UCB Math 110, Spring 2011: Homework 1 Solutions to Graded Problems

1.2.1(b) False. Let $0,0^{\prime} \in V$ be two zero vectors. Then $0=0+0^{\prime}=0^{\prime}$.
1.3.23(a) First we show that $W_{1}+W_{2}$ is a subspace. As both W_{i} is a subspace of V for all i, we have $0 \in W_{i}$. Thus $0+0=0 \in W_{1}+W_{2}$. Let $x, y \in W_{1}+W_{2}$ and $c \in F$. Then $x=x_{1}+x_{2}$ and $y=y_{1}+y_{2}$ for some $x_{i}, y_{i} \in W_{i}$ for all i. A simple calculation gives that

$$
x+c y=\left(x_{1}+c y_{1}\right)+\left(x_{2}+c y_{2}\right)
$$

Once again W_{i} is a subspace of V for all i giving that $x_{i}+c y_{i} \in W_{i}$. Thus $x+c y \in W_{1}+W_{2}$, implying that $W_{1}+W_{2}$ is a subspace of V. Let $x \in W_{1}$. As $0 \in W_{2}$, we get that $x+0=x \in$ $W_{1}+W_{2}$. Hence $W_{1} \subset W_{1}+W_{2}$. Similarly $W_{2} \subset W_{1}+W_{2}$.
1.5.1(d) False. Counter Example: Consider the set $\{0\}$ which is linearly dependant. $\emptyset \subset\{0\}$ is linearly independant.
1.6.22 The condition is that $W_{1} \subset W_{2}$, thus we must prove that $\operatorname{dim}\left(W_{1} \cap W_{2}\right)=\operatorname{dim}\left(W_{1}\right)$ if and only if $W_{1} \subset W_{2}$."
Let $\operatorname{dim}\left(W_{1} \cap W_{2}\right)=\operatorname{dim}\left(W_{1}\right)$. As $W_{1} \cap W_{2} \subset W_{1}$, we see that our assumption gives that $W_{1} \cap W_{2}=W_{1}$. Thus $W_{1}=W_{1} \cap W_{2} \subset W_{2}$.
Conversely let $W_{1} \subset W_{2}$. Thus $W_{1} \cap W_{2}=W_{1}$ giving that $\operatorname{dim}\left(W_{1} \cap W_{2}\right)=\operatorname{dim}\left(W_{1}\right)$.

