UCB Math 110, Spring 2011: Homework 4
Solutions to Graded Problems

4.3.1(d) 2 points. True. By the corollary on page 223 we know that det(A) # 0 if and only if A is
invertible. From theorem 3.5 we see that A is invertible if and only if Rank(A)=n.

4.3.1(h) 2 points. False. Consider the system of equations
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Applying this problem gives x1 = 2, a contradiction.

whose unique solution is clearly

4.3.22(a) 2 points. We use the definition of [T}g to see for 8 = {v1,ve,...,v,}
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which implies that M = [TT}.

4.3.22(c) 4 points. We proceed by induction. For n =1 we have
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Assume the result for the n case, otherwise
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For the n + 1 case it is easy to see by expansion by cofactors on the last row that
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a polynomial in ¢,+1. Notice if ¢,11 = ¢; with 0 < 4 < n the above determinant is 0. This
implies that
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Finally from our inductive hypothesis we have that
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Putting this together we get that
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4.4.3(f) 2 points. A calculation easily gives that
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