bundle V of rank n of a particular
rank and degree on X, one can tensor with a suitable ample line bundle to obtain a bundle
generated by global sections; this gives a point x in a certain affine space carrying a linear
action of G = GL(n)k, which is stable for the action if and only if V is stable as a bundle.
This makes it possible to construct and study moduli spaces of stable bundles by quotienting
a certain orbit space for the action of G.

3.3. The formalism of slopes. We next describe a more general framework in which slopes
and (semi)stability can be considered. The presentation is based on [150]; see André [4] for
an alternate point of view based on tannakian categories.

Definition 3.3.1. A slope category consists of the following data.
• An exact faithful functor F : C → D for some exact category C and some abelian
category D such that for every V ∈ C, the category of admissible monomorphisms
into V (i.e., monomorphisms which occur as kernels of epimorphisms) is equivalent
via F to the category of monomorphisms into F (V ).
• An assignment rank : D → Z≥0 which is constant on isomorphism classes, additive
on short exact sequences, and takes only the zero object to 0.
• An assignment deg : C → Γ (to some totally ordered abelian group Γ) which is
constant on isomorphism classes, additive on short exact sequences, and with the
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property that for every morphism f : V1 → V2 in C for which F (f) is an isomorphism,
we have deg(V1) ≤ deg(V2) with equality if and only if f is an isomorphism.

In order to parse this definition, we first translate the motivating example of vector bundles
on curves into this framework.

Example 3.3.2. Let X be a smooth proper algebraic curve over a field k with generic point
η. Let C be the exact category of vector bundles onX; a monomorphism V ′ → V is admissible
if and only if V ′ is isomorphic to a saturated subbundle of V , i.e., one for which the quotient
V/V ′ is torsion-free. Let D be the category of finite-dimensional κ(η)-vector spaces; there is
an obvious exact faithful functor F : C → D taking a bundle V to its stalk Vη. For V ∈ C
and K → F (V ) a monomorphism, the subsheaf of V given by U 7→ ker(V (U) → F (V )/K)
is an admissible subobject of V because O(U) is a Dedekind domain. Let rank : D → Z≥0

be the dimension function.
Take Γ = Z and let deg : C → Γ be the usual degree function: for F ∈ C of rank n > 0,

deg(F) is the degree of the divisor defined by any nonzero rational section of the line bundle
∧nF . (The unambiguity of this definition relies on the fact that any principal divisor on X
has degree 0.) The fact that this is additive in short exact sequences comes down to the fact
that if 0→ V ′ → V → V ′′ → 0 is exact, then there is a natural isomorphism

(3.3.2.1) ∧rank(V ) V ∼= ∧rank(V ′)V ′ ⊗ ∧rank(V ′′)V ′′.

If f : V → V ′ is a morphism in C for which F (f) is an isomorphism, then rank(V ) and
rank(V ′) are equal to a common value n, ∧nf : ∧nV → ∧nV ′ is injective with cokernel
supported on some finite set S of closed points, and deg(V )−deg(V ′) is a nonnegative linear
combination of the degrees of the points in S. (The difference deg(V )− deg(V ′) can also be
interpreted as dimkH

0(X, coker(∧nf)), but this interpretation will not persist for abstract
curves as in Definition 3.3.4.)

Definition 3.3.3. For k = C, let Xan denote the analytification of X, which is a compact
Riemann surface. There is a canonical morphism Xan → X in the category of locally ringed
spaces; by (a very special case of) Serre’s GAGA theorem [164], pullback along this morphism
equates the categories of vector bundles (and coherent sheaves) on X and Xan and preserves
sheaf cohomology. We can thus formally restate Example 3.3.2 in terms of vector bundles
on Xan, or even in terms of Γ-equivariant vector bundles on Y where Y → Xan is a Galois
covering space map with deck transformation group Γ. For example, if X is of genus at least
2, then the universal covering space is an open unit disc with deck transformations by the
fundamental group of Xan.

Our subsequent discussion will involve a generalization of Example 3.3.2.

Definition 3.3.4. An abstract curve is a connected, separated, noetherian scheme X which
is regular of dimension 1; any such scheme has a unique generic point η which is also the
unique nonclosed point. An abstract complete curve is an abstract curve X equipped with
a nonzero map deg : Div(X) → Z which is nonnegative on effective divisors and zero on
principal divisors. For X an abstract complete curve, we may emulate Example 3.3.2 to
obtain a slope category with C being the category of vector bundles on X.

This generalization is sufficient to discuss Fargues–Fontaine curves. However, we will also
introduce some additional examples of the slope formalism in §3.5.
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3.4. Harder–Narasimhan filtrations. Fix now a formalism of slopes. We now define and
construct the Harder–Narasimhan filtrations associated to objects of C.
Definition 3.4.1. Define the slope of a nonzero object V ∈ C as the ratio

µ(V ) :=
deg(V )

rank(F (V ))
∈ Γ⊗Z Q.

If 0→ V ′ → V → V ′′ → 0 is an exact sequence in C with V ′, V ′′ 6= 0, then
min{µ(V ′), µ(V ′′)} ≤ µ(V ) ≤ max{µ(V ′), µ(V ′′)}

with equality if and only if µ(V ′) = µ(V ′′).
A nonzero object V ∈ C is semistable (resp. stable) if V contains no proper nonzero

subobject V ′ with µ(V ′) > µ(V ) (resp. µ(V ′) ≥ µ(V )); this implies that V admits no proper
quotient V ′′ with µ(V ′′) < µ(V ) (resp. µ(V ′′) ≤ µ(V )). Note that our hypotheses ensure that
any rank 1 object is stable and that any twist of a (semi)stable object by a rank-1 object is
again (semi)stable. (It would be reasonable to treat the zero object as being semistable of
every slope, but we won’t do this.)

Definition 3.4.2. For f : V → V ′ a monomorphism in C, F (f) lifts to an admissible
monomorphism f̃ : Ṽ → V ′ in C through which f factors. We call f̃ the saturation of f , and
call Ṽ the saturation of V in V ′.

Note that V and Ṽ have the same rank and ∧rank(V )V is a subobject of the rank-1 object
∧rank(V )Ṽ . Since rank-1 objects are stable, we have deg(V ) ≤ deg(Ṽ ) and (if rank(V ) > 0)
µ(V ) ≤ µ(Ṽ ), with equality if and only if V = Ṽ .

Remark 3.4.3. For f : V → V ′ an arbitrary morphism in C, the kernel of F (f) corresponds
to an admissible subobject of V which is a kernel of f . By the same token, the cokernel of
this admissible monomorphism is an image of f .

The poset of subobjects of a given object in C is a lattice. For V1 → V ′, V2 → V ′ two
monomorphisms in C, we write V1 ∩ V2 and V1 + V2 for the meet and join, respectively
(mimicking the notation for vector bundles); these fit into an exact sequence

0→ V1 ∩ V2 → V1 ⊕ V2 → V1 + V2 → 0.

Beware that the join of two admissible subobjects need not be admissible.

Remark 3.4.4. A consequence of the previous discussion is that for any admissible subobject
V ′ of V , if we form the associated exact sequence

0→ V ′ → V → V ′′ → 0

and takeW to be another (not necessarily admissible) subobject of V , we have another short
exact sequence

0→ W ′ → W → W ′′ → 0

where W ′ = V ′ ∩W is a subobject of V ′ (and an admissible subobject of W ) and W ′′ is a
subobject of V ′′.

Lemma 3.4.5. If V, V ′ ∈ C are semistable and µ(V ) > µ(V ′), then HomC(V, V
′) = 0.

Proof. Suppose by way of contradiction that f : V → V ′ is a nonzero morphism. Let W
be the image of V in V ′ (in the sense of Remark 3.4.3); then µ(V ) ≤ µ(W ) ≤ µ(V ′), a
contradiction. �
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Lemma 3.4.6. Let
0→ V ′ → V → V ′′ → 0

be a short exact sequence of nonzero objects in C. If V ′, V ′′ are semistable of the same slope
µ, then so is V .

Proof. For any nonzero subobject W of V , with notation as in Remark 3.4.4 we have

deg(W ) = deg(W ′) + deg(W ′′) ≤ µ rank(W ′) + µ rank(W ′′) ≤ µ rank(W ),

so µ(W ) ≤ µ (even in the corner cases where W ′ = 0 or W ′′ = 0). �

Corollary 3.4.7. For any µ ∈ Γ⊗ZQ, the objects of C which are semistable of slope µ (plus
the zero object) form an exact abelian subcategory of C which is closed under extensions.

Proof. Augment the previous lemma with the observation that if V ∈ C is semistable of
slope µ, any subobject W of V which is semistable of slope µ is admissible: otherwise, the
saturation of W would witness the failure of semistability of V . �

Definition 3.4.8. For V ∈ C, a Harder–Narasimhan filtration (or HN filtration) of V is a
filtration

(3.4.8.1) 0 = V0 ⊂ · · · ⊂ Vl = V

such that each inclusion Vi−1 → Vi is admissible with cokernel being semistable of some
slope µi, and µ1 > · · · > µl. By convention, the trivial filtration of the zero object is an HN
filtration. If V 6= 0, then the sequence

0 = V1/V1 ⊂ · · · ⊂ Vl/V1 = V/V1

constitutes an HN filtration of V/V1; this provides the basis for various inductive arguments.

In order to better digest this definition, we give an alternate characterization of the first
step of the HN filtration.

Lemma 3.4.9. Suppose that V ∈ C is nonzero and admits an HN filtration labeled as in
(3.4.8.1). Then µ1 is the maximum slope of any nonzero subobject of V , and V1 is the maximal
subobject of V of slope µ1.

Proof. We proceed by induction on rank(V ). There is nothing to check if V is semistable.
Otherwise, for any nonzero subobject W of V , set notation as in Remark 3.4.4 with V ′ = V1.
Using the semistability of V1 and applying the induction hypothesis to V/V1, we see that

deg(W ) ≤ deg(W ′) + deg(W ′′) ≤ µ1 rank(W ′) + µ(V2/V1) rank(W ′′) ≤ µ1 rank(W ),

with strict inequality whenever W ′′ 6= 0. This proves the claim. �

We now turn around and construct the object with the properties of V1 identified in
Lemma 3.4.9. It is relatively easy to see that the possible slopes of subobjects of V are
bounded above, but this would only imply that the maximum is achieved if Γ is discrete
(because the slopes of subobjects of an object of rank n belong to 1

1
Γ∪· · ·∪ 1

n
Γ, which would

then itself be a discrete set). However, it is easy to give an alternate argument that works
even when Γ is not discrete, and which even in the discrete case gives additional crucial
information.
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Lemma 3.4.10. Suppose that V ∈ C is nonzero. Then V admits a nonzero subobject V1 of
some slope µ1 ≥ µ(V ) such that µ1 is the maximum slope of any nonzero subobject of V , and
V1 is the maximal subobject of V of slope µ1.

Proof. We proceed by induction on rank(V ), with the case of V semistable serving as a
trivial base case. If V is not semistable, then the set of nonzero proper subobjects W with
µ(W ) > µ(V ) is nonempty; by saturating, we may find an admissible subobject W of this
form of maximal rank. (Note that we do not attempt to maximize the slope of W , just its
rank; hence this is a priori a maximization over a finite set.) By the induction hypothesis,
W admits a subobject V1 of the claimed form; we will show that this subobject also has
the desired effect for V . This amounts to showing that any subobject X of V satisfying
µ(X) ≥ µ1 must be contained in W ; to see this, write the exact sequence

0→ W ∩X → W ⊕X → W +X → 0,

note that µ(W ∩X) ≤ µ1 if W ∩X 6= 0, and then compute that
deg(W +X) = deg(W ) + deg(X)− deg(W ∩X)

= rank(W )µ(W ) + rank(X)µ(X)− rank(W ∩X)µ(W ∩X)

≥ rank(W )µ(W ) + (rank(X)− rank(W ∩X))µ1

= rank(W +X)µ1.

Since µ1 ≥ µ(W ) > µ(V ), W +X is a subobject of V of slope strictly greater than µ(V ); its
saturation is an admissible subobject with the same property. By the maximality of rank(W ),
this is only possible if rank(W + X) = rank(W ), and hence if W + X = W because W is
admissible. �

Putting the two preceding lemmas together gives us HN filtrations in general.

Theorem 3.4.11 (after Harder–Narasimhan). Every object V ∈ C admits a unique HN
filtration.

Proof. We check both existence and uniqueness by induction on rank(V ), the case V = 0
serving as a trivial base case. To establish uniqueness, note that Lemma 3.4.9 implies that
the choice of V1 is uniquely determined, and then applying the induction hypothesis to V/V1

forces the rest of the filtration. To establish existence, take V1 as in Lemma 3.4.10; the
maximal slope condition ensures that V1 is semistable. For any subobject W ′′ of V/V1, the
inverse image W of W ′′ in V is strictly larger than V1, so µ(W ) < µ(V1) and so µ(W ′′) <
µ(V1). Consequently, we obtain an HN filtration of V by starting with V1, then lifting the
terms of an HN filtration of V/V1 produced by the induction hypothesis. �

Definition 3.4.12. Suppose now that Γ ⊆ R. For V ∈ C, with notation as in (3.4.8.1), the
slope multiset of V is the multisubset of Γ⊗ZQ of cardinality rank(V ) consisting of µ(Vi/Vi−1)
with multiplicity rank(Vi/Vi−1) for i = 1, . . . , l. As is typical when studying nonarchimedean
fields, it is convenient and customary to repackage these values as the slopes of a piecewise
affine function. We define the HN polygon of V , denoted HN(V ) to be the graph of the
continuous, concave-down function from [0, rank(V )] to R given by the formula

x 7→ deg(Vi−1) + (x− rank(Vi−1))µ(Vi) (i = 1, . . . , l; rank(Vi−1) ≤ x ≤ rank(Vi)).

That is, start at (0, 0) and draw n segments of width 1 whose slopes are the elements of the
HN multiset in decreasing order, counting multiplicities. See Figure 1 for an illustration.
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Figure 1. The HN polygon associated to an object V admitting a filtration
0 = V0 ⊂ V1 ⊂ V2 = V with rank(V1) = 3, deg(V1) = 3, rank(V2/V1) = 2,
deg(V2/V1) = 1.

Lemma 3.4.13. For V, V ′ ∈ C, the slope multiset of V ⊕V ′ is the multiset union of the slope
multisets of V and V ′. We may characterize this by writing HN(V ⊕V ′) = HN(V )⊕HN(V ′).

Proof. We proceed by induction on rank(V )+rank(V ′), with all cases where either summand
is zero serving as base cases. If V, V ′ 6= 0, let V1, V

′
1 be the first step in the respective HN

filtrations, and let µ1, µ
′
1 be the respective slopes. Without loss of generality suppose that

µ1 ≥ µ′1. By Lemma 3.4.9, the largest element of the slope multiset of V1⊕V2 is µ1, with the
corresponding subobject being V1 if µ1 > µ′1 or V1 ⊕ V ′1 if µ1 = µ′1. In either case, we may
then conclude using the induction hypothesis. �

Remark 3.4.14. At this point, it is necessary to comment on two different sign conventions
that we have implicitly adopted at this point. The first is the direction of the inequality in the
definition of semistability (or equivalently, the choice of sign in the definition of the degree
function): we are using the sign convention compatible with the literature on geometric
invariant theory (Remark 3.2.5), which is incompatible with the literature on Dieudonné
modules. The second is the choice of concavity (up or down) in the definition of the HN
polygon (which can be interpreted as the choice to label filtrations in ascending order); we
are using the sign convention compatible with the literature on algebraic groups, which is
incompatible with the usual definition of Newton polygons. When comparing results between
sources, it is important to keep track of both possible sign discrepancies.

We may characterize the HN polygon directly (without overt reference to the HN filtration)
as follows.

Lemma 3.4.15. For V ∈ C, the HN polygon is the boundary of the upper convex hull of the
set of points (rank(W ), deg(W )) ∈ R2 as W runs over all subobjects of V .

Proof. On one hand, the steps of the HN filtration show that the boundary of the upper
convex hull lies on or above the HN polygon. We establish the reverse inequality by induction
on rank(V ). Given a subobject W of V , set notation as in Remark 3.4.4 with V ′ = V1. By
the definition of semistability, the point (rank(W ′), deg(W ′′)) lies under the line y = µ(V1)x;
by the induction hypothesis, the point (rank(W ′), deg(W ′′)) lies on or below the HN polygon
of V/V1. This yields the claim. �

In terms of slope multisets, we may formally promote Lemma 3.4.5 as follows.
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Corollary 3.4.16. For V, V ′ ∈ C, if the least element of the slope multiset of V is greater
than the greatest element of the slope multiset of V ′, then HomC(V, V

′) = 0.

Proof. If V, V ′ are both semistable, then this is exactly the assertion of Lemma 3.4.5. If V
is general and V ′ is semistable, then the first step of the slope filtration of V cannot map
nontrivially to V ′; we may thus deduce this case by induction on rank(V ). If V, V ′ are both
general, then V maps trivially to the final quotient of the slope filtration of V ′; we may thus
deduce this case by induction on rank(V ′). �

Corollary 3.4.16 has various consequences about the possibilities for the set of slope mul-
tisets for the three terms in a short exact sequence. A full analysis of this in the case of the
Fargues–Fontaine curves is part of the student project (see §A.1); we limit ourselves here to
one simple observation.

Lemma 3.4.17. If 0 → V ′ → V → V ′′ → 0 is a short exact sequence, then HN(V ) ≤
HN(V ′ ⊕ V ′′) with the same endpoint.

Proof. For every subobject W of V , Remark 3.4.4 gives rise to a subobject W ′ ⊕ W ′′ of
V ′⊕V ′′ of the same degree and rank; using the criterion from Lemma 3.4.15, we deduce the
claim. �

Corollary 3.4.18. Suppose that 0 = V0 ⊂ · · · ⊂ Vm = V is a filtration of V by admissible
subobjects such that each quotient Vi/Vi−1 is semistable of some slope µi. Then HN(V ) ≤
HN(V1/V0 ⊕ · · · ⊕ Vm/Vm−1) with the same endpoint.

Remark 3.4.19. So far, we have said nothing about tensor products; in fact, we did not
even include a symmetric monoidal structure on the category C in the definition of a slope
formalism. In practice, all of the examples we will consider in this lecture admit such a
structure which satisfies the property
(3.4.19.1)

rank(V ⊗ V ′) = rank(V ) rank(V ′), deg(V ⊗ V ′) = deg(V ) rank(V ′) + deg(V ′) rank(V ).

For V, V ′ nonzero, we again have
µ(V ⊗ V ′) = µ(V ) + µ(V ′),

but it is again not apparent that the tensor product of two semistable bundles is again
semistable. When this occurs, the HN filtrations are determinantal in the sense that slopes
of objects behave like the determinants of linear transformations (or more precisely, their
images under some valuation). This is the same arrangement that one encounters initially in
the study of the Weil conjectures, as in [38]: before one can define the weights of a coefficient
object, one must work with the ultimately equivalent concept of determinantal weights, whose
definition is based on the fact that there is no ambiguity about weights for objects of rank
1.

Remark 3.4.20. A thoroughly modern twist on slope formalisms comes from the work of
Bridgeland [25], which gives rise to slope formalisms for triangulated categories; the motivat-
ing example is the bounded derived category of coherent sheaves on an algebraic variety. In
this setting, one assigns to each object a complex number in the upper half-plane (called a
central charge for presently irrelevant physical reasons), with the argument of this value play-
ing the role of the slope; under fairly mild hypothesis, every object has a Harder–Narasimhan
filtration.
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3.5. Additional examples of the slope formalism. To provide some indication of the
power of this formalism, we describe some other classes of examples. In each case, the key
question is whether or not the tensor product of semistable objects is semistable; the example
of vector bundles on an algebraic curve in positive characteristic shows that this is not
guaranteed by the slope formalism (see Remark 3.2.3).

Example 3.5.1. Let R be an integral domain in which every finitely generated ideal is
principal (a Bézout domain), or more generally an integral domain in which every finitely
generated ideal is projective (a Prüfer domain); note that for such a ring, every finitely
presented torsion-free R-module is projective. Let Φ be a monoid acting on R via ring
homomorphisms. Let C be the category of finite projective R-modules with Φ-actions: that
is, one must specify an underlying moduleM together with isomorphisms ϕ∗M ∼= M for each
ϕ ∈ Φ compatible with composition (with the identity element of Φ acting via the identity
map). Let D be the category of finite-dimensional Frac(R)-vector spaces with Φ-actions. Let
rank : D → Z≥0 be the dimension function.

Let v : H1(Φ, R×) → Γ be a homomorphism with the following property: if x ∈ R is
nonzero and satisfies ϕ(x)/x ∈ R× for all ϕ ∈ Φ, then the cocycle c taking ϕ to ϕ(x)/x
satisfies v(c) ≥ 0 with equality if and only if x ∈ R×. Define deg : C → Γ as follows: for
V ∈ C of rank n, choose a generator v of ∧nV ; let c : Φ → R× be the cocycle taking ϕ to
the element r for which the specified isomorphism ϕ∗ ∧n V = (∧nV ) ⊗R,ϕ R → ∧nV takes
v ⊗ 1 to rv; and put deg(V ) = v(c).

It is obvious that deg is constant on isomorphism classes and (from (3.3.2.1)) additive in
short exact sequences. If f : V1 → V2 is a morphism in C for which F (f) is an isomorphism,
then rank(V1) and rank(V2) are equal to a common value n, ∧nf : ∧nV1 → ∧nV2 is injective
with cokernel isomorphic to R/xR for some x ∈ R with ϕ(x)/x ∈ R×, and deg(V2) −
deg(V1) = v(x) ≥ 0 with equality only if V1 = V2.

Remark 3.5.2. Example 3.5.1 is formulated so as to bring to mind the following case. Take
R to be the holomorphic functions on the open unit disc in C; this is a Bézout domain
which is not noetherian (consider an infinite sequence accumulating at the boundary, and
form the ideal of functions which vanish at all but finitely many of these points). Take Φ to
be the deck transformation group for a Teichmüller uniformization of a Riemann surface X
of genus at least 2; then the objects of C are precisely the vector bundles on X, and it is
straightforward to reverse-engineer the map v so as to recover the usual degree function.

Remark 3.5.3. Another possibly familiar context for Example 3.5.1 is where R is the
fraction field of the ring of Witt vectors over a perfect field k of characteristic p, and Φ is
the monoid generated by the Witt vector Frobenius map; in this case, C is the category of
isocrystals over k. While this example is important in the theory of Dieudonné modules,
from the point of view of the slope formalism it is misleadingly simple: if f : V1 → V2 is a
morphism in C for which F (f) is an isomorphism, then f is itself an isomorphism. In any
case, one can use the standard Dieudonné–Manin classification theorem in the case where k
is algebraically closed (see Theorem 3.6.19) to show that for arbitrary k, the tensor product
of semistable objects is semistable.

Somewhere between the two previous examples, we find the following example of great
interest in p-adic Hodge theory.
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Remark 3.5.4. Let F be a complete discretely valued field with valuation v0 : F× → Z.
Let R be the ring consisting of all formal Laurent series

∑
n∈Z cnt

n over F which converge
in some region of the form ∗ < |t| < 1 (where ∗ depends on the series). By analogy with the
complex-analytic case, results of [132] (on the theory of divisors in rigid-analytic discs) show
that R is a Bézout domain; note that the units in R consist precisely of the nonzero series
with bounded coefficients, so v0 induces a valuation map v : R× → Z. This construction
occurs commonly in the theory of p-adic differential equations, where it is commonly known
as the Robba ring over F (in the variable t).

Let Φ be the monoid generated by a single endomorphism ϕ : R→ R given as a substitu-
tion

∑
n∈Z cnt

n 7→
∑

n∈Z cnϕ(t)n, where ϕ(t) = tmu for some integer m > 1 and some u ∈ R×
with v(u) = 0. Let v : H1(Φ, R×)→ Z be the homomorphism taking the cocycle c to v(c(ϕ));
again using the results of [132], one sees that this satisfies the condition of Example 3.5.1.

When F is of residue characteristic p and m = p, it is known that the tensor product of
semistable objects is semistable, by a classification theorem similar to the one we will give
for vector bundles on the Fargues–Fontaine curve. See [106].

A closely related example from p-adic Hodge theory is the following.

Example 3.5.5. Let k be a perfect field of characteristic p. Let K be the fraction field of
the ring of Witt vectors over k. Let L be a finite totally ramified extension of K. Let C be
the category of filtered ϕ-modules over L; such an object is a finite-dimensional K-vector
space V equipped with a ϕ-action, for ϕ the Witt vector Frobenius, plus an exhaustive
separated Z-indexed filtration on V ⊗K L by L-subspaces. Morphisms in C are maps which
are ϕ-equivariant and respect the filtration. Note that there are monomorphisms which are
not admissible, because the inverse image of the target filtration is the “wrong” filtration on
the source.

We define deg by using exterior powers to reduce to the case of one-dimensional spaces.
For V of dimension 1, the filtration jumps at a unique integer i, the action of Frobenius
on a generator is multiplication by some r ∈ K×, and we set deg(V ) = i − vp(r). This
yields a slope formalism in which preservation of semistability by tensor product was shown
by Faltings [54] using the relationship to Galois representations which are crystalline in
Fontaine’s sense, and more directly by Totaro [172]; another approach can be obtained by
going through Remark 3.5.4 using a construction of Berger [12]. (Here the semistable objects
are commonly called weakly admissible objects.)

A related construction is that of filtered (ϕ,N)-modules, in which one adds to the data
a (necessarily nilpotent) K-linear endomorphism N of V satisfying Nϕ = pϕN . Again,
Berger’s method can be used to show that the tensor product of semistable objects is
semistable, ultimately using the relationship to Galois representations which are log-crystalline14

in Fontaine’s sense.

Example 3.5.6 (suggested by Sean Howe). Let L/K be an arbitrary extension of fields.
Let C be the category whose objects are pairs (V,W ) in which V is a finite-dimensional
K-vector space and W is a finite-dimensional L-vector subspace of V ⊗K L; a morphism
(V,W )→ (V ′,W ′) is a morphism f : V → V ′ of K-vector spaces for which f(W ) ⊆ W ′. Let
F be the functor (V,W ) 7→ V . We take the rank to be dimK V and the degree to be dimLW .

14The term semistable is more common here, and its etymology in this usage is entirely defensible, but
the ensuing terminological conflict renders the term log-crystalline a preferred alternative.
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An important special case of this example is the case where K = Qp, L = Cp. In this case,
a result of Scholze–Weinstein [161, Theorem 5.2.1] shows that the category C is equivalent to
the isogeny category of p-divisible groups over OCp ; the rank and degree then correspond to
the height and dimension of the associated p-divisible group. Note also that C can be viewed
as a subcategory of the category described in Example 3.5.5 with k = Fp, taking the trivial
ϕ-action on V and the filtration taking the value 0 at indices less than 0, W at index 0, and
V ⊗K L at indices greater than 0.

Remark 3.5.7. Another closely related example is that of Banach-Colmez spaces. Roughly
speaking, for F a complete algebraically closed nonarchimedean field of mixed characteris-
tics, a Banach-Colmez space is a Banach space over Qp which is obtained by forming an
extension of a finite-dimensional F -vector space by a finite-dimensional Qp-vector space,
then quotienting by another finite-dimensional Qp-vector space. In this setup, the rank is
given by the dimension of the F -vector space and the degree by the difference between the
dimensions of the two Qp-vector spaces.

In order to make this definition precise, we need to formulate the construction in a way
that fixes the F -dimension without fixing the F -linear structure (which we do not want
morphisms to respect). This is most naturally done using the pro-étale topology on the
category of perfectoid spaces of characteristic p; see Definition 3.7.4.

There is a close relationship between this example, Example 3.5.5, and vector bundles
on Fargues–Fontaine curves: they all arise from different t-structures on the same derived
category. See [133] for a detailed discussion.

In all of the preceding examples, the group Γ is discrete. Let us end with a few examples
where Γ is not discrete.

Example 3.5.8. Let k be a perfect field of characteristic p. Let X be the scheme obtained
by glueing together the rings Spec k[T 1/p∞ ] and Spec k[T−1/p∞ ] together along their common
open subscheme Spec k[T±1/p∞ ]. By emulating the argument for the usual projective line,
one can exhibit a homomorphism Z[p−1]→ Pic(X) taking n ∈ Z[p−1] to a line bundle O(n)
whose global sections are homogeneous polynomials of degree n (when n ≥ 0), and show
that this is an isomorphism (see for example [32] or [46]). We may emulate Example 3.3.2
to obtain a slope formalism on vector bundles whose degree function takes values in Z[p−1].

If we view X as the inverse limit of P1
k along Frobenius, then every vector bundle on X is

the pullback of a vector bundle on some copy of P1
k, and so by Grothendieck’s theorem splits

as a direct sum of line bundles. Beware however that one cannot derive this splitting by
directly imitating the proof for P1

k: in that argument, it is crucial that every exact sequence
of the form

0→ O → V → O(1)→ 0

splits, but that fails here. The corresponding Ext group is spanned by homogeneous mono-
mials in x, y of total degree −1 in which each variable occurs with degree strictly less than
0, and hence is nonzero.

In any case, we see that the tensor product of semistable bundles is semistable.

Example 3.5.9. Let K be a nonarchimedean field of residue characteristic p. Let X be the
adic space obtained by glueing Spa(K〈T p−∞〉, K〈T p−∞〉◦) and Spa(K〈T−p−∞〉, K〈T−p−∞〉◦)
together along Spa(K〈T±p−∞〉, K〈T±p−∞〉◦). Using Exercise 1.5.27, we see that every line
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bundle on either Spa(K〈T p−∞〉, K〈T p−∞〉◦) or Spa(K〈T−p−∞〉, K〈T−p−∞〉◦) is trivial; using
this, one can imitate the argument in [32] to see that Pic(X) ∼= Z[p−1].

By contrast with the previous example, it is not the case that every vector bundle is a
direct sum of line bundles! We illustrate this by showing that for p > 2, there is a vector
bundle V of rank 2 with ∧2V ∼= O(1) which cannot be written as the direct sum of two line
bundles. (To cover p = 2, one should be able to construct a vector bundle V of rank 3 with
∧3V ∼= O(1) which does not split as a direct sum of a line bundle and another bundle.)

To construct V , identify Ext1
C(O(1),O) with the completion for the supremum norm of

the K-vector space on the monomials x−iy−1+i for i ∈ Z[p−1] ∩ (0, 1), and take V to be
an extension corresponding to an element of this space of the form s =

∑∞
n=0 cnx

−iny−1+in

where cn is a null sequence in K and in is an increasing sequence in Z[p−1]∩ (0, 1
2
) with limit

1
2
. If we had an isomorphism V ∼= O(j)⊕O(1−j) for some j ∈ Z[p−1], we would have to have
j ∈ (0, 1) (otherwise s would be forced to split), and without loss of generality j ∈ (0, 1

2
)

(since p > 2 we have 1
2
/∈ Z[p−1]). Moreover, we would have HomC(O, V (j − 1)) = K.

However, from the exact sequence

0→ O(j − 1)→ V (j − 1)→ O(j)→ 0

we obtain an exact sequence

0→ HomC(O, V (j − 1))→ HomC(O,O(j))→ ExtC(O,O(j − 1))

where the last arrow is a connecting homomorphism. If we represent the source and target
of this map as homogeneous sums of degree j and j−1, then the map between them is given
by multiplication by s. More precisely, the source is (topologically) spanned by monomials
xiyj−i for i ∈ Z[p−1]∩ [0, j], while the target is obtained by quotienting out by monomials in
which either x or y occurs with nonnegative degree. For t =

∑
0<i<j dix

iyj−i in the source,
the corresponding element of the target is

∑
i,n:i<in

cndix
i−inyj−1−i+in (the exponent of y is

always negative because in < 1/2 < 1 − j); if t represents an element of the kernel of the
connecting homomorphism, in K〈T p−∞〉 we must have(∑

0<i<j

diT
i

)(
∞∑
n=0

cnT
1−in

)
≡ 0 (mod T ).

However, by considering Newton polygons, we see that this congruence cannot even hold
modulo T 1/2+j+ε for any ε > 0 unless t = 0. This yields the desired contradiction.

Unfortunately, this example does not give rise to a slope formalism for general K, because
the underlying rings are not Bézout domains unless K is discretely valued. In that case, we
may emulate Example 3.3.2 to obtain a slope category whose degree function takes values
in Z[p−1]. For p > 2, the above example is a semistable object of rank 2 and degree 1

2
.

We expect that if V is semistable of rank r and degree d, then V (−n) is spanned by
horizontal sections whenever d > rn. If so, this would imply (using the fact that Z[p−1] is
not discrete in R) that the tensor product of semistable objects is semistable.

Remark 3.5.10. When K is perfectoid of characteristic p, the two preceding examples are
related via an analytification morphism from the adic space to the scheme. However, the
discrepancies between the two cases make it clear that there is no version of the GAGA
theorem applicable to this morphism.
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In connection with the analogy between archimedean and p-adic Hodge theory (see §A.4),
Sean Howe has suggested the following example.

Exercise 3.5.11. Consider the category C ofGm-equivariant vector bundles on P1, equipped
with the fiber functor

V 7→ {Gm-invariant sections of V over P1 \ {0,∞}}.
Equip Z2 with the lexicographic ordering. Consider the degree function C → Z2 induced by
the function L 7→ (n, p) on Gm-equivariant line bundles, in which n is the usual degree of L
and p is the order of vanishing at 0 of an invariant section over P1 \ {0,∞}.

(a) Show that this gives a slope formalism.
(b) What are the stable and semistable bundles?
(c) Classify the Gm-equivariant vector bundles on P1.
(d) Give an equivalence between Gm-vector bundles on P1 and a linear-algebraic cate-

gory, and describe the slope formalism in these terms. Then give a linear-algebraic
description of the subcategory of objects of slope (n, ∗) for a fixed n.

We conclude with an exotic example coming from Arakelov theory (compare [4, §3.2.1]).

Example 3.5.12. Let C be the category of Euclidean lattices, i.e., finite free Z-modules
equipped with positive-definite inner products, in which morphisms are homomorphisms of
lattices which have operator norm at most 1 with respect to the inner products. Let deg be
the function assigning to a lattice L the quantity − log detL. This gives an example of the
slope formalism; the Harder–Narasimhan filtrations in this context were previously known as
Grayson–Stuhler filtrations before the analogy between them was observed. The preservation
of semistability by tensor products has been conjectured by Bost and known in some cases.

One may similarly replace Z with oK forK a number field, considering finite projective oK-
modules equipped with Hermitian norms with respect to all real and complex embeddings.
This again gives a slope filtration in which the preservation of semistability by tensor products
is conjectured by Bost and known in some cases; see [4, §3.2.1] for further discussion.

3.6. Slopes over a point. We now consider the slope formalism associated to vector bun-
dles on Fargues–Fontaine curves, as treated in [62]. This provides an improved perspective
on some of my previous work on ϕ-modules over the Robba ring [103, 105].

Hypothesis 3.6.1. Throughout §3.6, let F be a perfectoid field of characteristic p and take
S = Spa(F, oF ).

Theorem 3.6.2 (Fargues–Fontaine). The scheme Proj(PS) is an abstract curve. Every
closed point x has residue field which is an untilt of a finite extension of F ; setting deg(x)
to be the degree of that finite extension gives Proj(PS) the structure of an abstract complete
curve. (In particular, if F is algebraically closed, then every closed point has residue field
which is an untilt of F itself.)

Proof. See [62, §6] in the case where F is algebraically closed and [62, §7] in the general
case. �

Remark 3.6.3. For any pseudouniformizer $ ∈ F , the series∑
n∈Z

p−n[$pn ]
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converges to an element v of H0(YS,O) satisfying ϕ(v) = pv, and hence to an element of
H0(XS,O(1)). This section vanishes at a single closed point whose residue field is an untilt
of F itself. It follows that deg(O(1)) = 1.

In light of Theorem 3.6.2, we may apply Definition 3.3.4 to obtain a slope formalism on
the vector bundles on Proj(PS), or equivalently (by Theorem 3.1.17) on the vector bundles
on FFS. These obey an analogue of Grothendieck’s theorem, although with slightly more
basic objects than just the powers of O(1).

Definition 3.6.4. For d = r
s
a rational number in lowest terms (which is to say r, s ∈ Z,

s > 0, and gcd(r, s) = 1), let O(d) be the vector bundle on XS corresponding to the trivial
vector bundle on YS of rank s on the basis v1, . . . ,vs with the isomorphism ϕ∗O(d)→ O(d)
sending 1 ⊗ v1, . . . , 1 ⊗ vs to v2, . . . ,vs, p

−rv1. This bundle is the pushforward of the line
bundle O(r) on the s-fold cover of FFS described in Remark 3.1.8.

The following is an easy variant of Remark 3.6.3.

Exercise 3.6.5. For d > 0, H0(FFS,O(d)) is an infinite-dimensional Qp-vector space. (By
contrast, H0(FFS,O)) = Qp.)

Exercise 3.6.6. Suppose that F is algebraically closed. For d, d′ ∈ Q, O(d) ⊗ O(d′) is
isomorphic to a direct sum of copies of O(d + d′). If you don’t see how to check this “by
hand”, use the Dieudonné–Manin classification theorem (see Theorem 3.6.19).

Corollary 3.6.7. For d = r
s
in lowest terms, O(d) is stable of slope d and degree r.

Proof. All of the claims reduce to the case where F is algebraically closed. We start with
the degree statement. For d ∈ Z, the claim follows from Remark 3.6.3. For d /∈ Z, using
(3.4.19.1) we reduce to checking that deg(O(d)⊗s) = dss+1; this follows from the previous
case using Exercise 3.6.6.

We next check semistability. Suppose that F is a nonzero subobject of O(d) of slope
greater than d. Then F⊗s is a subobject of O(d)⊗s of slope greater than ds = r; the first
step G in the HN filtration of F⊗s is a semistable subobject of slope greater than r. By
Exercise 3.6.6, O(d)⊗s ∼= O(r)⊕s

s , so the existence of a nonzero map G → O(d)⊗s implies the
existence of a nonzero map G(−r) → O. Since G(−r) is semistable of degree µ(G) − r > 0,
this is a contradiction against Lemma 3.4.5.

We finally note that since gcd(r, s) = 1, O(d) cannot admit any nonzero proper submodule
of slope exactly d. It follows that O(d) is stable. �

Remark 3.6.8. The stability of O(d) is not preserved by base extension from Qp to a larger
field. See Remark 4.3.11.

Corollary 3.6.9. Suppose that F is algebraically closed. For d, d′ ∈ Q, the following state-
ments hold.

(a) If d ≤ d′, then Hom(O(d),O(d′)) 6= 0.
(b) If d > d′, then Hom(O(d),O(d′)) = 0.

Proof. Using Exercise 3.6.6 and the identification

Hom(F ,F ′) ∼= H0(FFS,F∨ ⊗F ′),
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this reduces to checking that H0(FFS,O(d)) 6= 0 whenever d ≥ 0, which is Exercise 3.6.5;
and that H0(FFS,O(d)) = 0 whenever d < 0, which follows from Corollary 3.6.7 (again,
there are no nonzero maps from O to a semistable bundle of negative degree). �

Exercise 3.6.10. For F ,F ′ vector bundles on FFS, produce a canonical isomorphism
Ext1(F ,F ′) ∼= H1(FFS,F∨ ⊗F ′).

Deduce that if F is algebraically closed, then for d, d′ ∈ Q with d ≥ d′, we have Ext1(O(d),O(d′)) =
0. (For general F , this remains true when d > d′.)

Exercise 3.6.11. For d ∈ Q, show that as a (noncommutative) Q-algebra, End(O(d)) is
isomorphic to the division algebra over Qp of invariant d. Remember (from local class field
theory) that this algebra is split by every degree-d extension of Qp.

Exercise 3.6.12. Suppose that F is algebraically closed. Prove that Pic(FFS) ∼= Z, i.e.,
every line bundle on FFS is isomorphic to O(d) for some d ∈ Z (namely its degree). This is
not true for general F ; see Corollary 3.6.17 for the reason why.

Theorem 3.6.13 (Kedlaya, Fargues–Fontaine). Suppose that F is algebraically closed. Then
every vector bundle on FFS splits as a direct sum of vector bundles of the form O(di) for
some di ∈ Q.

Proof. Using the alternate formulation in terms of finite projective modules over an extended
Robba ring equipped with a semilinear ϕ-action (as in Remark 3.1.13), this result first
appears in [105, Theorem 4.5.7]; the case where F is the completed algebraic closure of a
power series field was previously treated in [103, Theorem 4.16] using similar methods. Using
the formulation in terms of vector bundles on Proj(PS), a different proof of this result was
obtained by Fargues–Fontaine [62, §8].

The general strategy of both arguments can be characterized as follows. (This is further
axiomatized in [62, §5] into a theory of generalized Riemann spheres, but we give only a
summary here.) We may proceed by induction on rank(F), the rank 1 case being Exer-
cise 3.6.12. Given a bundle F , one knows from Theorem 3.1.15 that it admits a filtration in
which each successive quotient splits as a direct sum of copies of O(d) for a single value of
d. By Corollary 3.4.18, the HN polygon of the associated graded module is an upper bound
on HN(F). Since the degree function is discretely valued in this setting, we may choose a
filtration whose associated graded module has minimal HN polygon (the minimal polygon
need not a priori be unique but this doesn’t matter); the crux of the argument is to show
that any such filtration must split. By the induction hypothesis, this reduces to the case of
a two-step filtration

0→ O(d)→ F → O(d′)→ 0.

By Exercise 3.6.10, there is nothing to check unless d < d′; in this case, one must show that
either the sequence splits or the filtration is not minimal. The former condition is equivalent
to the HN polygon of F having slopes d and d′; see Remark 3.6.14.

Before discussing the proof of this further, we make a motivating observation. Write d =
r
s
, d′ = r′

s′
in lowest terms, so that µ(F) = r+r′

s+s′
. Now consider the subset of Z2 obtained by

taking all of the points under HN(O(d) ⊕ O(d′)) except for the interior vertex (s′, r′); the
upper convex envelope is an upper bound for HN(F) as long as the latter is not equal to
HN(O(d)⊕O(d′)). Let d′′ be the least slope of this envelope. (See Figure 2 for two illustrated
examples of this definition.)
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Figure 2. The effect of removing the interior vertex of the HN polygons of
O(d)⊕O(d′) with (d, d′) =

(
1
3
, 3

2

)
, in which case d′′ = 1

2
; and (d, d′) =

(
−2

3
, 3

2

)
,

in which case d′′ = −1
2
.

In particular, if the filtration is not minimal, then Hom(O(d′′),F) 6= 0; in fact, this also
holds if the filtration splits because Hom(O(d′′),O(d′)) 6= 0 by Corollary 3.6.9. This suggests
that our next step should be to prove that Hom(O(d′′),F) 6= 0 in all cases; using the
induction hypothesis, it is not hard to show that this is in fact sufficient to complete the
proof (by showing that either F splits or the original filtration was not minimal).

Note that d, d′′ are the slopes of two sides of a triangle with vertices at lattice points and
containing no lattice points in its interior; if we write d′′ = r′′

s′′
in lowest terms, this implies

that rs′′ − r′′s = 1. By considering F ⊗ O(−d′′) and invoking Exercise 3.6.6, we reduce to
checking the following special case: for any short exact sequence

(3.6.13.1) 0→ O
(
− 1

n

)
→ F → O(1)→ 0

one has H0(FFS,F) 6= 0, or equivalently the connecting homomorphism H0(FFS,O(1)) →
H1(FFS,O

(
− 1
n

)
) is not injective. This can be done in several ways.

• One option is to check this directly using an ad hoc calculation, as in [103, Proposi-
tion 4.15] or [90, Proposition 9.5].
• The explicit calculation can be simplified by allowing passage from F to a suitable
extension field F ′. For instance, one may take F ′ to be a (spherically complete)
field of Hahn–Mal’cev–Neumann generalized power series, leading to a somewhat
easier computation [106, Proposition 2.1.6]. Descent of the conclusion from F ′ to F
is implicit in the proof of Theorem 3.7.5.
• A cleaner option is to use the dimension theory for Banach–Colmez spaces as in [62,
§8.4]. This ultimately depends on some calculations of Colmez [30, §7]. (Conversely,
Theorem 3.6.13 can be used to establish the dimension theory for Banach–Colmez
spaces; we will not work this out here.)
• A somewhat more conceptual approach, described in [62, §8.3], is to identify the
moduli space of nonsplit extension as in (3.6.13.1) with a certain moduli space of
p-divisible groups considered in [161] via the (rational) Dieudonné module functor.
This identification builds upon results of Hartl [89] and Faltings [58].

Using any of these approaches, the proof is completed. �
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Remark 3.6.14. In Theorem 3.6.13, the multiset consisting of each di with multiplicity
rank(O(di)) equals the slope multiset of the bundle, and hence is independent of the choice
of the decomposition. Moreover, for each µ, the sum of all summands O(di) with di ≥ µ
is a step of the HN filtration, and hence independent of all choices. We will exploit these
observations in the following corollaries.

Corollary 3.6.15. For any inclusion F → F ′ of perfectoid fields, base extension from
XSpa(F,oF ) to XSpa(F ′,oF ′ )

preserves semistability of vector bundles.

Corollary 3.6.16. For F arbitrary, the tensor product of semistable vector bundles is
semistable.

Proof. Immediate from Exercise 3.6.6 and Theorem 3.6.13. �

By Theorem 3.6.13, if F is algebraically closed, then a vector bundle is semistable of degree
0 if and only if it is trivial. This formally promotes to a statement directly analogous to the
Narasimhan–Seshadri theorem.

Corollary 3.6.17. For F arbitrary, the category of vector bundles on FFS which are semistable
of degree 0 is equivalent to the category of continuous representations of GF on finite-
dimensional Qp-vector spaces via the functor F 7→ H0(XSpa(CF ,oCF ),F) for CF a completed
algebraic closure of F .

Remark 3.6.18. Corollary 3.6.17 is closely related to the theory of (ϕ,Γ)-modules, an im-
portant tool in p-adic Hodge theory which gives a useful description of the category of con-
tinuous representations of GF , for F a finite extension of Qp, on finite-dimensional Qp-vector
spaces. See [120] for a detailed discussion of how this older theory fits into the framework of
perfectoid fields and spaces.

It is worth comparing Theorem 3.6.13 with the Dieudonné–Manin classification theorem.

Theorem 3.6.19. In the notation of Remark 3.5.3, suppose that k is algebraically closed.
Then every object of C splits as a direct sum of objects of the form O(di) for various di ∈ Q,
where for di = r

s
the object O(di) is a vector space on the generators v1, . . . ,vs equipped with

the ϕ-action sending v1, . . . ,vs to v2, . . . ,vs, p
−rv1.

Proof. The original references are [44, 136]. Alternatively, see [40, §4.4] or [108, Theo-
rem 14.6.3]. �

Remark 3.6.20. The main distinction between Theorem 3.6.13 and Theorem 3.6.19 is that
when d < d′, the group Hom(O(d),O(d′)) vanishes in the category of isocrystals but not
in the category of vector bundles on FFS. This implies that in the category of isocrystals
over some perfect field k, the HN filtration splits uniquely; whereas in the category of vector
bundles over FFS, the HN filtration splits (by Exercise 3.6.10) but not uniquely.

Remark 3.6.21. In [62], the construction of FFS is generalized from what we consider here
by allowing the role of the field Qp to be played by an arbitrary local field E of residue
characteristic p. When E is of mixed characteristic, this does not give any essentially new
results compared to the case we have considered. When E is of positive characteristic, one
gets a distinct but closely analogous situation originally considered by Hartl–Pink [90], who
proved the analogue of Theorem 3.6.13. See Remark 3.7.7 for more discussion.
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3.7. Slopes in families. We next indicate how the slope formalism behaves in families, i.e.,
for vector bundles on relative Fargues–Fontaine curves.

Definition 3.7.1. Let Pfd be the category of perfectoid spaces of characteristic p. For
S ∈ Pfd and F a vector bundle on FFS, for any morphism Spa(F, F+) → S with F
a perfectoid field, we may pull back F to XSpa(F,F+) and compute its HN polygon. By
Corollary 3.6.15, the result depends only on the image of Spa(F, F+) in S; moreover, the
construction does not depend on the choice of F+ at all. We thus get a well-defined function
HN(F , •) on the maximal Hausdorff quotient of S; by restriction, we view this as a function
on S which is constant under specialization.

Theorem 3.7.2 (Kedlaya–Liu). For S ∈ Pfd, let F be a vector bundle on FFS.
(a) The function HN(F , •) is upper semicontinuous. That is, for any given polygon P ,

the set of x ∈ S for which HN(F , x) ≤ P is open; moreover, this set is partially
proper (i.e., stable under generization).

(b) If HN(F , •) is constant on S, then F admits a filtration which pulls back to the HN
filtration at any point.

Proof. For (a), see [117, Theorem 7.4.5]; note that what is asserted in [117] is lower semicon-
tinuity because of the sign convention therein that HN polygons are concave up, not concave
down (Remark 3.4.14). For (b), see [117, Corollary 7.4.10]. �

Corollary 3.7.3. For S ∈ Pfd and F ∈ VecFFS
, the set of points in S at which HN(F , •)

has all slopes equal to zero is an open (and partially proper) subset of S, called the étale
locus of F .

Definition 3.7.4. A morphism f : Y → X in Pfd is pro-étale if locally on Y it is of the
form Spa(A∞, A

+
∞)→ Spa(A,A+) where (A∞, A

+
∞) is the completion (for the spectral norm)

of lim−→i
(Ai, A

+
i ) for some filtered system of finite étale morphisms (A,A+) → (Ai, A

+
i ). For

S ∈ Pfd, let Sproet denote the pro-étale site as defined in [177, Lecture 3]; that is, a pro-étale
morphism f : Y → X is a covering if it is surjective and every quasicompact open subset of
X is contained in the image of a quasicompact open subset of Y (compare Definition 3.8.5).

For S] an untilt of S, Corollary 2.5.10 induces a functorial homeomorphism ]∗ : S]proet
∼=

Sproet; if S] is a space overQp, this map factors through a functorial map ]∗ : XS,proet → Sproet.
We emphasize that this is not the pullback along a genuine map of spaces XS → S, although
there is such a map in the category of diamonds (see Definition 4.3.7).

For S ∈ Pfd, by an étale Qp-local system on S, we will mean a sheaf of Qp-modules
on Sproet which is locally finite free. For S = Spa(F, oF ), this is equivalent to a continuous
representation of GF on a finite-dimensional Qp-vector space; for S connected, there is a
similar interpretation in terms of continuous representations of the étale fundamental group
of S (see Remark 4.1.6).

Theorem 3.7.5 (Kedlaya–Liu). For S ∈ Pfd, the functor V 7→ ]−1(V ) ⊗Qp OFFS
defines

an equivalence of categories between étale Qp-local systems on S and vector bundles on FFS
which at every point of S are semistable of degree 0; more precisely, there is a quasi-inverse
functor taking F to the sheaf ]∗F given by U 7→ H0(FFU ,F). Moreover, this equivalence of
categories equates sheaf cohomology groups on both sides.
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Proof. In light of Definition 3.8.1 below, this follows from [117, Theorem 9.3.13] (for the
equivalence of categories) and [117, Theorem 8.7.13, Theorem 9.4.5] (for the comparison of
cohomology). �

Remark 3.7.6. For S a point, every étale Qp-local system can be realized as the base
extension of an étale Zp-local system, by using the compactness of GF to obtain a stable
lattice in the associated Galois representation. By contrast, for general (or even affinoid)
S, an étale Qp-local system only locally admits a stable lattice; this is unsurprising if one
thinks of examples of étale coverings of rigid analytic spaces with noncompact groups of
deck transformations, such as the Tate uniformization of an elliptic curve or the Lubin-Tate
period mapping.

Remark 3.7.7. Suppose one were to construct a “moduli space” of vector bundles on
Fargues–Fontaine curves with a certain property (which really just means a particular vector
bundle on the curve over a particular base space). Then Theorem 3.7.2 would give rise to a
locally closed stratification of the moduli space by HN polygons, and Theorem 3.7.5 would
give rise to an étale Qp-local system over the (possibly empty) open stratum corresponding
to the zero polygon.

In the next lecture, we will be interested precisely in moduli spaces of this type, parametriz-
ing vector bundles with certain additional structures (reductions of the structure group,
modifications along certain sections of the structure morphism). The category of diamonds
provides a substantive (i.e., not meaninglessly formal) context in which such moduli spaces
can be constructed, providing an approach to emulating certain constructions in positive
characteristic which provide a geometric approach to the Langlands correspondence.

These developments are largely motivated by developments in the analogous setting in
equal positive characteristic (see Remark 3.6.21), particularly the work of Hartl [88, 89] and
Genestier–Lafforgue [75].

Theorem 3.7.5 has various applications beyond the scope of these notes. For example, it is
an ingredient (together with the methods of [157], the properties of pseudocoherent sheaves
such as Theorem 1.4.18, and a number of additional ideas) into a finiteness theorem for the
cohomology of étale Qp-local systems on smooth proper rigid analytic spaces; see [119].

3.8. More on exotic topologies. We have just seen and used one example of a topology on
adic spaces finer than the étale topology, the pro-étale topology on the category of perfectoid
spaces of characteristic p. In fact, there are quite a few exotic topologies at work in the
theory of perfectoid spaces; we focus on a couple that will occur in the last lecture.

Definition 3.8.1. Recall the definition of the pro-étale topology from Definition 3.7.4. This
definition was formulated for perfectoid spaces of characteristic p, but may also be used for
any adic space (or even any preadic space; see §1.11).

This construction is the natural “pro” analogue15 of the étale topology according to the
general discussion of pro-categories in SGA 4 [8, Exposé I]. However, this is not the pro-étale
topology as originally introduced in [157, §3] for locally noetherian spaces, then generalized
to arbitrary adic spaces in [117, §9.1]. In that definition, one only considers inverse systems

15This is an argument for spelling pro-étale with a hyphen: even if you share my preference for suppressing
hyphens on prefixes, the pro-étale topology is really the pro-(étale topology).
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in which eventually all of the morphisms are finite and surjective.16 This definition has the
advantage of retaining certain features of the étale topology, such as the fact that a pro-
étale morphism in this sense induces an open map of underlying topological spaces [157,
Lemma 3.10(iv)], [117, Lemma 9.1.6(b)]. More seriously, under some conditions, the ring
morphism associated to a pro-étale morphism of adic affinoid spaces is either flat, or at
least preserves the category of complete pseudocoherent modules; for example, this holds
when the base ring is perfectoid [118, Theorem 3.4.6], or when the morphism of spaces
is a perfectoid subdomain of a seminormal (Exercise 2.9.6) affinoid space over a mixed-
characteristic nonarchimedean field (see [157, Lemma 8.7(ii)] for the case where the base
affinoid is smooth, and [118, Lemma 8.3.3] in the general case).

For this last reason, we propose to retronymically refer to the older version of the pro-étale
topology as the flattening pro-étale topology.

Theorem 3.8.2. For (A,A+) a perfectoid pair, the structure presheaf on Spa(A,A+)proet is
an acyclic sheaf. The same is also true if we replace the pro-étale topology with the v-topology
(Definition 3.8.5).

Proof. For A Tate, this (in both cases) is a consequence of [118, Theorem 3.5.5]. The general
case follows from this statement plus Theorem 1.3.4. �

Remark 3.8.3. By Theorem 3.8.2, the pro-étale topology on the category of perfectoid
spaces is subcanonical (i.e., representable functors are sheaves; see Definition 1.11.1). By
contrast, the pro-étale topology on other types of adic spaces is often not subcanonical. For
instance, for K a nonarchimedean field of mixed characteristics, the largest subcategory of
the category of rigid analytic spaces over K on which the pro-étale topology is subcanonical
is the category of seminormal spaces (Exercise 2.9.6); see [118, Theorem 8.2.3].

Remark 3.8.4. In the category of schemes, it is useful to refine the étale topology to the
fpqc17 topology, in which any faithfully flat quasicompact morphism is treated as a covering.
It would be useful to do something similar for adic spaces, but flatness is a tricky concept
to deal with in the presence of topological completions (compare Remark 1.3.5).

However, there is an even finer topology for schemes which does admit a suitable adic
analogue: the h-topology introduced by Voevodsky for use in A1-homotopy theory [174], in
which the coverings are the universal topological epimorphisms (e.g., blowups). This topology
is so fine that it is not even subcanonical on the full category of schemes; analogously
to Remark 3.8.3, for excellent schemes over Q, the maximal subcategory on which the h-
topology is subcanonical is the category of seminormal schemes [174, Proposition 3.2.10],
[97, Proposition 4.5], [118, Proposition 1.4.22]. For nonnoetherian schemes, a more useful
variant of this topology has been introduced by Rydh [154].

Definition 3.8.5. By analogy with the h-topology, in [162] one finds consideration of the
v-topology18 on Pfd, in which a morphism f : Y → X is considered as a covering if f is sur-
jective and every quasicompact open subset of X is contained in the image of a quasicompact
open subset of Y . The v-topology on Pfd is subcanonical by Theorem 3.8.2.

16It should be possible to replace this condition with a Mittag-Leffler condition without changing the
resulting topos.

17Acronym for fidèlement plat quasi-compact.
18In the original version of [162], this was called the faithful topology.
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Definition 3.8.6. By a vector bundle on an adic space with respect to the pro-étale topol-
ogy or the v-topology, we mean a sheaf of O-modules which is locally finite free. It is not
reasonable to try to work with pseudocoherent sheaves at this level of generality, due to the
use of blatantly nonflat covers; however, in [118] one does find such a notion for the flattening
pro-étale topology.

Theorem 3.8.7. For (A,A+) a perfectoid pair, the pullback functor FPModA → VecSpa(A,A+)proet

is an equivalence of categories. The same is also true if we replace the pro-étale topology with
the v-topology (Definition 3.8.5).

Proof. For A Tate, this (in both cases) is a consequence of [118, Theorem 3.5.8]. The general
case follows from this statement plus Theorem 1.4.2. �

Remark 3.8.8. Theorem 3.8.2 and Theorem 3.8.7, in the case of the v-topology, are analo-
gous to certain results of Gabber about the h-topology on perfect schemes. See [20, §3], [19,
Theorem 1.2].

Remark 3.8.9. For S ∈ Pfd, the category of étale Qp-local systems on S is equivalent (via
pullback) to the category of sheaves of Qp-modules for the v-topology which are locally finite
free. See [117, Remark 1.4.2], [118, Remark 4.5.2].
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4. Shtukas

The Langlands correspondence describes a relationship between Galois representations
and automorphic forms extending class field theory, appropriately formulated as a statement
about the algebraic group Gm, to more general algebraic groups. In the setting where the
Galois group in question is that of a function field over a finite field, there is a geometric
approach pioneered by Drinfeld [47] (for the group GL2) and subsequently extended by L.
Lafforgue [128] (for the group GLn) and V. Lafforgue [130] (for more general groups).

In this final lecture, we give some hints as to how the preceding discussion can be refor-
mulated, using the language of diamonds introduced in [177, Lecture 3], in a manner that is
consistent with geometric Langlands. This amounts to a segue into Scholze’s Berkeley lecture
notes [162].

4.1. Fundamental groups. We first review basic facts about the profinite fundamental
groups of schemes. A standard introduction to this topic is the book of Murre [142]; our
presentation draws heavily on a course of de Jong [36].

Definition 4.1.1. For X a scheme, let FEt(X) denote the category of finite étale coverings
of X; for A a ring, we write FEt(A) as shorthand for FEt(Spec(A)) and confuse an object of
this category with its coordinate ring. The following observations about FEt will be useful.

(a) If A = lim−→i
Ai in the category of rings, then the base extension functor from the 2-

direct limit lim−→i
FEt(Ai) to the category FEt(A) is an equivalence of categories. (By

[166, Tag 01ZC], the functor is fully faithful. By [166, Tag 00U2], any B ∈ FEt(A)
is the base extension of some étale Ai-algebra Bi for some i. By [166, Tags 01ZO,
07RR], we may increase i to ensure that Bi is also finite and faithfully flat over Ai;
hence the functor is essentially surjective.)

(b) If f : Y → X is a proper surjective morphism of schemes, then the functor from
FEt(X) to descent data with respect to f (i.e., objects of FEt(Y ) equipped with
isomorphisms of their two pullbacks to Y ×X Y satisfying the cocycle condition on
Y ×X Y ×X Y ) is an equivalence of categories. For a similar statement with a much
weaker hypothesis on f , see [154, Theorem 5.17].

The concept of a Galois category was originally introduced in SGA 1 [82, Exposé V].
We instead take the approach of [166, Tag 0BMQ], starting with the definition from [166,
Tag 0BMY].

Definition 4.1.2. Let C be a category and let F : C → Set be a covariant functor. We say
that (C, F ) is a Galois category if the following conditions hold.

(a) The category C admits finite limits and finite colimits.
(b) Every object of C is a (possibly empty) finite coproduct of connected objects. (Here

X ∈ C is connected if it is not initial and every monomorphism Y → X is either a
monomorphism or a morphism out of an initial object.)

(c) For every X ∈ C, F (X) is finite.
(d) The functor F is exact and reflects isomorphisms.
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We often refer to F in this context as a fiber19 functor by analogy with the primary example
(Definition 4.1.3).

A key property of this definition is its relationship with profinite groups. Let G be the
automorphism group of the functor F ; then G is a profinite group and the action of G on
F induces an equivalence of categories between C and the category of finite G-sets [166,
Tag 0BN4]. This abstracts the usual construction of the absolute Galois group of a field; see
Remark 4.1.4.

Definition 4.1.3. ForX a connected scheme, the category FEt(X) is a Galois category [166,
Tag 0BNB]. For x a geometric point ofX (i.e., a scheme overX of the form Spec(k) for k some
algebraically closed field), the profinite fundamental group πprof

1 (X, x) is the automorphism
group of the functor FEt(X)→ Set taking Y to |Y ×X x| (noting that Y ×X x is a disjoint
union of copies of x); the point x is called the basepoint in this definition.

From the construction, we obtain a natural functor from FEt(X) to the category of finite
sets equipped with πprof

1 (X, x)-actions. Using properties of Galois categories, we see that
πprof

1 (X, x) is profinite with a neighborhood basis of open subgroups given by the point
stabilizers in |Y ×X x| for each Y ∈ FEt(X). Moreover, the previous functor defines an
equivalence between FEt(X) and the category of finite πprof

1 (X, x)-sets for the profinite
topology on πprof

1 (X, x) (i.e., finite sets with the discrete topology carrying continuous group
actions).

Remark 4.1.4. ForX = Spec(K) withK a field, a geometric point x ofX amounts to a field
embedding K → L with L algebraically closed, and πprof

1 (X, x) is the absolute Galois group
of K acting on the separable closure of K in L. Similarly, for general X, if x = Spec(L)

is a geometric point lying over x = Spec(K) ∈ X, then πprof
1 (X, x) remains (naturally)

unchanged if we replace x by the spectrum of the separable or algebraic closure of K in L.

Remark 4.1.5. In Definition 4.1.3, the definition of πprof
1 (X, x) is independent of the choice

of x, but only in a weak sense: any two choices of basepoints gives a pair of groups and
an isomorphism between them, but the latter is only specified up to composition with an
inner automorphism. This includes the familiar fact that “the” absolute Galois group of a
field F is only functorial up to inner automorphism, as its definition depends on the choice
of an algebraic closure of F . It also corresponds to an analogous ambiguity for topological
fundamental groups, arising from the fact that changing the basepoint of a loop requires
choosing a particular isotopy class of paths from one point to the other. For this reason, the
choice of an isomorphism πprof

1 (X, x1) ∼= πprof
1 (X, x2) is sometimes referred to as a path (in

French, chemin) between the two basepoints x1 and x2.

Remark 4.1.6. The profinite fundamental group of a scheme is often called the étale fun-
damental group and denoted πet

1 (X, x). We avoid this terminology here for the following
reasons.

For an ordinary topological space X (which is connected, locally path-connected, and lo-
cally simply connected) and a point x ∈ X, the fundamental group π1(X, x) (or retronymi-
cally, the topological fundamental group) can be interpreted in terms of deck transformations
of covering space maps which need not be finite. If one uses only the finite covering space

19Also frequently spelled fibre, but this is due more to the influence of Francophones on the early devel-
opment of this topic than to the standard discrepancies between US-style and UK-style spelling.
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maps as in Definition 4.1.3, one instead obtains the profinite completion of π1(X, x), which
we call the profinite fundamental group of X (with basepoint x) and denote by πprof

1 (X, x).
For a rigid analytic space X (or Berkovich space or adic space) and a geometric point x of

X, one can again define a profinite fundamental group πprof
1 (X, x) using finite étale coverings

as in Definition 4.1.3. However, there are interesting étale coverings which are not finite, such
as the Tate uniformizations of elliptic curves of bad reduction. To account for this, de Jong
[34] defines the étale fundamental group πet

1 (X, x) in terms of coverings which locally-on-the-
target20 split as disjoint unions of finite étale coverings. Again, the profinite completion of this
group yields the profinite fundamental group. Despite this, though, the profinite fundamental
group fails to detect many interesting examples; for instance, the Hodge–Tate period map
discussed in [161] (which reinterprets the Gross-Hopkins period map [79]; see also [27]) gives
rise to a connected étale covering of P1,an

Cp
with deck transformations by PSL2(Qp), a group

with no nontrivial finite quotients (consistent with the triviality of the profinite fundamental
group of P1,an

Cp
).

Let us now return to the case of schemes. Motivated by the previous examples, let us define
the étale fundamental group in terms of deck transformations of coverings which are locally-
on-the-target the disjoint unions of finite étale coverings. For X a normal connected scheme,
X is irreducible and we may thus choose the base point x to lie over the generic point η of
X; to compute fundamental groups, there is no harm in replacing X with its reduced closed
subscheme, which has the same finite étale covers. We may then argue (see [166, Tag 0BQM])
that πet

1 (X, x) is a quotient of the absolute Galois group of η (i.e., the automorphism group
of the integral closure of κ(η) in κ(x)), hence is profinite, hence coincides with πprof

1 (X, x).
By contrast, if X is a scheme which is not normal, then its étale fundamental group need

not be profinite. For example, let X be a nodal cubic curve in P2
C. Let Y be the normalization

of X, and let y1, y2 be the two distinct points in Y mapping to the node in X. Then for any
basepoint x, πet

1 (X, x) is isomorphic to Z, with the corresponding cover being the “helical”
covering of X obtained from the disjoint union

⊔
n∈Z Yn of Z-many copies of Y by identifying

y2 ∈ Yn with y1 ∈ Yn+1 for each n ∈ Z. (Similar considerations apply when X is the scheme
obtained by glueing two copies of P1

C along two distinct closed points.)
Remark 4.1.7. In order to construct the non-profinite fundamental groups described in
Remark 4.1.6 using the formalism of Galois categories, one must modify the definition of a
Galois category by relaxing some of the finiteness hypotheses. One candidate for a replace-
ment definition is the concept of an infinite Galois theory given in [18, Definition 7.2.1]; this
generalizes a construction of Noohi [144].
Remark 4.1.8. Another possible name for the profinite algebraic group is the algebraic
fundamental group, but this terminology has at least two defects of its own. One is that in
the context of complex manifolds, it may be interpreted as referring to the pro-algebraic
completion with respect to the images of finite-dimensional linear representations; see for
example [53]. The other is that it may be confused with Nori’s fundamental group scheme
of a variety over a field [145, 146].
Remark 4.1.9. Remark 4.1.6 is consistent with the behavior of étaleQp-local systems, which
for analytic spaces correspond to representations of the étale fundamental group rather than

20This is not the same as defining this condition locally on the source. However, in the context of topological
covering spaces the two would be equivalent.
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the profinite fundamental group. This is also true for schemes for any natural definition of
étale Qp-local systems, e.g., as locally finite free modules over the locally constant sheaf Qp

on the pro-étale topology of X in the sense of Bhatt–Scholze [18].

Remark 4.1.10. Let Y → X be a morphism of connected schemes. Suppose that for every
connected Z ∈ FEt(X), the scheme Y ×X Z is connected. Then for any geometric point y
of Y , the map πprof

1 (Y, y)→ πprof
1 (X, y) is surjective.

Lemma 4.1.11. Let k → k′ be an extension of algebraically closed fields. Let X be a con-
nected scheme over k. Then Xk′ is also connected.

Proof. See [81, EGA IV.2, Théorème 4.4.4]. �

Definition 4.1.12. We would like to think of the profinite fundamental group of a scheme as
a “topological invariant”, but this goal is hampered by a fundamental defect: it is not stable
under base change. More precisely, if k → k′ is an extension of algebraically closed fields
and X is a connected scheme over k, then Xk′ is again connected by Lemma 4.1.11; for any
geometric point x of Xk′ , the morphism πprof

1 (Xk′ , x)→ πprof
1 (X, x) is surjective. However, it

is easy to exhibit examples where this map fails to be injective; see Example 4.1.13. If (X is
connected and) πprof

1 (Xk′ , x) → πprof
1 (X, x) is an isomorphism for any k′, x, we say that the

morphism X → k is π1-proper ; this (highly nonstandard!) terminology is motivated by the
fact that proper morphisms with connected total space have this property (Corollary 4.1.19).

Example 4.1.13. Let k → k′ be an extension of algebraically closed fields of character-
istic p > 0 and put X := Spec(k[T ]). For any geometric point x of X, the Artin–Schreier
construction provides an identification

HomTopGp(πprof
1 (X, x),Z/pZ) ∼=

⊕
n>0,n 6=0 (mod p)

kT i

(for TopGp the category of topological groups). This group is not invariant under enlarging
k.

Example 4.1.14. Let k → k′ be an extension of algebraically closed fields of characteristic
p > 0. Let X be a smooth, projective, connected curve of genus g over k. Then for any
geometric point x of Xk′ , Hom(πprof

1 (X, x),Z/pZ) is a finite free Z/pZ-module of rank equal
to the p-rank of X. This rank can be computed in terms of the geometric points of the
p-torsion subscheme of the Jacobian, and thus is invariant under base change from k to k′.
Thus the argument of Example 4.1.13 does not apply in this case, and indeed Corollary 4.1.19
below will imply that πprof

1 (Xk′ , x)→ πprof
1 (X, x) is an isomorphism.

It turns out that the essential feature of Example 4.1.14 which separates it from Exam-
ple 4.1.13 is properness. We show this through a series of arguments.

Lemma 4.1.15. Let f : Y → X be a morphism of schemes which are qcqs (quasicompact and
quasiseparated). Suppose that the base change functor FEt(X)→ FEt(Y ) is an equivalence
of categories.

(a) The map π0(X)→ π0(Y ) is a homeomorphism.
(b) Suppose that one of X or Y is connected. Then so is the other, and for any geometric

point y of Y the map πprof
1 (Y, y)→ πprof

1 (X, y) is a homeomorphism.
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Proof. See [166, Tag 0BQA]. �

Lemma 4.1.16. Let k → k′ be an extension of algebraically closed fields of characteristic 0.
Let X be a k-scheme.

(a) The base change functor FEt(X)→ FEt(Xk′) is an equivalence of categories.
(b) If X is connected (as then is Xk′ by Lemma 4.1.11), then for any geometric point x of

Xk′, the map πprof
1 (Xk′ , x)→ πprof

1 (X, x) is a homeomorphism. That is, the morphism
X → k is π1-proper.

Proof. We start with some initial reductions. We need only prove (a), as then (b) follows
from Lemma 4.1.15. We may assume that X is affine. By writing the coordinate ring A of
X as a direct limit of finitely generated k-subalgebras Ai and applying Definition 4.1.1(a)
to both A and to A⊗k k′ = lim−→i

(Ai ⊗k k′), we may further reduce to the case where X is of
finite type over k. By forming a hypercovering of X by smooth varieties using resolution of
singularities and applying Definition 4.1.1(b), we may also assume that X is smooth. Using
the Lefschetz principle, we may also assume that k and k′ are contained in C; we may then
assume without loss of generality that k′ = C.

If X is connected, then so is XC by Lemma 4.1.11, as then is Xan
C by [82, SGA 1, Exposé X,

Proposition 2.4]; from this, it follows that FEt(X) → FEt(XC) is fully faithful. To prove
essential surjectivity, apply resolution of singularities to construct a compactification X of
X whose boundary is a divisor Z of simple normal crossings. Given a finite étale cover of
XC, we obtain a corresponding Z-local system on Xan

C with finite global monodromy; by
the Riemann–Hilbert correspondence plus GAGA, this gives rise to a vector bundle on XC
equipped with an integrable connection having regular logarithmic singularities along ZC.
The moduli stack of such objects is the base extension from k to C of a corresponding stack
of finite type over k; since the base extension must consist of discrete points, these points
coincide with the connected components of the stack, which remain invariant under base ex-
tension (Lemma 4.1.11 again). We thus obtain a vector bundle with integrable meromorphic
connection on X itself; the sheaf of sections of this bundle is the underlying OX-module of
a finite étale OX-algebra descending the original cover of XC. �

Remark 4.1.17. From the proof of Lemma 4.1.16, we see that if X is a smooth scheme
over an algebraically closed field k of characteristic 0, πprof

1 (X, x) can be computed as the
profinite completion of π1(Xan

C , x) for any embedding k → C (and any closed point x of XC).
However, even if X is projective, the group π1(Xan

C , x) is not in general independent of the
choice of the embedding k → C, as first observed by Serre [165].

Lemma 4.1.18. Let A be a henselian local ring with residue field κ. Let f : X → S :=
Spec(A) be a proper morphism of schemes. Then the base change functor FEt(X)→ FEt(X×S
Spec(κ)) is an equivalence of categories.

Proof. This is a relatively easy argument in terms of relatively difficult theorems (on alge-
braization and approximation). See [166, Tag 0A48]. �

Corollary 4.1.19. Let k → k′ be an extension of algebraically closed fields (of any charac-
teristic). Let X be a proper k-scheme.

(a) The base change functor FEt(X)→ FEt(Xk′) is an equivalence of categories.
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(b) If X is connected (as then is Xk′ by Lemma 4.1.11), then for any geometric point x of
Xk′, the map πprof

1 (Xk′ , x)→ πprof
1 (X, x) is a homeomorphism. That is, the morphism

X → k is π1-proper.

Proof. Part (a) is obtained from Lemma 4.1.18 by writing k′ as a direct limit of finitely
generated k-algebras; see [166, Tag 0A49]. Given (a), (b) follows from Lemma 4.1.15. �

Remark 4.1.20. If k = C and X is proper over k, then the GAGA theorem, as extended
to the proper case in SGA 1 [82, Exposé XII], implies that any finite covering space map of
the analytification Xan of X is in fact the analytification of a finite étale cover of X. Hence
if x is a geometric point lying over a closed point x of X, then πprof

1 (X, x) can be interpreted
as the profinite completion of π1(Xan, x).

We now turn to analogues of the homotopy exact sequence of a fiber bundle of topo-
logical spaces. The following result, similar in spirit to Stein factorization, is a refinement
of [82, SGA 1, Exposé X, Corollaire 1.3] adapted from a similar result for diamonds [162,
Proposition 16.3.3].

Lemma 4.1.21. Let X → S be a qcqs morphism of schemes with connected, π1-proper
geometric fibers. Assume in addition that for every geometric point s of S, every connected
finite étale covering of X ×S s extends to a finite étale covering of X ×S U with connected
geometric fibers over some étale neighborhood U of s in S. Then for any finite étale morphism
X ′ → X, there exists a commutative diagram

X ′ //

��

X

��
S ′ // S

such that S ′ → S is finite étale and X ′ → S ′ has geometrically connected fibers. Additionally,
this diagram is initial among diagrams

X ′ //

��

X

��
T // S

where T → S is finite étale; in particular, it is unique up to unique isomorphism.

Proof. In light of the uniqueness statement, the claim is fpqc-local on S; by Lemma 4.1.11,
the hypothesis is also fpqc-local on S. We may thus assume first that S is affine and reduced
(since replacing S by its reduced closed subscheme does not change its étale site), and second
that S is strictly w-local in the sense of [18]; in particular, every finite étale covering of a
closed-open subspace of S splits. In this case, the uniqueness property is vacuously true,
and we need only check existence; this amounts to showing that X ′ splits as a finite disjoint
union of closed-open subspaces, each of which maps to some closed-open subspace of S with
geometrically connected fibers.

It suffices to work étale-locally around some geometric point s ∈ S. By the qcqs hypothesis,
the functor

(4.1.21.1) 2- lim−→
U3s

FEt(X ×S U)→ FEt(X ×S s),
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where U runs over étale neighborhoods of s in S, is an equivalence of categories. We may
thus reduce to the case where X×S s is connected, in which case we must produce U so that
X ′ ×S U has connected geometric fibers over U . By shrinking U , we may first ensure that
X ′×S s lifts to some finite étale cover of X×S U with connected geometric fibers over U (by
hypothesis), and second that this cover is isomorphic to X ′ (again because (4.1.21.1) is an
equivalence). �

This then yields a variant of [82, SGA1, Exposé X, Corollaire 1.4] adapted from [162,
Proposition 16.3.6].

Corollary 4.1.22. With notation and hypotheses as in Lemma 4.1.21, suppose in addition
that S is connected. Then X is connected, and for any geometric point x of X mapping to
the geometric point s of S, the sequence

πprof
1 (X ×S s, x)→ πprof

1 (X, x)→ πprof
1 (S, s)→ 1

is exact.

Proof. We first check that X is connected. It is apparent that X 6= ∅. Suppose by way of
contradiction that X disconnects as X1 t X2. For any geometric point s ∈ S, X ×S s is
connected by hypothesis, so one of X1 ×S s,X2 ×S s must be empty. Suppose that X1 ×S s
is empty; since X1 is qcqs, this space can be rewritten as the inverse limit lim←−U X1 ×S U for
U running over étale neighborhoods of s in S. At the level of topological spaces, we have
an inverse limit of spectral spaces and spectral morphisms, which can only be empty if it is
empty at some term. (For the constructible topologies, this is an inverse limit of compact
Hausdorff spaces, which by Tikhonov’s theorem cannot be empty if none of the terms is
empty.) It follows that {s ∈ S : X1,s = ∅} is open, as then is {s ∈ S : X2,s = ∅}. Since these
sets cannot overlap, they form a disconnect of S, a contradiction.

By the previous paragraph, if S ′ → S is finite étale and S ′ is connected, then so is X×SS ′.
By Remark 4.1.10, πprof

1 (X, x)→ πprof
1 (S, s) is surjective.

Let G be a finite quotient of πprof
1 (X, x) corresponding to X ′ ∈ FEt(X). Let G → H

be the quotient corresponding to a Galois cover S ′ → S as produced by Lemma 4.1.21
(the uniqueness property of that result implies the Galois property of the cover). Since
X ′ → S ′ has geometrically connected fibers, the map πprof

1 (X ×S s, x)→ ker(G→ H) must
be surjective. This completes the proof of exactness. �

This in turn yields a variant of [82, SGA 1, Exposé X, Corollaire 1.7], giving a Künneth
formula for fundamental groups of products.

Corollary 4.1.23. Let k be an algebraically closed field and put S := Spec(k). Let X →
S, Y → S be morphisms such that Y is connected and X → S is qcqs and π1-proper. (The
π1-proper condition holds if k is of characteristic 0, by Lemma 4.1.16, or if X → S is proper,
by Corollary 4.1.19.) Then Z := X ×S Y is connected, and for any geometric point z of Z
the map

πprof
1 (Z, z)→ πprof

1 (X, z)× πprof
1 (Y, z)

is an isomorphism of topological groups.
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Proof. Apply Corollary 4.1.22 to the morphism Z → Y ; both hypotheses of Lemma 4.1.21
are satisfied because X → S is π1-proper. We then have a commutative diagram of groups

πprof
1 (Zs, z) // πprof

1 (Z, z)

��

// πprof
1 (Y, z) // 1

πprof
1 (X, z)

in which the top row is exact. This proves the claim. �

Although we do not use it here, we wish to point out the following recent result of Achinger
[3, Theorem 1.1.1].

Definition 4.1.24. For X a connected scheme, we say that X is a K(π, 1) scheme if for
some (hence any) geometric point x of X, for every locally constant sheaf of finite abelian
groups F on Xet, the natural maps

(4.1.24.1) H∗(πprof
1 (X, x),Fx)→ H∗(Xet,F)

are isomorphisms. This is analogous to the corresponding definition in topology, which can
be formulated as the assertion that the higher homotopy groups of X all vanish. We may
similarly define the concept of a K(π, 1) adic space.

Remark 4.1.25. The usual definition of aK(π, 1) scheme imposes the condition on (4.1.24.1)
only for torsion sheaves whose order is invertible on X (see for example [147, Definition 5.3],
[1, Definition 9.20]). We need the stronger restriction here in order to pass the condition
through the tilting equivalence.

Theorem 4.1.26 (Achinger). Let X be a connected affine scheme over Fp. Then X is a
K(π, 1) scheme.

As in [3, Theorem 6.4.2], this yields the following corollary.

Corollary 4.1.27. Let X := Spa(A,A+) be a connected Tate adic affinoid space on which
p is topologically nilpotent. Then X is a K(π, 1) adic space.

Proof. In case X is affinoid perfectoid, the statements follow by applying Corollary 2.5.10
to reduce to the case of an affinoid perfectoid space in characteristic p, then reducing to
Theorem 4.1.26 via an algebraization argument (see [3, Proposition 6.4.1]). This implies the
general case using Theorem 2.9.9. �

Remark 4.1.28. In Theorem 4.1.26, the isomorphism in (4.1.24.1) is easy to verify for p-
torsion coefficients using the Artin–Schreier construction. The subtle part is to extend this
argument to all coefficients; this makes use of certain very strong results on the presentation
of schemes of finite type over a positive-characteristic field as finite étale covers of affine
spaces, in the spirit of [102, 104]. (The one-dimensional cases of such results may be viewed
as positive-characteristic analogues of Belyi’s theorem on covers of P1 ramified over three
points, as in [77, §4].)

Remark 4.1.29. In Corollary 4.1.27, the condition that p be topologically nilpotent is
essential: there exist affinoid spaces over C((t)) which are not K(π, 1) spaces. An explicit
example is the closed subspace of the unit 3-ball in x, y, z cut out by the equation xy = z2−t;
see [2, §7] for a closely related example.
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4.2. Drinfeld’s lemma. We next introduce a fundamental result of Drinfeld21 which gives a
replacement for the Künneth formula for fundamental groups (Corollary 4.1.23) for products
of schemes in characteristic p. More precisely, the original result of Drinfeld [49, Theorem 2.1],
[50, Proposition 6.1] gives a key special case (see Remark 4.2.13); the general case is due to
E. Lau [131, Theorem 8.1.4], except for a superfluous restriction to schemes of finite type.
See also [162, Theorem 17.2.4].

Definition 4.2.1. For any scheme X over Fp, let ϕX : X → X be the absolute Frobenius
morphism, induced by the p-th power map on rings. For f : Y → X a morphism of schemes,
define the relative Frobenius ϕY/X : Y → ϕ∗XY to be the unique morphism making the
diagram

Y ϕY

  

ϕY/X

""
f

##

ϕ∗XY
f∗ϕX //

ϕ∗Xf
��

Y

f
��

X
ϕX // X

commute.

The following argument is similar in style to the proof of Serre’s GAGA theorem [164].

Lemma 4.2.2. Let X be a projective scheme over Fp. Let k be a separably closed field of
characteristic p. Then pullback along Xk → X defines an equivalence of categories between
coherent sheaves on X and coherent sheaves on Xk equipped with isomorphisms with their
ϕk-pullbacks. Moreover, for F a coherent sheaf on X, the induced maps

H i(X,F)⊗Fp k → H i(Xk,F)

are ϕ-equivariant isomorphisms.

Proof. The assertion about comparison of cohomology is a consequence of flat base change
(this step is trivial compared to the analogous step in GAGA), and immediately implies that
the pullback functor is fully faithful (by forming internal Homs and comparing H0 groups).

It thus remains to prove essential surjectivity. In the case R = Fp, this is a result of
Lang, as reported by Katz in SGA 7 [39, Exposé XXII, Proposition 1.1]. We summarize the
argument in the style of [117, Lemma 3.2.6]: if V is a vector space with basis e1, . . . , en over
k equipped with the action of ϕk taking ej to

∑
iAijei, then the closed subscheme X of

Spec k[Uij : i, j = 1, . . . , n] cut out by the matrix equation ϕ(U) = A−1U is finite (evidently)
and étale (by the Jacobian criterion) over Spec(k), and so splits as a disjoint union of k-
rational points (because k is separably closed). Projecting to a component of this disjoint
union, we obtain elements v1, . . . ,vn of V defined by vj =

∑
i Uijei which are fixed by ϕ;

for a suitable choice of component, these elements form a basis of V .
To treat the general case, fix an ample line bundle O(1) on X; we can then identify

X with the Proj of the graded ring
⊕∞

n=0 Γ(X,O(n)), Xk with the Proj of the graded ring⊕∞
n=0 Γ(Xk,O(n)), and F with the sheaf associated to the graded module

⊕∞
n=0 Γ(Xk,F(n)).

Each graded piece of this module is a finite-dimensional k-vector space, so we may apply the
21A more accurate transliteration of Дринфельд would be Drinfel’d, but this would lead to the typo-

graphical monstrosity of Drinfel’d’s lemma.
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previous paragraph to write it as Sn ⊗Fp k for Sn = Γ(Xk,F(n))ϕk . The sheaf F then arises
as the pullback of the sheaf on X associated to the graded module

⊕∞
n=0 Sn. (Compare [50,

Proposition 1.1], [127, I.3, Lemme 3], [131, Lemma 8.1.1], [162, Lemma 17.2.6].) �

Remark 4.2.3. As with the GAGA theorem (see [82, SGA 1, Expose XII]), using Chow’s
lemma one can immediately promote Lemma 4.2.2 to the case where X is proper over Fp.
However, it does not hold if we only require X to be of finite type over Fp. For example, take
X = Spec(k[T±]) and F = M̃ for M the free module on the single generator v equipped
with the ϕk-action taking v to Tv; then M cannot have a ϕk-invariant element.

Using the previous argument, we may show that “quotienting by relative Frobenius” can
be used to mitigate failures of π1-properness.

Definition 4.2.4. For X a scheme and Γ a group of automorphisms of X, let FEt(X/Γ)
denote the category of finite étale coverings Y equipped with an action of Γ. That is, we must
specify isomorphisms Y → γ∗Y for each γ ∈ Γ, subject to the condition that for γ1, γ2 ∈ Y ,
composing the γ1-pullback of Y → γ∗2Y with Y → γ∗1Y yields the chosen map Y → (γ1γ2)∗Y .

We say that X is Γ-connected if X is nonempty and its only Γ-stable closed-open subsets
are itself and the empty set. If X is Γ-connected, then for any geometric point x of X, the
category FEt(X/Γ) equipped with the fiber functor Y 7→ |Y ×X x| is a Galois category in
the sense of Definition 4.1.2; the argument is the same as in [166, Tag 0BNB] except for
condition (b), in which the Γ-connected hypothesis is used. We then write πprof

1 (X/Γ, x) for
the automorphism group of this fiber functor.

In these notations, when Γ is generated a single element γ, we will typically write X/γ in
place of X/Γ.

We need the following variant of Definition 4.1.1(a).

Lemma 4.2.5. Let X = Spec(A) be an affine scheme over Fp. Let k be a field of charac-
teristic p. Write A as a filtered direct limit of finitely generated Fp-subalgebras Ai. Then the
base extension functor

2- lim←−FEt((Ai ⊗Fp k)/ϕk)→ FEt((A⊗Fp k)/ϕk)

is an equivalence of categories.

Proof. By the same argument as in Definition 4.1.1(a) , the functor

2- lim←−FEt(Ai ⊗Fp k)→ FEt(A⊗Fp k)

is an equivalence of categories. This implies immediately that the given functor is fully
faithful. To establish essential surjectivity, note that for B ∈ FEt((A ⊗Fp k)/ϕk), we know
that for some index i, B descends to Bi ∈ FEt(Ai ⊗Fp k) while ϕ∗kB descends to ϕ∗kB′i for
some B′i ∈ FEt(Ai ⊗Fp k). In addition, the isomorphisms

Bi ⊗Ai
A ∼= B′i ⊗Ai

A, ϕ∗k(B
′
i ⊗Ai

A) ∼= Bi ⊗Ai
A

both descend to FEt(Aj ⊗Fp k) for some j. This proves the claim. �

Lemma 4.2.6. Let X be a scheme over Fp. Let k be an algebraically closed field of charac-
teristic p. Then the base extension functor

FEt(X)→ FEt(Xk/ϕk)
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is an equivalence of categories, with the quasi-inverse functor being given by taking ϕk-
invariants.

Proof. We first reduce to the case where X is affine. Using Lemma 4.2.5, we further reduce
to the case where X is of finite type over Fp. Applying Definition 4.1.1(b) to a suitable
covering, we further reduce22 to the case where X is normal and connected. Choose an open
immersion X → X ′ with X ′ normal and projective over Fp. Now note that the following
categories are equivalent (using Lemma 4.2.2 between (b) and (c)):

(a) finite étale morphisms Y → Xk with isomorphisms ϕ∗kY ∼= Y ;
(b) finite morphisms Y → X ′k with Y normal and étale over Xk with isomorphisms

ϕ∗kY
∼= Y ;

(c) finite morphisms Y → X ′ with Y normal and étale over X;
(d) finite étale morphisms Y → X.

This proves the claim. (Compare [127, IV.2, Théorème 4], [131, Lemma 8.1.2], [162, Lemma 17.2.6].)
�

Example 4.2.7. Let k be an algebraic closure of Fp and put X = Spec(k). Then Xk is
highly disconnected: there is a natural homeomorphism π0(Xk) ∼= Gal(k/Fp) ∼= Ẑ. However,
the action of ϕk on π0(X) is via translations by the dense subgroup Z of Ẑ; consequently,
there is no ϕk-stable disconnection of X, as predicted by Lemma 4.2.6.

Corollary 4.2.8. Let X be a connected scheme over Fp. Let k be an algebraically closed field
of characteristic p.

(a) The scheme Xk is ϕk-connected.
(b) For any geometric point x of X, the map

πprof
1 (X, x)→ πprof

1 (Xk/ϕk, x)

is a homeomorphism of profinite groups.

Proof. Let k0 be the integral closure of Fp in k; by Lemma 4.1.11, we have π0(Xk0) = π0(Xk).
We may thus argue as in Example 4.2.7, i.e., by identifying π0(Xk0) with a quotient of Ẑ
on which ϕk acts via translation by the dense subgroup Z. This proves (a). Given (a), (b)
follows immediately from Lemma 4.2.6. �

This then leads to a corresponding mitigation for products of varieties.

Remark 4.2.9. For X a connected scheme over Fp, if we view FEt(X/ϕ) as the category
of pairs (Y, σ) where Y ∈ FEt(X) and σ : Y → ϕ∗XY is a single isomorphism, then the
forgetful functor FEt(X/ϕ)→ FEt(X) admits a distinguished section taking Y to (Y, ϕY/X).
However, this section is not an equivalence: whereas every connected finite étale cover Y of
X admits only the action by ϕY/X (which commutes with all automorphisms of Y over X),
for a disconnected cover this action may be twisted by an automorphism of Y over X that
permutes connected components. From this, one deduces that for x a geometric point of X,
there is a canonical isomorphism

πprof
1 (X/ϕ, x) ∼= πprof

1 (X, x)× Ẑ ∼= πprof
1 (X, x)×GFp .

22Had it been helpful to do so, we could have added de Jong’s alterations theorem [35] into this argument
to further reduce to the case where X is smooth and admits a compactification with good boundary.
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Definition 4.2.10. Let X1, . . . , Xn be schemes over Fp and put X := X1 ×Fp · · · ×Fp Xn.
Write ϕi as shorthand for ϕXi

. Define the category

FEt(X/Φ) := FEt(X/〈ϕ1, . . . , ϕn〉)×FEt(X/ϕX) FEt(X)

via the functor FEt(X)→ FEt(X/ϕX) described in Remark 4.2.9. In other words, an object
of FEt(X/ϕ) is a finite étale covering Y → X equipped with commuting isomorphisms
βi : Y ∼= ϕ∗iY whose composition is ϕY/X . (Here “composition” and “commuting” must be
interpreted suitably: by the “composition” βi ◦ βj, we really mean (β∗jβi) ◦ βj.) Note that for
any i ∈ {1, . . . , n}, there is a canonical equivalence of categories

FEt(X/Φ) ∼= FEt(X/〈ϕ1, . . . , ϕ̂i, . . . , ϕn〉).
In case X1, . . . , Xn are connected, by Lemma 4.2.11 we may obtain a Galois category in
the sense of Definition 4.1.2 by considering the usual fiber functor defined by any geometric
point x of X; we denote the corresponding group by πprof

1 (X/Φ, x).

Lemma 4.2.11. With notation as in Definition 4.2.10, if X1, . . . , Xn are connected, then
X is 〈ϕ1, . . . , ϕ̂i, . . . , ϕn〉-connected for any i ∈ {1, . . . , n}. We say for short that X is Φ-
connected.

Proof. We adapt the proof of Corollary 4.1.22, proving the claim by induction on n with
trivial base case n = 1. For the induction step, it is apparent that X 6= ∅. Suppose by
way of contradiction that X admits a Φ-invariant disconnection U1 t U2. Put X ′ := X1 ×Fp

· · · ×Fp Xn−1. For each geometric point s ∈ Xn, Corollary 4.2.8 implies that the ϕn-invariant
closed-open subsets of X ×Xn s are just the pullbacks of the closed-open subsets of X ′;
consequently, the Φ-invariant closed-open subsets of X ×Xn s are just the pullbacks of the
〈ϕ2, . . . , ϕn−1〉-invariant closed-open subsets of X ′. By the induction hypothesis, this implies
that one of U1 ×Xn s, U2 ×Xn s must be empty. Consequently, the sets {s ∈ Xn : U1 ×Xn s =
∅} and {s ∈ Xn : U2 ×Xn s = ∅} form a set-theoretic partition of Xn; using Tikhonov’s
theorem, we see that each of these sets is open. This yields a disconnection of Xn, and thus
a contradiction. �

Theorem 4.2.12 (“Drinfeld’s lemma”). Let X1, . . . , Xn be connected qcqs schemes over Fp
and put X := X1 ×Fp · · · ×Fp Xn. Then for any geometric point x of X, the map

πprof
1 (X/Φ, x)→

n∏
i=1

πprof
1 (Xi, x)

is an isomorphism of topological groups.

Proof. In light of Definition 4.2.10, we may rewrite the group on the left as

πprof
1 (X1 ×Fp (X2/ϕ)×Fp · · · ×Fp (Xn/ϕ), x).

We may then proceed by induction on n, with the base case n = 1 being trivial. The induction
step follows from Lemma 4.2.6 as in the proof of Corollary 4.1.23. �

Remark 4.2.13. The original result of Drinfeld [50, Proposition 6.1] is somewhat more
restrictive than Theorem 4.2.12; it treats the case where n = 2 and X1 = X2 = Spec(F )
where F is the function field of a curve over a finite field. See [130, Lemme 8.2] for further
discussion of this case, including additional references.
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In the spirit of the theory of diamonds, one may reinterpret Drinfeld’s lemma as follows.

Remark 4.2.14. Let Perf denote the category of perfect schemes over Fp. Identify each
X ∈ Perf with the representable functor hX : Perf → Set taking Y to HomPerf (Y,X),
which is a sheaf for the Zariski, étale, and fpqc topologies. Let X/ϕ : Pfd → Set be the
functor taking Y ∈ Perf to the set of pairs (f, g) where f : Y → X is a morphism and
g : Y → ϕ∗XY is an isomorphism (using f to define ϕ∗XY ). Beware that X/ϕ is no longer a
sheaf for any of the topologies in question; it is only a stack over Perf in the sense of [166,
Tag 026F]. (See Problem A.6.3.)

For a suitable definition of the étale topology on stacks (as in Definition 1.11.2), Lemma 4.2.6
asserts an equivalence

FEt(X)→ FEt(X ×Spec(Fp) (Spec(k)/ϕ)) (X ∈ Perf),

which we may think of as formally defining an isomorphism

πprof
1 (X, x)→ πprof

1 (X ×Spec(Fp) (Spec(k)/ϕ), x).

Similarly, let X1, . . . , Xn be connected schemes over Fp and put X := X1×Fp · · ·×Fp Xn. Let
X/Φ : Perf → Set be the functor taking Y ∈ Perf to the set of tuples (f, β1, . . . , βn) where
f : Y → X is a morphism and βi : Y → ϕ∗Xi

Y are commuting isomorphisms which compose
to ϕY/X . We may then think of Theorem 4.2.12 as formally defining an isomorphism

πprof
1

((
n∏
i=1

Xi

)
/Φ, x

)
→

n∏
i=1

πprof
1 (Xi, x).

Remark 4.2.15. Following up on Remark 4.2.14, using Remark 4.2.9 we obtain an isomor-
phism of

πprof
1 ((X1/ϕ)×Spec(Fp)/ϕ · · · ×Spec(Fp)/ϕ (Xn/ϕ), x)

with the limit (i.e., fiber product) of the diagram

πprof
1 (X1/ϕ, x)

))

· · ·

��

πprof
1 (Xn/ϕ, x)

uu

πprof
1 (Spec(Fp)/ϕ, x).

This statement admits a highly suggestive topological analogue. Namely, letX1 → S, . . . , Xn →
S be Serre fibrations of topological spaces, and let x be a basepoint of X := X1×S · · ·×SXn

mapping to x1, . . . , xn, s in X1, . . . , Xn, S. Suppose further that S is a K(π, 1) (this be-
ing analogous to the algebro-geometric situation, e.g., in light of Theorem 4.1.26). Since
π2(S) = 0, we may combine the long exact sequence of homotopy groups associated to a
fibration with the formula for the fundamental group of an ordinary product to deduce that
π1(X, x) is the limit of the diagram

π1(X1, x1)

&&

· · ·

��

π1(Xn, xn)

xx
π1(S, s).
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4.3. Drinfeld’s lemma for diamonds. We now establish an analogue of Drinfeld’s lemma
for diamonds (and somewhat more general sheaves). This involves a reinterpretation of rel-
ative Fargues–Fontaine curves in the language of diamonds (already discussed in [177, Lec-
ture 4]), which can be taken as a retroactive justification for their construction.

The foundations of the theory of diamonds require a fair bit of care, and substantial parts
of [160] and [162] are devoted to these foundations. Our discussion here should be taken as
no more than a brief summary of these treatments.

Definition 4.3.1. Let Pfd again denote the category of perfectoid spaces of characteristic
p. Identify each S ∈ Pfd with the representable functor hX : Pfd → Set; the latter is a
pro-étale sheaf (see Remark 3.8.3). As per [162, Definition 8.3.1] and [160, Definition 11.1],
a diamond is a pro-étale sheaf of sets on Pfd which is a quotient of an object of Pfd by a
pro-étale equivalence relation. These form a category via natural transformations of functors.

For X a perfectoid space (not necessarily of characteristic p), let X� be the representable
functor hX[ . Using Remark 2.9.10, we may extend this construction to a functor X 7→ X�

from analytic adic spaces on which p is topologically nilpotent to diamonds: explicitly, for
Y ∈ Pfd, X�(Y ) consists of isomorphism classes of pairs (Y ], f) in which Y ] is an untilt of
Y (i.e., a perfectoid space equipped with an isomorphism (Y ])[ ∼= Y ) and f : Y ] → X is a
morphism of adic spaces. Beware that this functor is not fully faithful (see Remark 3.8.3).

For (A,A+) a Huber pair in which p is topologically nilpotent (with A analytic as usual),
we write Spd(A,A+) (the “diamond spectrum”) as shorthand for Spa(A,A+)�. Furthermore,
if A = F is a nonarchimedean field and A+ = oF , we usually just write Spd(F ).

We will also need a more permissive construction.

Definition 4.3.2. Recall that the pro-étale topology is refined by the v-topology (see Defi-
nition 3.8.5), which is still subcanonical on Pfd. We may formally promote the v-topology
to diamonds.

A small v-sheaf is a sheaf on Pfd which admits a surjective morphism from some per-
fectoid space; any diamond is a small v-sheaf. Using small v-sheaves, we may extend the
functor (A,A+) → Spd(A,A+) to some non-analytic Huber pairs. For example, Spd(Fp) is
a terminal object in the category of small v-sheaves. For another example, by analogy with
the interpretation of Spd(Qp) as the functor taking S ∈ Pfd to the set of isomorphism
classes of untilts of S over Qp (see [177, Lecture 3]), one can interpret Spd(Zp) as the functor
taking S ∈ Pfd to the set of isomorphism classes of untilts of S, or more precisely of pairs
(S], ι) in which S] is a perfectoid space and ι : (S])[ ∼= S is an isomorphism. (Note that
Spd(Zp((T )))→ Spd(Zp) is an admissible covering for the v-topology.)

Remark 4.3.3. Note that the definition of a small v-sheaf does not include any properties on
an equivalence relation (or any relative representability condition). Somewhat surprisingly,
such conditions are superfluous! Namely, if Y → X is a surjective morphism from a diamond
(e.g., a perfectoid space) to a small v-sheaf, then Y ×X Y is also a diamond. See [160] for
further discussion.

Remark 4.3.4. For X a perfectoid space not necessarily of characteristic p, the functor
X 7→ X� depends only on X[, and thus loses information. However, X also determines a
morphism X� → Spd(Zp) of small v-sheaves, and the resulting functor from X to small
v-sheaves over Spd(Zp) is fully faithful.
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As in Remark 4.2.14, we consider quotients by Frobenius.

Definition 4.3.5. For X a small v-sheaf, let X/ϕ : Pfd → Set denote the functor taking
Y ∈ Pfd to the set of pairs (f, g) where f : Y → X is a morphism of diamonds and
g : Y → ϕ∗XY is an isomorphism (using f to define ϕ∗XY ). In general this is not a sheaf for
either the pro-étale or v-topologies, but it is a stack over Pfd for these topologies. However,
if X is “sufficiently nontrivial” then X/ϕ is a sheaf for the v-topology (and hence a small
v-sheaf, since X → X/ϕ is surjective); for instance, this happens if X arises from an analytic
adic space, or more generally if X is locally spatial in the sense of [162, Definition 17.3.1]
(meaning roughly that the “underlying topological space” of X is well-behaved).

We now reinterpret the construction of Fargues–Fontaine curves in the language of dia-
monds and small v-sheaves, starting with a calculation adapted from [162, Proposition 11.2.2].

Lemma 4.3.6. For S = Spa(R,R+) ∈ Pfd, put Ainf := Ainf(R,R
+), let x1, . . . , xn ∈ R+ be

topologically nilpotent elements which generate the unit ideal in R, and put

US := {v ∈ Spa(Ainf ,Ainf) : v([xi]) 6= 0 for some i ∈ {1, . . . , n}}.
Then there is a natural (in S) isomorphism of small v-sheaves

S� × Spd(Zp) ∼= U�S.

Proof. For Y ∈ Pfd, (S� × Spd(Zp))(Y ) consists of pairs (f, Y ]) in which f : Y → S is a
morphism in Pfd and Y ] is an isomorphism class of untilts of Y . For Y = Spa(R′, R′+), such
data correspond to a primitive ideal I of W (R′+) for which Y ] = Spa(W b(R′)/I,W (R′+)/I)
and a morphism (R,R+) → (R′, R′+) of Huber rings. The latter induces a map W (R+) →
W (R′+) and hence a map W (R+) → W b(R′)/I under which the images of [x1], . . . , [xn]
generate the unit ideal. We thus obtain a map Y ] → US and hence a morphism Y � → U�S.

In the other direction, U�S(Y ) consists of pairs (Y ], f) in which Y ] is an isomorphism class
of untilts of Y and f : Y ] → US is a morphism of adic spaces. The latter gives rise to a
map W (R+) → W b(R′)/I under which the images of [x1], . . . , [xn] generate the unit ideal;
we may thus tilt to obtain a map R+ → R′ which extends to R. We thus obtain a morphism
Y � → S� × Spd(Zp). �

Definition 4.3.7. Recall that for S ∈ Pfd, the relative Fargues–Fontaine curve over S is
defined as the quotient

(4.3.7.1) FFS := YS/ϕS

where ϕS is the map induced by the Witt vector Frobenius. Using Lemma 4.3.6, we have
natural isomorphisms of diamonds

Y �S
∼= S� × Spd(Qp), FF�S

∼= Y �S
∼= (S�/ϕ)× Spd(Qp).

In particular, there is now a natural projection map FF�S → S�/ϕ. Since ϕ acts trivially on
the underlying topological space |S| and on the étale site Set, this projection induces the
map |FFS| → |S| seen in Remark 3.1.12 and the map FFS,et → Set of étale sites seen in
Definition 3.7.4.

In light of the previous constructions, it is natural to define the relative Fargues–Fontaine
curve over any small v-sheaf X as the stack

FFX := (X/ϕ)× Spd(Qp);
117



in light of (4.3.7.1), FFX is a small v-sheaf, and even a diamond if X is a diamond. Taking
X = Spd(Fp) yields an object which one might call the absolute Fargues–Fontaine curve.

Recalling the setup of Drinfeld’s lemma, we make the following observation and definition.

Definition 4.3.8. Let X1, . . . , Xn be small v-sheaves and put X := X1 × · · · × Xn. Write
ϕi as shorthand for ϕXi

. Define the category

FEt(X/Φ) := FEt(X/〈ϕ1, . . . , ϕn〉)×FEt(X/ϕ) FEt(X)

where FEt(X)→ FEt(X/ϕ) is the canonical section of the forgetful functor FEt(X/ϕ)→
FEt(X) (see Remark 4.2.9). For any i ∈ {1, . . . , n}, there is a canonical equivalence of
categories

FEt(X/Φ) ∼= FEt(X/〈ϕ1, . . . , ϕ̂i, . . . , ϕn〉).

Definition 4.3.9. For X a small v-sheaf, from Definition 4.3.8 we have

FEt((X × Spd(Qp))/Φ) ∼= FEt(FFX) ∼= FEt(X × (Spd(Qp)/ϕ)).

The small v-sheaf X × (Spd(Qp)/ϕ) (which is a diamond if X is, because Spd(Qp)/ϕ is a
diamond; see Definition 4.3.5) is an object we have not previously seen; following Fargues
[64, Formulation of Fargues’ conjecture], we call it the mirror curve23 over X. Note that this
object does not project naturally to Spd(Qp) unless X is equipped with such a projection.

We now obtain the following analogue of Lemma 4.2.6.

Lemma 4.3.10. Let X be a small v-sheaf. Let F be an algebraically closed nonarchimedean
field of characteristic p. Then the base extension functor

FEt(X)→ FEt(X × (Spd(F )/ϕ)) ∼= FEt((X/ϕ)× Spd(F ))

is an equivalence of categories. (The final equivalence comes from Definition 4.3.8.)

Proof. We reduce immediately to the case where X = Spd(A,A+) for some perfectoid pair
(A,A+) of characteristic p. Choose an untilt K of F of characteristic 0 (which is itself
algebraically closed by Lemma 2.8.9); using the isomorphism

FEt((X/ϕ)× Spd(F )) = FEt(FF�X ×Spd(Qp) Spd(F ))

from Definition 4.3.7, we reduce to showing that the functor

(4.3.10.1) FEt(X)→ FEt(FFX ×QpK), X ′ 7→ FFX′ ×QpK

is an equivalence of categories. (Recall that Spd(K) is just Spd(F ) equipped with a particular
morphism to Spd(Qp) that identifies the choice of the untilt.) This claim reduces to the case
where A is an algebraically closed field: one first applies this reduction to full faithfulness,
then using full faithfulness one applies the reduction again to essential surjectivity.

Suppose first that K = Cp. In this case, the argument is due independently to Fargues–
Fontaine (see [60, §5.2] for the original announcement and [62, Théorème 8.6.1] for the proof)
and Weinstein [176, Theorem 3.4.3]. Using Remark 1.2.5, we see that

2- lim−→
E

FEt(FFX ×QpE)→ FEt(FFX ×QpK)

23As far as I know, this terminology is not meant to refer specifically to mirror symmetry in mathematical
physics.
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is an equivalence for E running over finite extensions of Qp within K. That is, any connected
finite étale covering f : Y → FFX ×QpK can be realized as the base extension of some
connected finite étale covering f0 : Y0 → FFX ×QpE for some finite extension E of Qp. The
vector bundle f0∗OY0 carries an OFFX ×QpE

-algebra structure. Apply Theorem 3.6.13 to the
vector bundle f0∗OY0 , and let µ be the largest slope that occurs in the decomposition. If
µ > 0, then any element of a copy of O(µ) occurring in the decomposition corresponds
to a square-zero element of H0(Y,OY ), which does not exist because Y is connected. It
follows that µ = 0; similarly, the smallest slope that occurs in the decomposition cannot be
negative. Hence f0∗OY0 is a trivial bundle of rank equal to the degree of f , as then is f∗OY .
Now H0(Y,OY ) = H0(FFX ×QpK, f∗OY ) is a connected finite étale K-algebra, and hence
isomorphic to K itself because K is algebraically closed; this proves the claim.

Unfortunately, we do not know how to handle general K using the previous approach, as
the proof of Theorem 3.6.13 relies crucially on the degree function taking discrete values. The
general case requires some arguments outside of the scope of these notes, so we will only give
a sketch here and defer to [116] for more details. By an inductive argument, we may reduce to
the situation whereK is a completed algebraic closure ofK0(t) for some perfectoid fieldK0 for
which the desired conclusion is already known. Let ρ : πprof

1 (FFX ×QpK, x)→ V be a discrete
representation on a finite-dimensional Cp-vector space trivialized by some connected finite
étale covering f : Y → FFX ×QpK. Using Remark 1.2.5, we can realize f as the base exten-
sion of a covering f0 : Y0 → FFX ×Qp Spa(B,B+) for some one-dimensional affinoid algebra
B over F0 and some point x ∈ Spa(B,B+) whose residue field K1 admits K as a completed
algebraic closure. We may then regard f0∗OY0 as a vector bundle on FFX ×Qp Spa(B,B+)
equipped with an OFFX

-linear connection. By regarding FFX ×Qp Spa(B,B+) as a family of
one-dimensional affinoids over the points of FFX ×QpK0 and studying the ramification of
f0 along these affinoids using the theory of p-adic differential equations, one establishes the
existence of a ramification filtration on V with properties analogous to those of the ramifica-
tion filtration of a discrete representation of GK1 . In particular, the unramified component
of V induces a representation of πprof

1 (Spec(F )×Spec(Fp) Spec(κK)/Φ), which by the algebraic
Drinfeld’s lemma (Theorem 4.2.12) must be trivial. In particular, if ρ is nontrivial, then any
irreducible component V0 of V has the property that V ∨0 ⊗ V0 is trivial; this is only possible
if V0 is one-dimensional. However, by directly analyzing the structure of line bundles on
FFX ×QpK, one may show that V0 corresponds to a subbundle of rank 1 of f∗OY , and one
can show directly that any line bundle over FFX ×QpK is trivial; thus the action of ρ on
V0 is induced by a necessarily nontrivial finite abelian representation of πprof

1 (SpecK, x), a
contradiction. �

Remark 4.3.11. For S ∈ Pfd, the space FFS has a family of cyclic finite étale covers corre-
sponding to replacing the quotient by ϕ with the quotient by a power of ϕ (Remark 3.1.8).
If S = Spa(F, oF ) for F a perfectoid field, these covers are all connected.

However, suppose that K is an algebraically closed perfectoid field over Qp. Then one
consequence of Lemma 4.3.10 is that the corresponding covers of K ×Qp FFS are all split!
This can be seen more explicitly using the fact that for d ∈ Q, the bundle O(d) on FFS is
indecomposable (Corollary 3.6.7) but its pullback to K×Qp FFS splits as a direct sum of line
bundles.
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Remark 4.3.12. Lemma 4.3.10 asserts that for any diamond X, the geometric profinite
fundamental group of FFX coincides with the profinite fundamental group of X. For X =
Spd(Qp), this recovers the interpretation of GQp as the profinite fundamental group of a
diamond, as originally described in [176]. A variation on this theme is the interpretation of the
absolute Galois groups of certain fields as topological fundamental groups by Kucharczyk–
Scholze [126].

Remark 4.3.13. The proof of Lemma 4.3.10 described above relies crucially on Lemma 4.2.6.
In [116], it is shown that not only can this dependence be removed, but one can then turn
around and recover Drinfeld’s lemma for schemes from Lemma 4.3.10 (or more precisely from
Theorem 4.3.14).

Theorem 4.3.14. Let X1, . . . , Xn be connected spatial (and in particular qcqs) diamonds.
Then X := X1 × · · · ×Xn is Φ-connected and, for any geometric point x of X, the map

πprof
1 (X/Φ, x)→

n∏
i=1

πprof
1 (Xi, x)

is an isomorphism of profinite groups.

Proof. As in Theorem 4.2.12, we rewrite the group on the left as

πprof
1 (X1 × (X2/ϕ)× · · · × (Xn/ϕ), x)

and then induct on n, the base case n = 1 being trivial. Again, to prove the induction step,
we use Lemma 4.3.10 to imitate the proof of Corollary 4.1.23; see [116] for more details. �

Remark 4.3.15. As in Remark 4.2.15, we may reformulate Theorem 4.3.14 to say that

πprof
1 ((X1/ϕ)×Spd(Fp)/ϕ · · · ×Spd(Fp)/ϕ (Xn/ϕ), x)

may be naturally identified with the limit of the diagram

πprof
1 (X1/ϕ, x)

))

· · ·

��

πprof
1 (Xn/ϕ, x)

uu

πprof
1 (Spd(Fp)/ϕ, x) ∼= Ẑ.

As a concrete illustration of Drinfeld’s lemma, we highlight a corollary relevant to the
study of multidimensional (ϕ,Γ)-modules, as in work of Zábrádi [180, 181] and Pal–Zábrádi
[149]. A more detailed exposition of the argument appears in [28].

Corollary 4.3.16. Let F1, . . . , Fn be perfectoid fields of characteristic p, each equipped with a
multiplicative norm. Let R+ be the completion of oF1⊗Fp · · ·⊗Fp oFn for the ($1, . . . , $n)-adic
topology, where $i ∈ oFi

is a pseudouniformizer, and put

R := R+[$−1
1 , . . . , $−1

n ].

(Note that the ultimate definitions of R+ and R do not depend on the choices of the $i.)
Then the category of continuous representations of GF1 × · · · × GFn on finite-dimensional
Fp-vector spaces is equivalent to the category of finite projective R-modules equipped with
commuting semilinear actions of ϕF1 , . . . , ϕFn.
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Proof. Fix algebraic closures F i of Fi, identify GFi
with Gal(F i/Fi), let R

+ be the completion
of oF 1

⊗Fp · · · ⊗Fp oFn
for the ($1, . . . , $n)-adic topology, and put

R := R
+

[$−1
1 , . . . , $−1

n ].

Equip R with the obvious action of GF1 × · · · × GFn . The functor in question then takes a
representation V to

D(V ) := (V ⊗Fp R)GF1
×···×GFn

for the diagonal action on the tensor product, with D(V ) inheriting an action of ϕFi
from

the canonical action on R and the trivial action on V . For any given V , we can also write
this as

D(V ) := (V ⊗Fp S)Gal(E1/F1)×···×Gal(En/Fn)

for some finite Galois extensions Ei of Fi within F i and S := E1⊗̂Fp · · · ⊗̂FpEn. (More pre-
cisely, by analogy with the definition of R, we may write S = S+[$−1

1 , . . . , $−1
n ] where

S+ is the completion of oE1⊗̂Fp · · · ⊗̂FpoEn for the ($1, . . . , $n)-adic topology.) Note that
Spec(S ⊗R S) splits into the graphs of the various maps Spec(S) → Spec(S) induced by
Gal(E1/F1) × · · · × Gal(En/Fn); consequently, the action of this product on V ⊗Fp S gives
rise to a descent datum with respect to the faithfully flat homomorphism R→ S. By faith-
fully flat descent for modules [166, Tag 023N], we deduce that D(V ) is a finite projective
R-module and the natural map

(4.3.16.1) D(V )⊗R S → V ⊗Fp S

is an isomorphism.
To check that this functor is fully faithful, using internal Homs we reduce to checking that

V GF1
×···×GFn = D(V )ϕF1

,...,ϕFn ;

this follows by taking simultaneous Galois and Frobenius invariants on both sides of (4.3.16.1)
and using the equality

R
ϕF1

,...,ϕFn = Fp.
To check essential surjectivity, set

Xi := Spd(Fi), xi := Spd(F i)

and let x be a geometric point of X := X1×· · ·×Xn lying over each xi. By Theorem 4.3.14,
the map

(4.3.16.2) πprof
1 (X/Φ, x)→

n∏
i=1

πprof
1 (Xi, x) = GF1 × · · · ×GFn .

is an isomorphism of profinite groups. Now let D be a finite projective R-module equipped
with commuting semilinear actions of ϕF1 , . . . , ϕFn . By composing these actions, we get an
action of the absolute Frobenius map ϕR; as in the proof of Lemma 4.2.2, we may invoke [117,
Lemma 3.2.6] to see that the sheaf of ϕR-invariants of D on the finite étale site of Spec(R) is
represented by Spec(S) for some faithfully finite étale R-algebra S. Since D carries actions
of ϕF1 , . . . , ϕFn composing to absolute Frobenius, S does likewise.

Now note that there is a natural morphism

Spd(F1)× · · · × Spd(Fn)→ Spd(R,R+)
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which identifies the source with the diamond associated to the adic space

Y := {v ∈ Spa(R,R+) : v($1), . . . , v($n) < 1};

this identification yields additional identifications

(4.3.16.3) R+ = H0(Y,O+), R =
∞⋃

m1,...,mn=0

$−m1
1 · · ·$−mn

n R+

(see Remark 4.3.18 for an explicit example). Let S+ be the integral closure of R+ in S.
By pulling back Spa(S, S+) from Spa(R,R+) to Y and invoking (4.3.16.2), we obtain a
representation of GF1 × · · · ×GFn which we claim gives rise to D. By replacing each Fi with
a suitable finite extension, we reduce to checking this in the case where this representation
is trivial. That is, we may assume that Spa(S, S+) → Spa(R,R+) splits completely after
pullback to Y and we must check that R→ S itself splits completely.

We may view Y as a Stein space by writing it as the union of the ascending sequence
{Um} of affinoid subspaces of R given by

Um = {v ∈ Spa(R,R+) : v($i)
m ≤ v($j) (i, j = 1, . . . , n)}.

Put Rm := H0(Um,O), R+
m := H0(Um,O+); the ring R+ may then be (almost) identified

with the inverse limit of the R+
m. Similarly, the ring R maps to the inverse limit of the Rm,

but this map is not an isomorphism. (The difference between R and lim←−mRm is analogous
to the difference between the ring ZpJT K[p−1] and the ring of rigid analytic functions on the
open unit disc over Qp; the latter contains such elements as log(1 + T ) which do not occur
in the former.)

Let S̃ be the sheaf on Spa(R,R+) associated to S (viewed as a finite R-algebra). For
each m, put Sm := H0(Um, S̃); this ring coincides with S ⊗R Rm, and hence is a finite étale
Rm-algebra. The fact that Spa(S, S+) → Spa(R,R+) splits completely after pullback to Y
means that for each m, we have a family of orthogonal idempotents in Sm which split it into
copies of Rm, and that the formation of this family is compatible with base change among
the Rm. In particular, these idempotents belong to the inverse limit of the Sm, and we must
show that they actually belong to S.

Choose a presentation of S as a direct summand of a finite free R-module. This gives a
distinguished choice of “coordinates” in R associated to each element of S, and similarly a
choice of coordinates in lim←−mRm associated to each element of lim←−Sm; we wish to show that
the coordinates associated to one of our chosen idempotent elements belong to R.

Choose a connected rational subspace U of Spa(R,R+) within Y containing a fundamental
domain for the action of Φ =

∏n
i=1 ϕ

Z
Fi

on Y ; a concrete example would be

U = {v ∈ Y : v($1)p ≤ v($i) ≤ v($1) (i = 2, . . . , n)}.

(Note that ϕR = ϕF1 · · ·ϕFn ∈ Φ acts trivially on Y .) We can then find some nonnegative
integer m1 such that restricting each of our idempotents to H0(U, S̃) gives an element with
coordinates in $−m1

1 H0(U,O+). However, this remains true, with the same value of m1, upon
replacing U with its translate by any γ ∈

∏n
i=2 ϕ

Z
Fi
; note that these translates already cover

Y because ϕF1 · · ·ϕFn acts trivially on Y . It follows that the coordinates in question belong
to $−m1

1 R+ and hence to R. �
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Remark 4.3.17. With notation as in Corollary 4.3.16, one may similarly show that the
category of continuous representations of GF1×· · ·×GFn on finite free Zp-modules is equiva-
lent to the category of finite projective W (R)-modules equipped with commuting semilinear
actions of ϕF1 , . . . , ϕFn .

Remark 4.3.18. Let us describe the morphism Spd(F1)×Spd(F2)→ Spd(R,R+) in Corol-
lary 4.3.16 more explicitly in the case where F1, F2 are the completed perfected closures of
Fp((T1)),Fp((T2)), respectively. In this case, Spd(F1)×Spd(F2) is the diamond associated to
the adic space

Y = {v ∈ Spa(F1〈T p
−∞

2 〉, oF1〈T
p−∞

2 〉) : 0 < v(T2) < 1};
the ring

R+ = H0(Y,O+) = FpJT p
−∞

1 , T p
−∞

2 K

is the (T1, T2)-adic completion of FpJT1, T2K[T p
−∞

1 , T p
−∞

2 ]; and H0(Y,O) is the ring of formal
sums

∑
m1,m2∈Z[p−1] cm1m2T

m1
1 Tm2

2 with cm1m2 ∈ Fp whose support

S = {(m1,m2) ∈ R2 : m1,m2 ∈ Z[p−1], cm1m2 6= 0}
satisfies the following conditions.

• For any x0, y0 ∈ R, the intersection
S ∩ {(x, y) ∈ R2 : x ≤ x0, y ≤ y0}

is finite.
• The lower convex hull of S, i.e., the convex hull of the set⋃

(m1,m2)∈S

{(x, y) ∈ R2 : x ≥ m1, y ≥ m2},

admits a supporting line of slope −s for each s > 0.

Remark 4.3.19. In Remark 4.3.18, the ring R can be interpreted as the subring of H0(Y,O)
consisting of functions which are bounded for v(T2) close to 1 and of polynomial growth for
v(T2) close to 0. This suggests a close relationship (made more explicit in [28]) between
the identification (4.3.16.3) and the perfectoid analogue of the Riemann extension theorem
(Hebbarkeitsatz) introduced by Scholze [159, §2.3] to study the boundaries of perfectoid
Shimura varieties. This result has been (refined and) used by André [5, 6] and Bhatt [15] to
resolve a long-standing open problem in commutative algebra, the direct summand conjecture
of Hochster: if R → S is a finite morphism of noetherian rings and R is regular, then
R→ S splits in the category of R-modules. (See [93] for several equivalent formulations and
consequences.

Remark 4.3.20. One probably cannot hope to have an analogue of Theorem 4.3.14 for
étale fundamental groups in the sense of de Jong (Remark 4.1.6). In particular, if F is
an algebraically closed perfectoid field of characteristic p and K is an algebraically closed
perfectoid field of characteristic 0, then Spd(K)× (Spd(F )/ϕ) ∼= K ×Qp FF�Spd(F ) admits no
finite étale coverings, but it may admit some nonfinite étale coverings; see Problem 4.3.21
for one possible construction.

Problem 4.3.21. Choose two sections of O(1) on FFSpa(F,oF ) with distinct zeroes, use these
to define a morphism FFSpa(F,oF ) → P1

Qp
, and pull back the Hodge-Tate period mapping.

Does the resulting covering split completely?
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4.4. Shtukas in positive characteristic. We now arrive at the fundamental concept in-
troduced by Drinfeld as a replacement for elliptic curves in positive characteristic; that is
to say, the moduli spaces of such objects constitute a replacement for modular curves and
Shimura varieties as a tool for studying Galois representations of a global function field
in positive characteristic (which we are now prepared to think about as representations of
profinite fundamental groups).

Hypothesis 4.4.1. Throughout §4.4, let C be a smooth, projective, geometrically irre-
ducible curve over a finite field Fq of characteristic p.

Definition 4.4.2. Let S be a scheme over Fq. A shtuka over S consists of the following data.

• A finite index set I and a morphism (xi)i∈I : S → CI .
• A vector bundle F over C × S.
• An isomorphism of bundles

Φ : (ϕ∗SF)|(C×S)\
⋃

i∈I Γxi

∼= F|(C×S)\
⋃

i∈I Γxi
,

where Γxi ⊂ C × S denotes the graph of xi.

The morphisms xi : S → C are called the legs (in French, pattes24) of the shtuka.

Remark 4.4.3. For Z a finite set of closed points of C, one may also consider shtukas with
level structure at C; this amounts to insisting that the legs map S into C \Z and specifying
a trivialization of (F ,Φ) over Z × S.

Remark 4.4.4. For K the function field of C and G a connected reductive algebraic group
over K, Varshavsky [173] has introduced the notion of a G-shtuka, the previous definition
being the case G = GLn for n = rank(F). In the case where G is split (i.e., G contains a split
maximal torus), then the results of SGA 3 [41, 42, 43] imply that G extends canonically to a
group scheme GC over C, and we then insist that F be a GC-torsor and Φ be an isomorphism
of GC-torsors.

Remark 4.4.5. The word shtuka (in French, chtouca) is a transliteration of the Russian
word штука, meaning a generic thing whose exact identity is unknown or irrelevant; it is
probably derived from the German word Stück (meaning piece), although the Russian usage
may25 be influenced by the word что (meaning what). Some analogous terms in English
are widget, gadget, gizmo, doodad, whatchamacallit ; see Wikipedia on placeholder names for
more examples.

Remark 4.4.6. As pointed out in [78], one source of inspiration for the definition of shtukas
is some work of Krichever on integrable systems arising from the Korteweg–de Vries (KdV)
equation. The relationship between these apparently disparate topics has been exposed by
Mumford [141].

24This word translates into English variously as legs or paws. However, the term paw is typically used
only for mammalian feet, whereas the intended animal metaphor seems to be a caterpillar or millipede. We
thus prefer the translation legs, following V. Lafforgue in [129].

25Beware that I have no evidence to support this speculative claim!
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4.5. Shtukas in mixed characteristic. It would be far outside the scope of these lec-
tures to explain in any meaningful detail why shtukas are so important in the study of
the Langlands correspondence over global function fields. Instead, we jump straight to the
mixed-characteristic analogue, to illustrate a startling26 convergence between shtukas and
Fargues–Fontaine curves.

We take the approach to sheaves on stacks used in [166, Tag 06TF].

Definition 4.5.1. LetO : Pfd→ Ring be the functor takingX toO(X). By Theorem 3.8.2
this functor is a sheaf of rings for the v-topology. For any small v-sheaf X, we may restrict
O to the arrow category PfdX (i.e., the category of morphisms S� → X with S ∈ Pfd) to
obtain the structure sheaf on X.

A vector bundle on X is a locally finite free OX-module; let VecX denote the category
of such objects. We avoid trying to define a pseudocoherent sheaf on a diamond or small
v-sheaf due to the issues raised in §3.8.

This category of vector bundles lives entirely in characteristic p; we actually need some-
thing slightly different.

Definition 4.5.2. Let O] : PfdSpd(Zp) → Ring be the functor taking X to O(X]), where X]

is the untilt of X corresponding to the structure morphism X → Spd(Zp). By Theorem 3.8.2
again, this functor is a sheaf of rings for the v-topology. For any small v-sheafX over Spd(Zp),
we may restrict O] to PfdX to obtain the untilted structure sheaf on X. An untilted vector
bundle on X is a locally finite free O]X-module; let Vec]X denote the category of such objects.

As an immediate consequence of Theorem 3.8.7, we have the following.

Theorem 4.5.3. Let (A,A+) be a perfectoid pair of characteristic p.
(a) The pullback functor FPModA → VecSpd(A,A+) is an equivalence of categories.
(b) Fix a morphism Spd(A,A+) → Spd(Zp) corresponding to an untilt (A], A]+) of

(A,A+). Then the pullback functor FPModA] → Vec]Spd(A,A+) is an equivalence of
categories.

Remark 4.5.4. Let X be an analytic adic space on which p is topologically nilpotent. In
many cases of interest, the pushforward of OXproet to X coincides with OX ; in such cases,
the base extension functor VecX → Vec]X� is fully faithful. However, even in such cases,
this functor is generally not essentially surjective (unless X is perfectoid, in which case
Theorem 3.8.7 applies). For example, if X = Spd(Qp), then the source category consists of
finite-dimensional Qp-vector spaces while the target consists of finite-dimensional Cp-vector
spaces equipped with continuous semilinear GQp-actions.

A related point is that if X = Spa(A,A+) is not perfectoid, then objects of Vec]X� need
not be acyclic on X.

Remark 4.5.5. The definition of a shtuka over a diamond (Definition 4.5.6) will refer to
Spd(Zp)×S, but in order to formulate the definition correctly we must unpack this concept

26To be fair, this convergence was anticipated well before the technology became available to make it overt.
For example, as reported by Kisin in the introduction of [122], the analogy between Breuil–Kisin modules
and shtukas was already manifest in the analogy between Kisin’s work with that of Genestier–Lafforgue in
positive characteristic [75].
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a bit in the case where S ∈ Pfd. In this case, Spd(Zp) × S� descends to an adic space in a
canonical way: for S = Spd(R,R+), writing Ainf for Ainf(R,R

+) we have

Spd(Zp)× S� ∼= W �
S , WS := Spa(Ainf ,Ainf) \ V ([x1], . . . , [xn]),

where x1, . . . , xn ∈ R are topologically nilpotent elements which generate the unit ideal. The
space WS has the property that the pushforward of OWS ,proet to WS coincides with OWS

(this can be seen from the explicit description given in the proof of Lemma 3.1.3), so we
may view the vector bundles on WS as a full subcategory of the untilted vector bundles on
Spd(Zp)× S� (with respect to the first projection).

Definition 4.5.6. Let S be a diamond. A shtuka over S consists of the following data.
• A finite index set I and a morphism (xi)i∈I : S → Spd(Zp)I .
• An untilted vector bundle F over Spd(Zp) × S with respect to the first projection
which locally-on-S arises from a vector bundle on the underlying adic space WS

(Remark 4.5.5).
• An isomorphism of bundles

Φ : (ϕ∗SF)|(Spd(Zp)×S)\
⋃

i∈I Γxi

∼= F|(Spd(Zp)×S)\
⋃

i∈I Γxi
,

where Γxi ⊂ Spd(Zp)×S denotes the graph of xi. We also insist that Φ be meromor-
phic along

⋃
i∈I Γxi , this having been implicit in the schematic case.

Again, the morphisms xi : S → Spd(Zp) are called the legs of the shtuka.

Remark 4.5.7. For S ∈ Pfd, we could have defined a shtuka over S directly in terms of
a vector bundle over WS, without reference to untilted vector bundles. The point of the
formulation used here is to encode the fact that shtukas satisfy descent for the v-topology,
which does not immediately follow from Theorem 3.8.7 becauseWS is not a perfectoid space.

To unpack this definition further, let us first consider the case of a shtuka with no legs.

Remark 4.5.8. Suppose that I = ∅. A shtuka over S with no legs is simply an untilted
vector bundle F over Spd(Zp)×S (which locally-on-S descends to the underlying adic space
WS) equipped with an isomorphism with its ϕ-pullback.

In the case where S = Spd(R,R+) ∈ Pfd, by restricting from WS to YS and then quoti-
enting by the action of ϕ, we obtain a vector bundle on the relative Fargues–Fontaine curve
FFS. However, not all vector bundles can arise in this fashion, for the following reasons.

• The resulting bundle is fiberwise semistable of slope 0.
• The associated étale Qp-local system (see Theorem 3.7.5) descends to an étale Zp-
local system determined by the shtuka. (For a general étale Qp-local system, such a
descent only exists locally on S; see [117, Corollary 8.4.7].)

In fact, the functor from shtukas over S with no legs to étale Zp-local systems on S is an
equivalence of categories; this follows from a certain analogue of Theorem 3.7.5 (see [117,
Theorem 8.5.3]).

Remark 4.5.9. In the case where S is a geometric point, Remark 4.5.8 asserts that shtukas
over S with no legs correspond simply to finite free Zp-modules. In particular, they extend
canonically from WS over all of Spa(Ainf ,Ainf).

A partial extension of this result is the following.
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Theorem 4.5.10 (Kedlaya). Let (R,R+) be a perfectoid Huber pair of characteristic p in
which R is Tate, and write Ainf for Ainf(R,R

+).
(a) Let x ∈ R+ be a topologically nilpotent unit of R. Then the pullback functor from

vector bundles on the scheme

Spec(Ainf) \ V (p, [x])

to vector bundles on the analytic locus of Spa(Ainf ,Ainf) is an equivalence of cate-
gories.

(b) Suppose that R = F is a perfectoid field. Then both categories in (a) are equivalent
to the category of finite free Ainf-modules and to the category of vector bundles on
Spec(Ainf).

Proof. See [114]. �

Remark 4.5.11. It should be possible to extend Theorem 4.5.10 to the case where R
is analytic. In this case, the statement would assert that for any topologically nilpotent
elements x1, . . . , xn ∈ R+ generating the unit ideal in R, the pullback functor from vector
bundles on the scheme

Spec(Ainf) \ V (p, [x1], . . . , [xn])

to vector bundles on the analytic locus of Spa(Ainf ,Ainf) is an equivalence of categories.

Remark 4.5.12. Theorem 4.5.10(b) is analogous to the assertion that if R is a two-
dimensional local ring, then the pullback functor from vector bundles on Spec(R) to vector
bundles on the complement of the closed point is an equivalence of categories (because reflex-
ive and projective R-modules coincide). By contrast, one does not have a similar assertion
comparing, say, vector bundles on Spec(kJx, y, zK) (for k a field) with vector bundles on the
complement of the locus where x and y both vanish; similarly, Theorem 4.5.10(b) cannot be
extended beyond the case where R is a perfectoid field.

Even if R is a perfectoid field, if R is not algebraically closed, then shtukas over S with
no legs need not extend as bundles from WS to the whole analytic locus of Spa(Ainf ,Ainf).
Namely, the only ones that do so are the ones coming from étale local systems on S that
extend to Spa(R+, R+), i.e., the ones corresponding to unramified Galois representations.

Remark 4.5.13. As per Remark 4.5.12, for S ∈ Pfd, the restriction functor on ϕ-equivariant
vector bundles from the analytic locus of Spa(Ainf ,Ainf) to WS is not essentially surjective.
However, one does expect it to be fully faithful; see Lemma 4.5.17 for a special case of a
related statement.

We now increase complexity slightly by considering shtukas with one leg.

Lemma 4.5.14. Suppose that I = {1} is a singleton set and that the morphism x1 factors
through Spd(Qp). Then the following categories are canonically equivalent:

(a) shtukas over S with leg x1;
(b) data F1 99K F2, where F1 is a ϕ-equivariant bundle over Spd(Zp)×S (which locally-

on-S descend to WS), F2 is a ϕ-equivariant bundle over Spd(Qp)×S (which locally-
on-S descend to YS), and the arrow denotes a meromorphic ϕ-equivariant map over
YS which is an isomorphism away from

⋃
n∈Z ϕ

n(Γx1).
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Proof. We start with the general idea: if one thinks of Φ as defining an isomorphism from
ϕ∗SF to F “up to a discrepancy,” then F1,F2 are obtained by resolving the discrepancy
respectively in favor of ϕ∗SF ,F .

We now make this explicit. Since we are constructing a canonical equivalence, we may
assume that S = Spd(R,R+) where (R,R+) is a Tate perfectoid pair of characteristic p.
Choose a pseudouniformizer $ ∈ R. Given a shtuka oven S with leg x1, we obtain the bundle
F1 by restricting ϕ∗SF to {v ∈ WS : v(p) ≤ v([$]p

−n
)} for sufficiently small n (ensuring that

Γxi does not meet this set; here we use the fact that x1 factors through Spd(Qp)), then
using the isomorphism ϕ∗SF ∼= F to enlarge n. Similarly, we obtain F2 by restricting F to
{v ∈ WS : v(p) ≥ v([$]p

n
)} for sufficiently small n, then using the isomorphism ϕ∗SF ∼= F

to enlarge n. (Note that in this second case, the union of these spaces is only YS, not WS.)
The meromorphic map ϕ∗SF 99K F gives rise to the meromorphic map F1 99K F2. One may
check that this construction is reversible and does not depend on $. �

Remark 4.5.15. Suppose that S = Spd(R,R+) ∈ Pfd, I = {1} is a singleton set, and that
the morphism x1 factors through Spd(Qp). From Lemma 4.5.14, we obtain a pair of vector
bundles G1,G2 on FFS and a meromorphic map G1 99K G2 which is an isomorphism away
from the untilt corresponding to x1. Of these, G1 arises from a shtuka with no legs, so it is
fiberwise semistable of slope 0 and its associated étale Qp-local system descends to an étale
Zp-local system determined by the shtuka (more precisely, by the restriction of F1 to the
point v(p) = 0).

Over a point, we may relate this discussion back to previously studied concepts in p-adic
Hodge theory.

Definition 4.5.16. Let F be a perfectoid field of characteristic p and writeAinf forAinf(F, oF ).
Also fix a primitive element z of Ainf corresponding to an untilt F ] of F of characteristic
0 (that is, z is not divisible by p). A Breuil–Kisin module27 over Ainf (with respect to z)
is a finite free Ainf-module D equipped with an isomorphism Φ : (ϕ∗D)[z−1] ∼= D[z−1]. Let
x1 : Spd(F, oF )→ Spd(Zp) be the morphism corresponding to the untilt F ] of F .

The following result is due to Fargues [59], though the proof we obtain here is slightly
different; it first appears in [162].

Lemma 4.5.17. With notation as in Definition 4.5.16, suppose that F is algebraically closed.
Then restriction of ϕ-equivariant vector bundles along the inclusion

YS ⊂ {v ∈ Spa(Ainf ,Ainf) : v(p) 6= 0}
is an equivalence of categories.

Proof. Full faithfulness follows from a calculation using Newton polygons, which does not
depend on F being algebraically closed or even a field (compare [162, Proposition 13.3.2]).
Essential surjectivity is a consequence of Theorem 3.6.13. �

Theorem 4.5.18 (Fargues). With notation as in Definition 4.5.16, suppose that F is al-
gebraically closed. Then the category of Breuil–Kisin modules over Ainf is equivalent to the
category of shtukas over Spd(F, oF ) with the single leg x1.

27The term Breuil–Kisin module originally referred to similar objects defined not over Ainf , but over
a certain power series ring; see [122]. The relationship between this construction and the one we are now
discussing is analogous to the relationship between imperfect and perfect (ϕ,Γ)-modules described in [120].
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Proof. By Lemma 4.5.14, a shtuka with one leg corresponds to a datum F1 99K F2 over
YS. By Lemma 4.5.17, F2 extends uniquely over the point v([$]) = 0 (for $ ∈ F a pseu-
douniformizer). Meanwhile, by construction, F1 is already defined over the point v(p) = 0.
By glueing, we obtain a vector bundle over the analytic locus of Spa(Ainf ,Ainf), which by
Theorem 4.5.10 arises from a finite free Ainf-module. This proves the claim. �

Remark 4.5.19. With notation as in Definition 4.5.16, Breuil–Kisin modules appear natu-
rally in the study of crystalline representations. In fact, the crystalline comparison isomor-
phism in p-adic Hodge theory can be exhibited by giving a direct cohomological construction
of suitable Breuil–Kisin modules from which the étale, de Rham, and crystalline cohomolo-
gies can be functorially recovered (the étale cohomology arising as in Remark 4.5.15). This
is the approach taken in the work of Bhatt–Morrow–Scholze [17] (see also [139] and [16,
Lecture 4]).

As noted above, the idea to formulate Definition 4.5.16 and relate it to shtukas with one
leg as in Theorem 4.5.18 is due to Fargues [59]. This development was one of the primary
triggers for both the line of inquiry discussed in this lecture and for [17].

Remark 4.5.20. In light of the second part of Remark 4.5.12, Theorem 4.5.18 does not
extend to the case where F is a general perfectoid field; the extra structure imposed by the
existence of the Breuil–Kisin module restricts the étale Zp-local system arising from F1 in
a nontrivial way. (When F ] is algebraic over Qp, this is related to Fontaine’s notion of a
crystalline representation.) One can also try to consider relative Breuil–Kisin modules over
more general base spaces, but then the first part of Remark 4.5.12 also comes into play.

4.6. Affine Grassmannians. The concept of an affine Grassmannian plays a central role
in geometric Langlands, in enabling the construction of moduli spaces of shtukas. We describe
three different flavors of the construction here; while these constructions operate with respect
to more general algebraic groups, we restrict to the case of GLn for the sake of exposition,
deferring to [162, §19–21] for discussion of more general groups.

We start with the original affine Grassmannian of Beauville–Laszlo [11]. See [182, Lec-
ture 1] for a detailed treatment.

Definition 4.6.1. Fix a field k and a positive integer n. For R a k-algebra, a lattice in
R((t))n is a finite projective RJtK-submodule Λ such that the induced map

Λ⊗RJtK R((t))→ R((t))n

is an isomorphism. The functor28 Gr taking R to the set of lattices in R((t))n is a sheaf for
the Zariski topology, so it extends to a sheaf on the category of k-schemes.

Theorem 4.6.2 (Beauville–Laszlo). The functor Gr is represented by an ind-projective k-
scheme. More precisely, for each N , the subfunctor of lattices lying between t−NRJtKn and
tNRJtKn is represented by a projective k-scheme Gr(N), and the transition maps Gr(N) →
Gr(N+1) are closed immersions.

Proof. See [182, Theorem 1.1.3]. �

The following analogue of the previous construction was originally considered at the point-
wise level by Haboush [84], and in the following form by Kreidl [123].

28This use of the notation Gr conflicts with the notation for graded rings used in Definition 1.5.3, but we
will not be using the latter in this lecture.
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Definition 4.6.3. Let k be a perfect field of characteristic p. For R a perfect k-algebra, a
lattice in W (R)[p−1]n is a finite projective W (R)-submodule Λ such that the induced map

Λ⊗W (R) W (R)[p−1]→ W (R)[p−1]n

is an isomorphism. Again, the functor GrW taking R to the set of lattices in W (R)[p−1]n is a
sheaf for the Zariski topology, so it extends to a sheaf on the category of perfect k-schemes.

The following statement is due to Bhatt–Scholze [19, Theorem 1.1], improving an earlier
result of Zhu [183] which asserts GrW,(N) is represented by a proper algebraic space over k.

Theorem 4.6.4 (Zhu, Bhatt–Scholze). For each N , the functor GrW,(N) of lattices in
W (R)[p−1]n lying between p−NW (R)[p−1]n and pNW (R)[p−1]n is represented by the perfection
of a projective k-scheme. The transition maps GrW,(N) → GrW,(N+1) are closed immersions.

In the context of perfectoid spaces, it is natural to introduce the following variant of the
previous construction.

Definition 4.6.5. Define the presheaves B+
dR,BdR on the category of perfectoid Huber

pairs whose values on (A,A+) equal, respectively, the completion of W b(A[) with respect
to the principal ideal ker(θ : W b(A[) → A), and the localization of this ring with respect
to a generator z of ker(θ). These extend to sheaves on the category of perfectoid spaces
with respect to the analytic topology, the étale topology, the pro-étale topology, and the
v-topology.

For A a completed algebraic closure of Qp and A+ = A◦, BdR(A,A+) is Fontaine’s ring of
de Rham periods [65, §2].

Definition 4.6.6. For (A,A+) a perfectoid pair, a lattice inBdR(A,A+)n is a finite projective
B+

dR(A,A+)-submodule Λ such that the induced map

Λ⊗B+
dR(A,A+) BdR(A,A+)→ B+

dR(A,A+)n

is an isomorphism. The functor GrdR taking (A,A+) to the set of lattices in BdR(A,A+)n

is a sheaf for the analytic topology, so it extends to a sheaf on the category of perfectoid
spaces. It is also a sheaf for the pro-étale topology (and even the v-topology), so it further
extends to a sheaf on the category of small v-sheaves over Spd(Zp).

Theorem 4.6.7 (Scholze). For each N , the functor GrdR,(N) of lattices in BdR(A,A+)n lying
between z−NB+

dR(A,A+)n and zNB+
dR(A,A+) is a diamond. The transition maps GrdR,(N) →

GrdR,(N+1) are closed immersions.

Proof. See [162, Theorem 19.2.4]. �

Remark 4.6.8. The Beauville–Laszlo glueing theorem (Remark 1.9.19) was introduced to
link affine Grassmannians with shtukas with one leg. To wit, let C be a curve over k, let V
be a vector bundle of rank n on C, let z ∈ C be a k-rational point, fix an identification of
ÔC,z with kJtK, and fix a basis of V over kJtK. Then the functor Gr may be identified with
the functor taking a k-algebra R to the set of meromorphic morphisms V 99K V ′ from V to
another vector bundle on C which are isomorphisms away from z.

One can do something similar in the context of Lemma 4.5.14. Suppose that S = Spa(R,R+)
is the tilt of (A,A+); as per Remark 3.1.12, Spa(A,A+) may be identified with a certain closed
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subspace of FFS. Let F1 be a trivial bundle of rank n over Spd(Zp)×S with a prescribed ba-
sis. Then a datum of the form F1 99K F2 gives rise to a lattice in BdR(R,R+)n by comparing
the completions of F1 and F2 along the completion of Spa(A,A+) (or rather, its preimage in
Spa(Ainf ,Ainf)). Using the Beauville–Laszlo theorem, we may reverse the construction to go
from lattices to certain shtukas over S with leg x1, namely those for which the étale Zp-local
system associated to F1 (see Remark 4.5.15) is trivial. Since this always happens pro-étale
locally, in this we may view GrdR as the “moduli space of shtukas with leg x1.”

Remark 4.6.9. In Definition 4.6.1, the ordinary Grassmannians of subspaces in an n-
dimensional ambient space appears as truncations of the functor Gr in which we consider
lattices between RJtKn and tRJtKn. If we truncate GrW similarly, we lose sight of the distinc-
tion between mixed and equal characteristic, and so we get precisely the same thing as for
Gr.

Somewhat analogously, if one truncates GrdR by considering only lattices betweenB+
dR(A,A+)n

and zB+
dR(A,A+), then the “stacky” nature of the space goes away, and one is yet again con-

sidering an ordinary Grassmannian. From this point of view, the Grassmannian is closely
related to a certain Rapoport-Zink space; such spaces were introduced as local analogues of
Shimura varieties (see [153] for the original context and [152] for a more modern treatment).

One a similar note, the construction of Remark 4.6.8 provides a geometric interpretation
for certain constructions in p-adic Hodge theory involving “modifications”, as in [12].

Remark 4.6.10. In the framework where GLn is replaced by some more general group,
truncations correspond to Schubert cells defined by cocharacters of the group, and the sort
of truncation considered in Remark 4.6.9 corresponds to a minuscule cocharacter. Work-
ing with cocharacters which are not minuscule runs into subtleties of the sort described in
Definition 4.6.11.

For truncations not covered by Remark 4.6.9, one can get some partial information by
passing from lattices to their associated filtrations.

Definition 4.6.11. With notation as in Definition 4.6.1, the lattice Λ in R((t))n gives rise
to a descending filtration on Rn by taking FilmRn to be the set of v ∈ Rn which occur as
the reduction of some element of tmΛ ∩ RJtKn. This filtration uniquely determines Λ when
Λ is sandwiched between RJtKn and tRJtKn, but not in general.

The passage from lattices to filtrations corresponds to a morphism from Gr to a certain
infinite flag variety. Taking truncations on both sides, we obtain a morphism from a Schu-
bert cell to a flag variety. In the analogous construction for GrdR (which we leave to the
reader to imagine), the flag variety is again closely related to a Rapoport-Zink space, and
is in some sense the best possible approximation to GrdR that can be made within classical
nonarchimedean analytic geometry; this demonstrates the necessity of passing to a world
of more exotic objects (namely diamonds) in order to exhibit moduli spaces of shtukas in
general.

Remark 4.6.12. A similar subtlety to that described in Definition 4.6.11 occurs in classical
Hodge theory: one can define period domains for Hodge structures as certain flag varieties,
but in general one cannot construct universal variations of Hodge structures on these spaces.
Classically, the obstruction to this is characterized in terms of the phenomenon of Griffiths
transversality ; the point of view taken above gives an alternate illustration of the obstruction
that does not depend on differentials, and so makes sense in the perfectoid framework.
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Remark 4.6.13. So far we have only spoken about shtukas with one leg; however, in the
context of the geometric Langlands correspondence one needs to consider shtukas with an
arbitrary finite number of legs. For multiple disjoint legs, it is relatively straightforward to
adapt the preceding discussion to obtain moduli spaces of shtukas. However, for crossing legs
a more complicated construction is needed; in the classical framework, this construction is the
Beilinson–Drinfeld affine Grassmannian [182, Lecture III]. For the analogue of Theorem 4.6.7
for crossings legs, see [162, Proposition 20.2.3].

Remark 4.6.14. The preceding constructions can be thought of as vaguely analogous to
the construction of classical moduli spaces in algebraic geometry using geometric invariant
theory. As our earlier invocations of this analogy may suggest, the general strategy is to
consider a suitable moduli space of vector bundles on relative Fargues–Fontaine curves, apply
Theorem 3.7.2 to identify an open subspace of semistable bundles, apply Theorem 3.7.5 to
upgrade these bundles to shtukas, then take a suitable quotient to remove unwanted rigidity.
This quotient operation behaves poorly on the full moduli space of vector bundles, but
somewhat better on the semistable locus.

4.7. Invitation to local Langlands in mixed characteristic. To conclude, we include
a rough transcription of the closing lecture given by Scholze at the 2017 AWS, describing
the Fargues–Scholze program for adapting methods from the geometric Langlands program
to the local Langlands correspondence in mixed characteristic; we eschew the meticulous
nature of the preceding notes in favor of the informal tone of Scholze’s lecture. The definitive
reference for this topic is to be the forthcoming (as of this writing) article [63]; in the interim,
see [177, Lecture 4] and [64].

We first recall the approach of Drinfeld to the Langlands correspondence for global function
fields in positive characteristic. Let C be a smooth, projective, geometrically irreducible curve
over a finite field Fq. Let G be a reductive group over Fq (e.g., take G = GL2 to be in the
setting of Drinfeld). The moduli space of G-shtukas with one leg (see Remark 4.4.4) comes
with a structure morphism to C given by the leg; we will denote this space for short by Sht
and use it as an analogue of a Shimura variety over Z.

We now consider a relative étale cohomology group Rif∗Q` (for some prime ` not dividing
q) for the morphism f : Sht→ C; this is a local system on C, which is to say a representation
of the fundamental group π1(C) (a/k/a the unramified Galois group of the function field F
of C). There is also an action of the adelic group G(AF ) given by something like Hecke
operators (i.e., correspondences defined by varying level structure).

The group Rif∗Q` decomposes as a direct sum of certain automorphic representations π
of G(AF ), each tensored with a certain representation o(π) of GF . The mapping π 7→ o(π)
defines the global Langlands correspondence in some cases, but not all; Drinfeld realized that
one could find the missing representations by considering shtukas with two legs rather than
one.

Changing notation, now let Sht denote the moduli space of shtukas with two legs; the two
legs now define a projection f : Sht→ C×Fq C. We again consider Rif∗Q` (or more precisely
Rif!Q`, but we ignore the difference here); this now carries an action of π1(C×FqC). Moreover,
the partial Frobenius action on shtukas allows us to factor this action through π1(C×FqC/ϕ

Z
2 )

where ϕ2 is the partial Frobenius acting only on the second term; by Drinfeld’s lemma
(Theorem 4.2.12), the latter group is isomorphic to π1(C)× π1(C). One can then show that
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for good choices of data, Rif∗Q` splits as a sum over certain automorphic representations π
(including all cuspidal ones), each tensored with o(π)� o(π)∨.

It is a grand dream to do something like this for number fields. In particular, one would like
to consider the analogues of shtukas with two29 legs; however, this would require introducing
a suitable analogue of C ×Fq C. Such an analogue would be Spec(Z) ×? Spec(Z) where the
base of the fiber product is something mysterious (often called the “field of one element”).

The magic of diamonds is that they provide meaningful interpretations of Spec(Qp) ×?

Spec(Qp) and Spec(Zp) ×? Spec(Zp). To wit, the absolute product Spd(Qp) × Spd(Qp) ex-
ists in the category of diamonds and is “two-dimensional”: writing one copy of Spd(Qp) as
Spd(Qp(µp∞))/Z×p and then tilting, we obtain

Spd(Qp)× Spd(Qp) ∼= D̃�Qp
/Z×p

where D̃ denotes the perfectoid punctured unit disc (see [162, Proposition 8.4.1] for a de-
tailed exposition of this point). The appropriate analogue of Drinfeld’s lemma in this case is
Theorem 4.3.14; it implies that

π1(D̃�Cp
/Z×p ) ∼= GQp .

That is, as observed in [176], one has a description of the arithmetic Galois group GQp as
the geometric fundamental group of a certain space. (See [126] for some variations on this
theme.)

We now pass to the mixed-characteristic setting. Now write Sht for the moduli space
of mixed-characteristic local shtukas with one leg (in the sense of Definition 4.5.6); the leg
defines a morphism Sht→ Spd(Qp). As discussed in Remark 4.6.9, this space Sht generalizes
the notion of a Rapoport-Zink space, and functions as a mixed-characteristic local analogue
of a Shimura variety.

To put this in context, we recall how Rapoport-Zink spaces arise. Let H be a one-
dimensional formal group of height n over Fp. Let XH denote the deformation space of
H; it has the form Spf(W (Fp)Ju1, . . . , un−1K). LetMH be the generic fiber of this space; it
is an (n− 1)-dimensional open unit disc. By analogy with taking a tower of modular curves
by increasing the level structure, one has a tower

· · · → MH,1 →MH,0
∼=MH

whereMH,n classifies isomorphisms H[pn] ∼= (Z/pnZ)h where H is the universal deformation
ofH. These spaces are somewhat mysterious; however, their inverse limitMH,∞ ∼= lim←−nMH,n

makes sense as a perfectoid space and admits a rather precise description (given in [161]): for
C a complete algebraically closed extension of Qp and ∞ ∈ FFC[ the corresponding point,

MH,∞(C) corresponds naturally to the set of injective morphisms On
f
↪→ O( 1

n
) with cokernel

supported at ∞. This statement can now be translated into the language of shtukas with
one leg (we leave this to the reader).

This is the limit of what can say without recourse to diamonds. However, using diamonds
we may also form the moduli space Sht of shtukas with two legs, and we get a morphism
f : Sht → Spd(Qp)× Spd(Qp). Now taking Rif∗Q` gives an object with actions of G×2

Qp
(by

Drinfeld’s lemma for diamonds) and G(Qp); one hopes to decompose this object in order to

29For simplicity, we only talk about shtukas with two legs, which suffice for dealing with GLn and many
other groups. However, in some cases more legs are needed, as in [130].
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obtain a realization of the local Langlands correspondence for reductive groups over p-adic
fields.
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Appendix A. Project descriptions

Of the projects described below, the following were resolved during the Winter School:
Problem A.1.1 (see [21]), Problem A.3.1 (in preparation), Problem A.5.3 (in preparation).

A.1. Extensions of vector bundles and slopes (proposed by David Hansen). The
primary project revolves around the following problem.

Problem A.1.1. Let F be a perfectoid field. (Optionally, assume also that F is algebraically
closed.) Determine the set of values taken by the triple (HN(V ),HN(V ′),HN(V ′′)) as 0 →
V ′ → V → V ′′ → 0 varies over all short exact sequences of vector bundles on the FF-curve
XF over F .

One part of this problem is of a combinatorial nature.

Problem A.1.2. Determine the combinatorial constraints on (HN(V ),HN(V ′),HN(V ′′))
imposed by the slope formalism (e.g., the statement of Lemma 3.4.17).

In the other direction, we will consider some intermediate steps, such as the following.

Problem A.1.3. Let V ′, V ′′ be two semistable vector bundles on XF with µ(V ′) < µ(V ′′).
Show that a bundle V occurs in a short exact sequence 0→ V ′ → V → V ′′ → 0 if and only
if HN(V ) lies between HN(V ′ ⊕ V ′′) and the straight line segment with the same endpoints
as HN(V ′ ⊕ V ′′).

Addressing the problems discussed above requires some basic familiarity with Banach–
Colmez spaces, which are described in [177, Lecture 4].

A.2. G-bundles. We next formulate a more general form of Problem A.1.1 (Problem A.2.5)
in terms of algebraic groups. This requires giving a general description of G-objects in an
exact tensor category.

Definition A.2.1. For G an algebraic group over Qp, let RepQp
(G) denote the category of

(algebraic) representations of G on finite-dimensional F -vector spaces.
Let C be an Qp-linear tensor category. (That is, C is an exact category where the morphism

spaces are not just abelian groups but Qp-vector spaces, composition is not just additive but
Qp-linear, C carries a symmetric monoidal structure which is yet againQp-linear, and C carries
a rank function which adds in short exact sequences and multiplies in tensor products.)
By a G-object in C, we will mean a covariant, Qp-linear, rank-preserving tensor functor
RepQp

(G)→ C.

Example A.2.2. Let C be the category of finite-dimensional Qp-vector spaces.
• For G = GLn, a G-object in C is the same as a vector space of dimension n. (This
includes the case G = Gm by taking n = 1.)
• For G = SLn, a G-object in C is the same as a vector space V of dimension n plus a
choice of generator of the one-dimensional space ∧nV .
• For G = On (resp. G = Spn), a G-object in C is the same as a vector space V of
dimension n plus the choice of a nondegenerate orthogonal (resp. symplectic) form
on n.

Example A.2.3. Let C be the category of vector bundles on an abstract curve C over Qp.
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• For G = GLn, a G-object in C is the same as a vector bundle of rank n.
• For G = SLn, a G-object in C is the same as a vector bundle V of rank n plus a
trivialization of ∧nV .
• For G = On (resp. G = Spn), a G-object in C is the same as a vector bundle V of
rank n plus a nondegenerate orthogonal (resp. symplectic) pairing V × V → OC .

Remark A.2.4. The idea behind the definition of a G-object is that vector bundles on
a scheme X (or for that matter, on a manifold X) correspond to elements of the pointed
set H1(X,GLn). By contrast, if one replaces GLn with a smaller group, the resulting vector
bundle is not entirely generic: its construction respects certain extra structure, and the exact
nature of that extra structure is encoded in the structure of the category RepQp

(G). This
is closely related to the Tannaka–Krein duality theorem, which asserts that the group G
can be reconstructed from the data of the category RepQp

(G) plus the fiber functor taking
representations to their underlying Qp-vector spaces, by taking the automorphism group of
the functor (just as in the definition of profinite fundamental groups).

We can now formulate a group-theoretic variant of Problem A.1.1; the statement of Prob-
lem A.1.1 constitutes the case of the following problem in which G = GLn and H is a
certain parabolic subgroup. For this problem, some relevant background is the classification
of G-isocrystals by Kottwitz [124] (see also [125, 151]).

Problem A.2.5. Suppose that F is algebraically closed. Let H → G be an inclusion of
connected reductive algebraic groups over Qp. For a given H-bundle V on XF , determine
which (isomorphism classes of) G-bundles admit a reduction of structure to H.

Remark A.2.6. There is a (perhaps fanciful) resemblance between Problem A.2.5 and some
classic questions about numerical invariants (e.g., eigenvalues, singular values) of triples
A,B,C of square matrices satisfying A+B = C. See [108, Chapter 4] as a starting point.

A.3. The open mapping theorem for analytic rings.

Problem A.3.1. Write out a detailed proof of Theorem 1.1.9 for analytic rings, by modifying
the argument in [92] for Tate rings.

The key substep is the following extension of [92, Proposition 1.9].

Definition A.3.2. Let X be a topological space. A subset Z of X is nowhere dense if for
every nonempty open subset U of X, there is a nonempty open subset V of U which is
disjoint from Z. A subset Z of X is meager if it can be written as a countable union of
nowhere dense subsets.

Problem A.3.3. Let A be an analytic Huber ring. Let M,N be topological R-modules.
Let u : M → N be an R-linear morphism whose image is not meager. Then for every
neighborhood V of 0 in M , the closure of u(V ) is a neighborhood of 0 in N .

Remark A.3.4. The key steps of [92, Proposition 1.9] are that if x ∈ A is a topologically
nilpotent unit, then for every neighborhood W of 0 in M

∞⋃
n=1

x−nW = M,
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and each set x−nu(W ) is closed in N . For topologically nilpotent elements x1, . . . , xk ∈ A
which generate the unit ideal, the correct analogue of the first statement is that

∞⋃
n=1

Wn = M, Wn = {m ∈M : xn1m, . . . , x
n
km ∈ W}.

The correct analogue of the second statement is that for each n,

{m ∈ N : xn1m, . . . , x
n
km ∈ u(W )}

is closed in N . (If {mi} is a sequence in this set with limit m, then xnjmi ∈ u(W ) converges
to xnjm and so the latter is in u(W ).)

Problem A.3.5. Adapt the previous arguments to show that all of the results of [92], which
are proved for topological rings containing a null sequence consisting of units, remain true
for first-countable topological rings (not necessarily Huber rings) in which every open ideal
is trivial. (Note that Remark 1.1.1 no longer applies, but this turns out not to be relevant
to this argument.) What happens if one drops the first-countable hypothesis?

A.4. The archimedean Fargues–Fontaine curve (proposed by Sean Howe).

Definition A.4.1. Let P̃ be the projective curve in P2
R defined by the equation x2 +y2 +z2.

This is the unique nontrivial Brauer–Severi curve over R. This object plays a fundamental
role in archimedean Hodge theory (e.g., in the study of mixed twistor D-modules).

We explore the analogy between P̃ and the Fargues–Fontaine curve over an algebraically
closed perfectoid field.

Problem A.4.2. For an algebraic variety X over R, write FFX ×C for the topological space
(X(C) × P1(C))/c, where c acts on X(C) by the usual conjugation (fixing X(R)) and on
P1(C) by the antipode map z 7→ −z−1. Can you formulate a precise archimedean analogue
of Lemma 4.3.10? (Note that P̃ is an algebraic analogue of P1(C)/c.)

Definition A.4.3. Let W̃ be the Weil group of R modulo its center R×: concretely, this
group is a semidirect product S1 oZ/2Z where Z/2Z acts by inversion on S1. We view P̃ as
the projectized cone over the (scheme of) trace-zero, norm-zero elements in the quaternions
H, and identify W̃ with C× t jC× ⊂ H, so that P̃ has a natural action of W̃ with a unique
fixed point p with residue field C on which W̃ acts through conjugation by Z/2Z.

For X an algebraic variety over R, let H i(X(C),R) denote the real singular cohomology
of the topological space X(C), equipped with its Hodge decomposition as

⊕
p+q=i h

p,q. We
equip this R-vector space with a representation of W̃ where S1 acts as z−p+q on hp,q and c
acts by the automorphism induced by conjugation on X(C); using this action, we equip the
trivial vector bundle O⊗H i(X(C),R) on P̃1 with a W̃ -equivariant structure. We equip the
algebraic de Rham cohomology H i

dR(X) with the trivial W̃ -action.

Problem A.4.4. Retain notation as in Definition A.4.3.
(a) Prove the following de Rham comparison theorem: there is a natural identification

(O ⊗H i(X(C),R))Spec(Frac(Ôp))
∼= H i

dR(X)⊗ Frac(Ôp),
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as W̃ -equivariant bundles over Spec(Frac(Ôp)), and in particular

(H i(X(C),R)⊗ Frac(Ôp))W̃ = H i
dR(X)

with the Hodge filtration corresponding to the filtration by order of poles (up to a
change in the numbering). Compare with the p-adic de Rham comparison theorem.

(b) What are the corresponding modifications?
(c) Comparing with [170], you will find that we are not using the standard representation

of the Weil group attached to a Hodge structure. For even weight, we’ve simply taken
a Tate twist to land in weight 0, but for odd weight we’ve taken something genuinely
different: our construction factors through the split version of the Weil group, while
the the original representation does not. Can we fix this and/or should we want to? On
a related note, is there a way to modify this construction so that we obtain the correct
numbering on the Hodge filtration and the “natural” slopes for the modifications? In
general, what can we do to make a stronger analogy with the p-adic case, and if we
can’t, how should we understand the difference?

A.5. Finitely presented morphisms.

Definition A.5.1. Define a Huber ring A to be strongly sheafy if A〈T1, . . . , Tn〉 is sheafy
for every nonnegative integer n. For example, if A is strongly noetherian, then A is strongly
sheafy by Theorem 1.2.11. For another example, if A is perfectoid, then we may see that A is
strongly sheafy by applying Corollary 2.5.5 to the map A〈T1, . . . , Tn〉 → A〈T p

−∞

1 , . . . , T p
−∞

n 〉.

Definition A.5.2. Suppose A is strongly sheafy. A homomorphism A→ B is affinoid if:
• it factors through a surjection A〈T1, . . . , Tn〉 → B; and
• for some such factorization, B ∈ PCohA〈T1,...,Tn〉. Equivalently by Theorem 1.4.20, B
is again sheafy.

For example, any rational localization is an affinoid morphism. In addition, any finite flat
morphism, and in particular any finite étale morphism, is affinoid provided that the source
is strongly sheafy and the target is sheafy (e.g., a finite étale morphism between perfectoid
rings).

Problem A.5.3. We previously gave an ad hoc definition of an étale morphism of adic
spaces (Hypothesis 1.10.3). Use the concept of an affinoid morphism to give a definition in
the strongly sheafy case closer to the one given by Huber in the strongly noetherian case
[96, Definition 1.6.5].

Problem A.5.4. Similarly, use the concept of an affinoid morphism to define unramified
and smooth morphisms in the strongly sheafy case.

A.6. Additional suggestions.

Problem A.6.1. Prove that for any (analytic) Huber pair (A,A+), Spa(A〈T 〉, A+〈T 〉) →
Spa(A,A+) is an open map.

Problem A.6.2. Verify that for any perfectoid Huber pair (R,R+) of characteristic p, the
ring Ainf := Ainf(R,R

+) is sheafy. See Remark 3.1.10 for the case where R is a nonar-
chimedean field. One possible approach is to show that Ainf admits a split (in the category
of topological Ainf-modules) embedding into a perfectoid (and hence sheafy) ring.
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Problem A.6.3. Find a “reasonable” (i.e., as small as possible) category of algebraic stacks
in which Remark 4.2.14 can be interpreted.
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[4] Y. André, Slope filtrations, Confluentes Math. 1 (2009), 1–85.
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(SGA 4) I. Théorie des topos, Lecture Notes in Math. 269, Springer–Verlag, 1972.
[9] M.F. Atiyah, Vector bundles on an elliptic curve, Proc. London Math. Soc. 7 (1952), 414–452.
[10] J. Ax, Zeros of polynomials over local fields — the Galois action, J. Algebra 15 (1970), 417–428.
[11] A. Beauville and Y. Laszlo, Un lemme de descente, C.R. Acad. Sci. Paris 320 (1995), 335–340.
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Lecture Notes in Math. 340, Springer-Verlag, Berlin, 1973.
[40] M. Demazure, Lectures on p-divisible Groups, Lecture Notes in Math. 302, Springer-Verlag, New York,

1972.
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[157] P. Scholze, p-adic Hodge theory for rigid analytic varieties, Forum of Math. Pi 1 (2013),

doi:10.1017/fmp.2013.1; errata available at http://www.math.uni-bonn.de/people/scholze/
pAdicHodgeErratum.pdf.

[158] P. Scholze, Perfectoid spaces: a survey, in Current Developments in Mathematics, 2012, Intl. Press,
Boston, 2013.

[159] P. Scholze, On torsion in the cohomology of locally symmetric varieties, Annals of Math. 182 (2015),
945–1066.

[160] P. Scholze, Étale cohomology of diamonds, preprint (2018) available at http://www.math.uni-bonn.
de/people/scholze/ (retrieved December 2018; see also arXiv:1709.07343).

[161] P. Scholze and J. Weinstein, Moduli of p-divisible groups, Cambridge J. Math. 1 (2013), 145–237.
[162] P. Scholze and J. Weinstein, Berkeley lectures on p-adic geometry, http://www.math.uni-bonn.de/

people/scholze/Berkeley.pdf (retrieved October 2018).
[163] S. Sen, Ramification in p-adic Lie extensions, Invent. Math. 17 (1972), 44–50.
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p, Comptes Rendus Acad. Sci. Paris 288 (1979), 477–479.
[179] J.-P. Wintenberger, Le corps de normes de certaines extensions infinies de corps locaux; applications,
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[180] G. Zábrádi, Multivariable (ϕ,Γ)-modules and smooth o-torsion representations, Selecta Math. (N.S.)

24 (2018), 935–995.
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