UCB Math 110, Spring 2011: Homework 7 Solutions to Graded Problems

6.7.1(a) 4 points. False, consider $L_{A}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ with $A=-I$. A has nonnegative singular values but both its eigenvalues are -1 so they must not be equal.
6.7.3(b) 4 points. It is easy to verify that

$$
A=\left[\begin{array}{ccc}
1 & 0 & 1 \\
1 & 0 & -1
\end{array}\right]=\left[\begin{array}{cc}
\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}}
\end{array}\right]\left[\begin{array}{ccc}
\sqrt{2} & 0 & 0 \\
0 & \sqrt{2} & 0
\end{array}\right]\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right]
$$

6.7.6(b) 4 points. Again its easy to see that

$$
A^{\dagger}=\left[\begin{array}{cc}
\frac{1}{2} & \frac{1}{2} \\
0 & 0 \\
\frac{1}{2} & -\frac{1}{2}
\end{array}\right]=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right]\left[\begin{array}{cc}
\frac{1}{\sqrt{2}} & 0 \\
0 & \frac{1}{\sqrt{2}} \\
0 & 0
\end{array}\right]\left[\begin{array}{cc}
\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}}
\end{array}\right]
$$

