This page deals only with Rijndael with block length 128 and key length 128.
Bytes. A bit is an element of $\mathbf{F}_{2}=\mathbf{Z} / 2 \mathbf{Z}$. Eight bits form one byte. The space \mathbf{F}_{2}^{8} of all bytes is identified with $\left\{f \in \mathbf{F}_{2}[X]: \operatorname{deg} f<8\right\}$ by $\left(b_{7} b_{6} b_{5} b_{4} b_{3} b_{2} b_{1} b_{0}\right)=\sum_{h=0}^{7} b_{h} X^{h}$. Define the affine map $\lambda: \mathbf{F}_{2}^{8} \rightarrow \mathbf{F}_{2}^{8}$ by $\lambda(f) \equiv\left(X^{4}+X^{3}+X^{2}+X+1\right) \cdot f+X^{6}+X^{5}+X+1 \bmod \left(X^{8}+1\right)$. The inverse $\lambda^{-1}=\lambda^{3}$ is given by $\lambda^{-1}(f) \equiv\left(X^{6}+X^{3}+X\right) \cdot f+X^{2}+1 \bmod \left(X^{8}+1\right)$. All other operations on $\left\{f \in \mathbf{F}_{2}[X]: \operatorname{deg} f<8\right\}$ will be done not $\bmod X^{8}+1$ but \bmod $m=X^{8}+X^{4}+X^{3}+X+1$, so that \mathbf{F}_{2}^{8} becomes identified with the field $\mathbf{F}_{256}=\mathbf{F}_{2}[X] /(m)$. Define the map $\sigma: \mathbf{F}_{256} \rightarrow \mathbf{F}_{256}$ by $\sigma(a)=\lambda\left(a^{254}\right)$; here $a^{254}=a^{-1}$ for $a \neq 0$. The cycle lengths of σ are $2,27,59,81$, and 87 , and $\sigma^{-1}=\sigma^{277181}$ is given by $\sigma^{-1}(a)=\left(\lambda^{-1}(a)\right)^{254}$.

Words. Four bytes form one word. The map from the space $\mathbf{F}_{256}^{4}\left(=\mathbf{F}_{2}^{32}\right)$ of all words to itself sending $\left(a_{i}\right)_{i=0}^{3}$ to $\left(\sigma\left(a_{i}\right)\right)_{i=0}^{3}$ is again denoted by σ. The map ξ : $\mathbf{F}_{256}^{4} \rightarrow \mathbf{F}_{256}^{4}$ is defined by $\xi\left(\left(a_{i}\right)_{i=0}^{3}\right)=\left(\sigma\left(a_{i+1}\right)\right)_{i=0}^{3}$ (indices mod 4). Write $c=(X, 1,1, X+1)$ and $d=\left(X^{3}+\right.$ $\left.X^{2}+X, X^{3}+1, X^{3}+X^{2}+1, X^{3}+X+1\right)$, and identify \mathbf{F}_{256}^{4} with $\left\{g \in \mathbf{F}_{256}[Y]: \operatorname{deg} g<4\right\}$ by $\left(a_{0}, a_{1}, a_{2}, a_{3}\right)=\sum_{i=0}^{3} a_{i} Y^{i}$. Define $\mu, \nu: \mathbf{F}_{256}^{4} \rightarrow \mathbf{F}_{256}^{4}$ by $\mu(g) \equiv c \cdot g \bmod \left(Y^{4}+1\right)$ and $\nu(g) \equiv d \cdot g \bmod \left(Y^{4}+1\right)$. One has $\nu=\mu^{-1}=\mu^{3}$.

States. Four words form one state. The maps from the space $\mathcal{S}=\left(\mathbf{F}_{256}^{4}\right)^{4}\left(=\mathbf{F}_{2}^{128}\right)$ of all states to itself sending $\left(w_{j}\right)_{j=0}^{3}$ to $\left(\mu\left(w_{j}\right)\right)_{j=0}^{3}$, to $\left(\nu\left(w_{j}\right)\right)_{j=0}^{3}$, and to $\left(\sigma\left(w_{j}\right)\right)_{j=0}^{3}$ are again denoted by μ, ν, and σ, respectively. Define $\rho: \mathcal{S} \rightarrow \mathcal{S}$ by $\rho\left(\left(\left(a_{i, j}\right)_{i=0}^{3}\right)_{j=0}^{3}\right)=\left(\left(a_{i, i+j}\right)_{i=0}^{3}\right)_{j=0}^{3}$ (indices mod 4). If a state is written as a 4×4-matrix, each column being a word, then ρ shifts the entries in row i cyclically i places to the left $(0 \leq i \leq 3)$; similarly, $\rho^{-1}=\rho^{3}$ shifts row i cyclically i places to the right. One has $\rho \sigma=\sigma \rho$. For $s \in \mathcal{S}$, the map $\tau_{s}: \mathcal{S} \rightarrow \mathcal{S}$ is defined by $\tau_{s}(x)=x+s$; one has $\tau_{s}^{-1}=\tau_{s}$ and $\mu \tau_{s}=\tau_{\mu(s)} \mu$.

Key expansion. The key space \mathcal{K} equals \mathcal{S}. For fixed $k=\left(w_{j}\right)_{j=0}^{3} \in \mathcal{K}$, define inductively $w_{4}, w_{5}, \ldots, w_{43} \in \mathbf{F}_{256}^{4}$ by $w_{j}=w_{j-1}+w_{j-4}$ if $j \not \equiv 0 \bmod 4$ and $w_{j}=\xi\left(w_{j-1}\right)+$ $w_{j-4}+\left(X^{(j-4) / 4}, 0,0,0\right)$ if $j \equiv 0 \bmod 4$, and put $k_{l}=\left(w_{4 l}, w_{4 l+1}, w_{4 l+2}, w_{4 l+3}\right) \in \mathcal{S}$ for $0 \leq l \leq 10$.

Encryption and decryption. Messages are divided in blocks of 128 bits each. Each block belongs to \mathcal{S}. Given a key $k \in \mathcal{K}$, a block is encrypted by means of the encryption function $\varepsilon_{k}: \mathcal{S} \rightarrow \mathcal{S}$ defined by

$$
\varepsilon_{k}=\tau_{k_{10}} \rho \sigma \tau_{k_{9}} \mu \rho \sigma \tau_{k_{8}} \mu \rho \sigma \tau_{k_{7}} \mu \rho \sigma \tau_{k_{6}} \mu \rho \sigma \tau_{k_{5}} \mu \rho \sigma \tau_{k_{4}} \mu \rho \sigma \tau_{k_{3}} \mu \rho \sigma \tau_{k_{2}} \mu \rho \sigma \tau_{k_{1}} \mu \rho \sigma \tau_{k_{0}}
$$

(nine μ 's, ten ρ 's, ten σ 's, and eleven τ 's; composition is from right to left). The corresponding decryption function $\delta_{k}=\varepsilon_{k}^{-1}$ is given by

$$
\begin{aligned}
& \delta_{k}=\tau_{k_{0}} \rho^{-1} \sigma^{-1} \tau_{\nu\left(k_{1}\right)} \nu \rho^{-1} \sigma^{-1} \tau_{\nu\left(k_{2}\right)} \nu \rho^{-1} \sigma^{-1} \tau_{\nu\left(k_{3}\right)} \nu \rho^{-1} \sigma^{-1} \tau_{\nu\left(k_{4}\right)} \nu \rho^{-1} \sigma^{-1} \circ \\
& \circ \tau_{\nu\left(k_{5}\right)} \nu \rho^{-1} \sigma^{-1} \tau_{\nu\left(k_{6}\right)} \nu \rho^{-1} \sigma^{-1} \tau_{\nu\left(k_{7}\right)} \nu \rho^{-1} \sigma^{-1} \tau_{\nu\left(k_{8}\right)} \nu \rho^{-1} \sigma^{-1} \tau_{\nu\left(k_{9}\right)} \nu \rho^{-1} \sigma^{-1} \tau_{k_{10}} .
\end{aligned}
$$

Twenty-five Rijndaels. Let $\mathbf{b}, \mathbf{k} \in\{4,5,6,7,8\}$. This page describes Rijndael with block length $32 \mathbf{b}$ and key length $32 \mathbf{k}$. Bits, bytes, and words are as before, and so are the function σ defined on bytes and the functions μ, ν, ξ, and σ defined on words.

States. One state is formed by \mathbf{b} words. The space \mathcal{S} of all states equals $\left(\mathbf{F}_{256}^{4}\right)^{\mathbf{b}}\left(=\mathbf{F}_{2}^{32 \mathbf{b}}\right)$. The maps $\mu, \nu, \sigma: \mathcal{S} \rightarrow \mathcal{S}$ send $\left(w_{j}\right)_{j=0}^{\mathbf{b}-1}$ to $\left(\mu\left(w_{j}\right)\right)_{j=0}^{\mathbf{b}-1}$, to $\left(\nu\left(w_{j}\right)\right)_{j=0}^{\mathbf{b}-1}$, and to $\left(\sigma\left(w_{j}\right)\right)_{j=0}^{\mathbf{b}-1}$, respectively. Define $\rho: \mathcal{S} \rightarrow \mathcal{S}$ by $\rho\left(\left(\left(a_{i, j}\right)_{i=0}^{3}\right)_{j=0}^{\mathbf{b}-1}\right)=\left(\left(a_{i, e(i)+j}\right)_{i=0}^{3}\right)_{j=0}^{\mathbf{b}-1}$ (addition of indices $\bmod \mathbf{b})$; here $e(i)=i$ if $\mathbf{b}+i \leq 9$, and $e(i)=i+1$ if $\mathbf{b}+i>9$. If a state is written as a $4 \times$ b-matrix with entries from \mathbf{F}_{256}, then ρ and ρ^{-1} shift the entries in row i cyclically $e(i)$ places to the left and right, respectively $(0 \leq i \leq 3)$. One has $\rho \sigma=\sigma \rho$. For $s \in \mathcal{S}$, the $\operatorname{map} \tau_{s}: \mathcal{S} \rightarrow \mathcal{S}$ is defined by $\tau_{s}(x)=x+s$; one has $\tau_{s}^{-1}=\tau_{s}$ and $\mu \tau_{s}=\tau_{\mu(s)} \mu$.

Key expansion. One $k e y$ is formed by \mathbf{k} words. The key space \mathcal{K} equals $\left(\mathbf{F}_{256}^{4}\right)^{\mathbf{k}}\left(=\mathbf{F}_{2}^{32 \mathbf{k}}\right)$. Write $\mathbf{r}=6+\max \{\mathbf{b}, \mathbf{k}\}$. For fixed $k=\left(w_{j}\right)_{j=0}^{\mathbf{k}-1} \in \mathcal{K}$, define inductively $w_{\mathbf{k}}, w_{\mathbf{k}+1}, \ldots$, $w_{\mathbf{b r}+\mathbf{b}-1} \in \mathbf{F}_{256}^{4}$ as follows. If $\mathbf{k} \leq 6$, then put $w_{j}=w_{j-1}+w_{j-\mathbf{k}}$ if $j \not \equiv 0 \bmod \mathbf{k}$ and $w_{j}=\xi\left(w_{j-1}\right)+w_{j-\mathbf{k}}+\left(X^{(j-\mathbf{k}) / \mathbf{k}}, 0,0,0\right)$ if $j \equiv 0 \bmod \mathbf{k}$. If $\mathbf{k}>6$, then the same formulas are used, except if $j \equiv 4 \bmod \mathbf{k}$, in which case one takes $w_{j}=\sigma\left(w_{j-1}\right)+w_{j-\mathbf{k}}$. In all cases, put $k_{l}=\left(w_{\mathbf{b} l+j}\right)_{j=0}^{\mathbf{b}-1} \in \mathcal{S}$ for $0 \leq l \leq \mathbf{r}$.

Encryption and decryption. Messages are divided in blocks of 32b bits each. Each block belongs to \mathcal{S}. Given a key $k \in \mathcal{K}$, a block is encrypted by means of the encryption function $\varepsilon_{k}: \mathcal{S} \rightarrow \mathcal{S}$ defined by

$$
\varepsilon_{k}=\tau_{k_{\mathbf{r}}} \rho \sigma \tau_{k_{\mathbf{r}-1}} \mu \rho \sigma \tau_{k_{\mathbf{r}-2}} \mu \rho \sigma \tau_{k_{\mathbf{r}-3}} \mu \cdots \rho \sigma \tau_{k_{2}} \mu \rho \sigma \tau_{k_{1}} \mu \rho \sigma \tau_{k_{0}}
$$

$\left(\mathbf{r}-1 \mu^{\prime} \mathrm{s}, \mathbf{r} \rho^{\prime} \mathrm{s}, \mathbf{r} \sigma^{\prime} \mathrm{s}\right.$, and $\mathbf{r}+1 \tau^{\prime}$ s). The corresponding decryption function $\delta_{k}=\varepsilon_{k}^{-1}$ is given by

$$
\delta_{k}=\tau_{k_{0}} \rho^{-1} \sigma^{-1} \tau_{\nu\left(k_{1}\right)} \nu \rho^{-1} \sigma^{-1} \tau_{\nu\left(k_{2}\right)} \nu \rho^{-1} \sigma^{-1} \cdots \tau_{\nu\left(k_{\mathbf{r}-2}\right)} \nu \rho^{-1} \sigma^{-1} \tau_{\nu\left(k_{\mathbf{r}-1}\right)} \nu \rho^{-1} \sigma^{-1} \tau_{k_{\mathbf{r}}}
$$

Dictionary. Here are the names used for some of Rijndael's ingredients.
AddRoundKey: one of the maps $\tau_{k_{l}}$.
MixColumns: the map μ defined on \mathcal{S}.
Round constant: one of the elements $X^{(j-\mathbf{k}) / \mathbf{k}}$ of \mathbf{F}_{256} used in the key expansion.
Round key: one of the elements k_{l} of \mathcal{S}.
Round transformation: one of the maps $\tau_{k_{l}} \mu \rho \sigma$, with μ left out if $l=\mathbf{r}$.
S-box: the map σ defined on \mathbf{F}_{256}.
Shift offset: one of the numbers $e(i)$.
ShiftRows: the map ρ.
SubBytes: the map σ defined on \mathcal{S}.
Reference. Joan Daemen, Vincent Rijmen, The design of Rijndael, Springer, Berlin, 2002. The present document can be found on 〈http://www.math.berkeley.edu/~hwl/〉.

