$2.4 .3 d$
Using Them 2.19 we need only show that $\operatorname{dim}(v) \neq 4$ ．
Note that Tr is a $L T$ and $V=\operatorname{null}(T)$ ．
Since $\operatorname{Tr}\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right)=1 \neq 0,\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right) \notin$ null (T) ，showing $V \neq M_{2}(\mathbb{R})$ ．Thus $\operatorname{dim}(v)<4$ as $v \leq M_{2}(\mathbb{R})$ ．
2.4 .16
define T by $A \mapsto B A$
S by $A \longmapsto A B^{-1}$
by Thru $2.12 a, b$ ．S and T are linear
Then $\overline{\underline{\phi}}=$ T．S is also linear．
Since I is an operator，Rank nollity implies I is H ff Φ is onto．
We show 雨 is H ．
If $I(A)=B A B^{-1}=0$ then $A=B^{-1}\left(B A B^{-1}\right) B=B^{-1} O B=0$ since null $(\underline{t})=\{0\}$ ，驱 is $\mid-1$ ．
2.5 .4

Let $[T]$ denote the matrix of T w．r．t the standard basis．By Them 2.23

$$
[T]_{\beta^{\prime}}=\left(\begin{array}{cc}
2 & -1 \\
-1 & 1
\end{array}\right)[T]\left(\begin{array}{ll}
1 & 1 \\
1 & 2
\end{array}\right)
$$

$$
\text { by def, }[T]=\left(\begin{array}{cc}
1 & 1 \\
T(1) & T(0) \\
1 & 1
\end{array}\right)=\left(\begin{array}{cc}
2 & 1 \\
1 & -3
\end{array}\right)
$$

So $[J]_{\beta^{\prime}}=\left(\begin{array}{cc}2 & -1 \\ -1 & 1\end{array}\right)\left(\begin{array}{cc}2 & 1 \\ 1 & -3\end{array}\right)\left(\begin{array}{c}11 \\ 1 \\ 2\end{array}\right)=\left(\begin{array}{cc}8 & 13 \\ -5 & -9\end{array}\right)$

2．7．13．b
Let $P=a_{0}+a_{1} t+\cdots+a_{n-1} t^{n-1}+t^{n}$
then $V=$ null（ $P(D)$ ）．Let S be the set of Solutions to the non－homogeneous．Let z be a particular solution and define $K=\{z+y(y \in n u l l(P(D))\}$ ．
We show $S=K$ ．
$K \leq S$ ：let $z+y \in K$
then $P(D)(z+y)=P(D)(z)+P(D)(y)$

$$
\begin{aligned}
& =x+0 \\
& =x
\end{aligned}
$$

So $x+y \in S \Rightarrow k \leq s$ ．
$S \subseteq$ 以：let $s \in S$ ，so $P(D)(s)=x$
also $P(D)(z)=x$ ，so $P(D)(z)=P(D)(S)$

$$
\begin{aligned}
& \Rightarrow P(D)(S)-P(D)(z)=0 \\
& \Rightarrow P(D)(S-z)=0
\end{aligned}
$$

$$
\begin{aligned}
& \Rightarrow s-z \in \operatorname{null}(P(D)) \\
& \text { so } s=(s-z)+z t K \\
& \therefore \quad s \leq K
\end{aligned}
$$

