


OPERATIONS ON CERTAIN NON-COMMUTATIVE
OPERATOR-VALUED RANDOM VARIABLES

BY DAN VOICULESCU

An example motivating the study of the addition of free pairs of “non-commutative
operator-valued random variables” is prc:vided by the computation of spectra of convolution
operators on free groups.

Let G be the (non-commutative) free group on two generators g1, g2 and let A denote
the left regular representation on [2(G). To compute spectra of convolution operators

Y= eA)

geG

with ¢; # 0 only for finitely many g € G it suffices to be able to decide whether such Y is
invertible. This in turn is equivalent to deciding whether a certain operator

X = > (o ® Mgh) + Br ® A(95))
kez

where ar = aj,, f—r = Pj are n X n matrices, is invertible. If n = 1, i.e. if the matrices
are scalars, then the spectrum of X can be computed using our results on the addition of
free pairs of non-commutative random variables [8]. Thus the computation of the spec-
trum of Y is reduced to a generalization of the addition of free pairs of non-commutative
random variables to the case of “matrix-valued non-commutative random variables”. (For
a different approach to the question of computing the spectrum of Y see [1].)

The present paper deals with the extension of our previous work ([8],[9]) on addition
and multiplication of free pairs of non-commutative random variables to, what might be
called, the operator-valued case. This means that the field of complex numbers is replaced
by an operator algebra, the free products are with amalgamation over this algebra and the
specified states are replaced by specified conditional expectations. Also the natural frame-
work of operator algebras with dual algebraic structure ([10]) for the considered operators
in the “scalar” case has a corresponding extension to the “operator-valued” case.

Though our results are meant for applications to operator algebras and spectral theory,
most of our considerations will be in a purely algebraic context, since we shall be mainly
concerned with finding the formulae for computing the operation on the distributions
of the random-variables. Concerning distributions of operator-valued non-commutative
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random-variables, let us only say that since the scalars C are replaced by an operator
algebra B, the moments of the variable X are the expectation valued of monomials of
the form X0, Xby... Xb,—1X. It is an important fact for the computation of spectra
that the addition of free pairs of B-valued random variables gives an operation among
the symmetric parts of the distributions i.e. among the expectation values of monomials
of the form bXbX ...bXb. For the symmetric distributions the addition formulae closely
resemble those in the scalar case with the generating series viewed as germs of maps C — C
replaced by germs of maps B — B.

The paper has eight sections.

The first section discusses free families of non-commutative B-valued random variables
and distributions of such random variables.

The second and third section deal with the algebras A(M) and the canonical form of a
random variable with a given distribution. This is the analogue for the B-valued case of
the special Toeplitz operators which we used in the scalar case for studying the addition of
free pairs of non-commutative random variables. We also give formulae for the canonical
form of a random variable after multiplication by elements in B.

The fourth section gives the solution to the addition problem for the symmetric parts
of distributions of B-valued random variables. It is obtained by studying the differential
equation for semigroups with respect to addition. The final formulae closely resemble those
in the scalar case.

The fifth section deals with the differential equation for semigroups with respect to
the multiplicative operation. We also introduce a corresponding free exponential map.
Studying the differential equations we show that multiplicative free convolution is well
defined for the symmetric distributions.

The sixth section presents the application to the computation of spectra of convolution
operators on free groups.

Section seven is a brief outline of the necessary adaptations to make the operators on
B-valued random variables fit in a framework of dual algebraic structures as in the scalar
case.

Section eight deals with the free central limit theorem for B-valued random variables
generalizing our results from the scalar case [7].

The present paper is an expanded version of our paper with the same title (preliminary
version) INCREST Preprint No. 42/1986, Bucarest. This revised version consists of the
material of the preliminary version (without changes) to which we have added 3.3.-3.7.,
5.4.-5.10. and section 8.

While working on the expanded version of this paper the author was supported in
part by a grant from the National Science Foundation and funda for the typing of the
manuscript were provided by a Faculty Research Grant from the Committee of Research
at U.C. Berkeley.



1. B-valued non-commutative random-variables.

1.1. Throughout B will denote a fixed unital algebra over C (this choice of the base field
is inessential). Let A be another unital algebra over C containing B as a subalgebra (with
the same unit) and let ¢ : A — B be a conditional expectation i.e. a linear map such that
@(byaby) = byp(a)by if by, by € B, a € A and ¢(b) =bif b € B. An element a € A, will be
viewed as a B-valued random variable.

1.2. Definition. Let (4,¢) be asin 1.1 and let B C A; C A (i € I) be subalgebras. The
family (A;)ier will be called free if

w(ajaz...an) =0

whenever aj € A;; withiy # i # .-+ # i, and ¢(aj) =0forl £ j < n. Afamily of subsets
X; C A (elements a; € A) where i € I will be called free if the family of subalgebras A;
generated by B U X; (respectively B U {a;}) is free.

Free families of subalgebras arise in the C*-algebraic context (in which case the condi-
tional expectations are of norm one) from reduced free products with amalgamation (see

§5 in [7]).

1.3. Proposition. Let (A, ) be as in 1.1 and let B C A; C A (¢ € I) be subalgebras
such that A is generated by UierA; and (A;)ier is a free family. Then ¢ is completely
determined by the w; = ¢ | A; (i € I).

Proof. By linearity it is sufficient to prove that we may compute ¢(a; ...an) whenever
aj € A;j; (1 £ j < n). We shall proceed by induction on the least non-negative integer
such that ¢;;(a;) =0if k < j and tg41 # thq2 #F -+ F in. [ k = 0 then e(ay...an) =0.
Assume our assertion has been established up to a certain k. Then for k + 1 if ix # 41
we have

play...an) = (a1 ... 0x(Pipp1 (Ck+1)0k+2)k43 . . . an)+

! !
+ (a1 ...ar0; 10842 . .. Gn) Where @y = ars1 — @iy, (Gr41),

so that the induction hypothesis applies.
If ix = tx41 then we write

cp(a1 e an) = cp(al e ak...l(akakH — Pis (akak+1))ak+2 SN an)+

+ ((11 e s Qp—104, (akak+1)ak+2 PN an)

which is again a reduction to the induction hypothesis. O

1.4. The algebra freely generated by B and an indeterminate X will be denoted by B(X).
Let (A,¢) be asin 1.1 and a € A a B-valued random variable. The distribution of a is the

3



conditional expectation u, : B(X) — B defined by u, = o7, where 7, : B(X) — A is the
unique homomorphism such that 7,(b) = b for b € B and 7,(X) = a. Quantities such as
Pa(boXb X ...bn_1Xb,) will be called moments. The set of all conditional expectations
¢ : B(X) — B will be denoted by Xp.

1.5. Let G, denote the symmetric group and let

Sa(br . bn) = D bo)Xbo(2) - - Xbo(n)
o0€Gy

S1(b) = b and Sp = 1. Let further
SB(X) = ls.{Sn(b,...,0)|be B,n >0} =
= 18.{Sn(b1,...,b0) | b; € B,n > 0,n > j > 1}
SB(X) = CX + X(SB(X))X

where “Ls.” denotes the vector space spanned by the given set.

Lemma. We have
B(SB(X))B = B + B(SB(X))B.

Proof. The inclusion C is obvious. To prove the converse remark that if n > k41, n > 3,

we have

Su(by-++,b0,1,...,1) = (n — k)kbX Sps( by...,b ,1,...,1)X—
N e

- k-times (k-—1)-times

— (7 = E)kXSn-a( by...,0 ,1,...,1)Xb—

(k—1)-times
~ k(k = 1)bX Spes( b,+..,b ,1,...)Xb=

N e’

(k—2)-times

=Mn—-k)n—-k-1)XS,_2(b,...,51,...,1)X.
(n—k)(n )X Sn—a( )
k-times

Taking into account that
n(n —1)XS,_2(1,...,1)X = S.(1,..., 1)

the preceding recurrence relation applied for k = 1,...,n —2 can be used to prove induc-
tively that forn >3 and 1 < k < n — 2 we have

XSn—2(b,...,b,1,...,1)X € B(SB(X))B.
2( ) (SB(X))

k-times



Also .
X =27185(1,1) € B(SB{X))B.

a
The above lemma implies that if 4 € Zp then u | SB(X) is completely determined by

© §§(X ) and conversely p | gE(X ) is completely determined by p | SB(X). We shall
denote by SXp the set

S¥p = {(u| B(SB(X))B) | p € B}

and we shall write Sy = p | B(SB(X))B if p € £p. If a € Aisarandom variable, then Su,
will be called the symmetric distribution of a and quantities of the type ua(S(b1,...,bn))
or pa(XS(b1,...,bn)X) will be called symmetric moments of a.

1.6. If {a1,a2} C A is a free pair of B-valued random variables then it follows from
Proposition 1.3 that pq,+a, 8nd fe,q, depend only on g, and pe,. For any given
[1,- .., n € Tp one can find a free family {ai,...,an} of random-variables in some (4, )
such that pa; = pj. We shall not give an ad-hoc proof for this here since it will follow
from our results on the canonical form of a random variable. This implies that there are
well-defined operations, B and ® on &g such that if {a1,a;} is a free pair then

Baytay = Hay B fa,
Kartaz = Hay X pta,.

This gives two semigroup structures on Xp.

2. The algebra A(M).

-

2.1. Let M be a right B-module and let X,(M) = L(M®", B) be the n-linear B-valued
maps of M X ...x M into B (the ® and linearity are over C) and Ao(M) = B. Let further
X(M) = @npoXn(M) with its natural right B-module structure. If £ € Xn(M) we define
the endomorphism A(¢) of the right B-module X(M) by:

A(€)n € Xnti(M)
AEM(M1 ®--- ®myp,) =
=N(Mp418(M1 @ @®Myp)@Mp42Q@ -+ @ Mntk)

if degn = k > 0 where deg refers to the obvious grading of X'(M) and

Mém = €n
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if degn = 0 i.e. n € B. We also define A*(m), where m € M, by:

A*(m)n =0if degn =0
deg A\*(m)n = degn — 1 _
A*(mn)(m1 @+ ® Mg-1) =n(M @M1 Q-+ @ mg—1)

if degn =k > 0.
A(M) is the algebra of endomorphisms of the right B-module X'(M) generated by

{ME) | € € Xn(M),n 2 0} U {X*(m) |m € M}.
Endowing A(M) with the natural grading corresponding to its action on X (M) we have
deg A(€) = deg ¢ and deg \*(m) = —1.
2.2. Tt is easy to check that the following equalities hold

/\(fl)/\(ﬁz) = )‘(/\(51 )52)
X (m)A(E) = A\ (m)E) if degé >0
A*(m)A(€) = A*(m€) if degé = 0.

2.3. We define a linear map
7 (Bn20Xn(M)) @ (Brzo M®*) — A(M)

by
YE® (M1 @+ @mu)) = A(E)A*(ma)... \*(my).

-

Lemma. « is a bijection.

Proof. Clearly the range of v contains the A(€)’s and the A*(m)’s and using the relations
2.2 we easily infer that the range of « is an algebra, so that - is onto.

For the injectivity let
a= E E Eik @vip #0
ko<k<ky icly

where £ € @n>0Xn(M) and vik € M®* for i € I;. Since a # 0 we may assume the
vik’s are linearly independent and the {i,x’s are non-zero. Then, fixing iy € I, there is
1 € Xko(M) such that (visk,) =1 € B and n(vix,) = 0 for i € I, \ {70}

Let ' € A},(M) be defined by

n'(ml ® "'®mko) =77(mko ®"'®m1)°
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We have

v(an' =7 (Z €iko ® Vi,ko) =

ieIko

= Z ’\(ﬁi,ko )U(Vi,ko) = A(gio,ko)l =

ieIko

= ﬁio,ko ?é 0. N
]

2.4. B identifies via ) : Xo(M) ~ B,— A(M) with a subalgebra of A(M ) and there
is a linear map ey : A(M) — B defined by em(v(€n ® v&)) = 0 if n + &k > 0 where
€n € Xu(M), vi € M®* and epr(v(&0 ® m0)) = (6o ® mo) = ovo € B if §o € Xo(M) = B
and vy € M® ~ C. It is easily seen that ep is a conditional expectation i.e. that
em(A(by)aA(b2)) = biep(a)bs and ep(A(b)) =b.

2.5. Remark. If B = C and M = C" then A(C") is isomorphic with a certain dense
subalgebra of an extension of the C*-algebra O, of Cuntz [3] realized on the Fock space
for Boltzmann statistics ([6], [5], [4])-

2.6. It will be useful to consider a larger algebra A(M) D A(M) acting on X (M) =
[1.50 Xa(M) such that there is a bijection

7 (H x,,(M)) ® (Br>oM®*) — A(M)

n>0

extending v and the multiplication of the formal sums which constitute A(M) is also
determined by the formulae 2.2. Thé obvious extension of s to A(M) will be denoted
also by eps. We have for T € A(M)

€M(T) =’(T1)0

where 1 € B = Xo(M) C X(M) and (-)o denotes the component of degree zero. Note
also that along the same lines as in the proof of Lemma 2.3 it is easy to show that the
representation of A(M) on X (M) is faithful.

2.7. If M = M, ® M, there are injections

Xi (H Xn(Mj)> ® (®rz0MP*) — (H Xn(M)) ® (@rz0 M%)

n2>0 n>0
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given by
Xj((én)nZO &® Vk) = (£n Opr]@") ® (i.;-@kuk)

where i; : M; — M are the natural inclusions and prj : M — M; the proejctions onto
the two summands and & o pr]@o means just £. Since the relations 2.2 determine the
multiplication in the algebras A(-) it is easy to check that the maps hj: A(M;) = A(M)
such that hj 0 4 = ¥ o x; are homomorphisms. Moreover we have hi(A(D)) = A(b) for
b€ B = Xo(M;) = Xo(M) and eps 0 b = EM;-

Proposition. If M = M, & M, then with hi,hs as above, the pair of subalgebras
(hi(A(M)))j=1,2 is B-free in (A(M),enr).

Proof. Write
X(M)=T,0T,®B

where

I =[] £(; ® M®-D, B)

n>1

with £(M; ® M®"~1), B) identified with a subspace of L(M®", B) via nn ~ 1, 0 (pr; @
idM @ - ®idy). If T € hy(A(M;)) and eM(T) = 0 then T(T; @ B) C Ty. Also the
analogue of this with 1 and 2 interchanged holds. This easily implies our assertion. For
instance if Tj € hy(A(M1)) and S; € ho(A(M;)) and e (T)) = em(S;) =0 then Ty1 € Ty,
S$1711 € T'; and continuing in this way we get S,T,...5,T11 € T'; so that

EM(S,;T,-, e S]Tl) =0.

2.8. If M = B™ we shall denote

A(M) by A(m) and ep1 by ep.

3. The canonical form.

3.1. Elements a € A(1) of the form

a=X1)+ > Aén)

n2>0

where {,, € X,,(B), will be called canonical.



Proposition. Given a distribution u € £ there is a unique canonical element

a=M(1)+ Z A(€n)

n>0
such that p, = p.
Proof. We have pa(X) = e1(a) = & so that we must put & = p(X). If n > 0 we have

g1(ar(by)ar(bz)...aA(bp)a) =
= (AN (DAE) - A (DAGINER)+
+ En(€oy---sén-1)(01 @+ ® by)

where Ey(o,...,En—1) € L(B®", B) depends only on &,...,En—1. Remark that
ex(A* (A1) ... X (D)A(bn)A(En)) = €n(bn ® -+~ @ by).

We infer that £, satisfies {n(bp ® - ®b1) = (X0 Xby ... X0 X) — En(&o,---, bn—1)(01 ®
-+ ® by, ) which determines £, inductively. O

The canonical element a in the above proposition will be called the canonical form of a
random variable with distribution x and we shall write £, = Rp41(p)-

3.2. Proposition. Let
ar = N"(1) + D Ménp)

n2>0

k =1,2,3 be canonical elements. Then tas = a, B e, if and only if

ﬁn,3 = En,l + ﬁn,z
for alln > 0.

Proof. In view of the uniqueness of the canonical form it will be sufficient to prove that if
€n3 = Ena + €n for all n > 0 then pa, = pa, B pe,. Passing to A(2) we have in view of
2.7 that hj(a;) + h2(az) has distribution pe, B pq,.

Let

Y = hi(a1) 4 haaz) = (1@ 1)+ D> Ména o prait
n2>0

+ €n,2 o pr2 )
Expanding

e2(YA(01)Y ... Y A(5,)Y) and
61((13)\(171 )a3 N a3)\(bn)a3)



our assertion is obtained from the following remark. Let
€2(S1A(b1)S2 ... SuA(b7)Sn41)
where each S; is an element of one of the following forms
A (18 1), A(Ba 0 pr®™) or A(Bn o pr®™).

Then replacing S; by S} where S} is obtained from S; by replacing A*(1@1) by A*(1),
A(Bn o prP™) (k =1,2) by /\(,Bn) it is easy to see that

€1(S1A(1)S; ... SLA(bn)S, 1) =
= 62(5’1)\(171 )52 N Sn)\(bn)sn+1).

Thus we have proved that
Ro(pa B p2) = Ra(pa) + Ra(pz)
foralln >1and u; € Tp,j=1,2.

3.3. The rest of this section will deal with the effect on the canonical form of the multi-
plication of a random variable by an element in B. We begin with some definitions this
will require.

Since B is a B — B-bimodule, in addition to the right multiplication £,,b by an element
b€ B of £, € Xn(M) we also may define b¢, by

(0€n)(m1 @ -+ @ Mn) = b(€n(m1 @ - -+ @ mn)).
Further, if M = B and b € B, we shall also consider
dn(b), 5n(b), on(d) : Xn(B) — Xo(B)
defined by the formulae
(dn(b)én)(bl @ ®by)=En(bby ®---®bb,) (n>1)
do(b)éo = (n=0)
(sn(b)ﬁn)(bl © - ®bn) =bn(b1 ®026@b @+ ®bn) (n22)
(Sl(b)fl)(bl) = b{1(b1)
s0(b)éo =
(an(b)fn)(bl ® ®bn) = bbn(b15® - @ bpb).
Let further d(b), s(b) : X(B) — X(B) be given by
d(b) = Bn30dn(b)
5(b) = @n>05n(d).

Note that the somewhat unusual formulae for sn(b) (When compared to dy,(b)) are due to
a certain asymmetry in our definition of A(M), X(M).
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3.4. The reader may easily check the following formulae for &, € Xn(B) (n = 0)

ABAEn) = Mdn(B)En)d(B)
A1)d(b) = d(B)A*(b)

A(on(b)€n)s(b) = s(b)A(B)A(£n)
X*(1)s() = s(B)A(B)A* (1).

3.5. Proposition. Let a be a B-valued random variable and let b € B and let.

A1)+ D Mén)

n>0

be the canonical form of a. Then we have:
(i) The canonical form of ab is

A1) + Y Mdn(b)Enbd).

n>0

(ii) The canonical form of ba is

A1)+ Y Mon(b)n).

n>0

Proof. (i) The random variable ab has the same distribution like

F(1) + D AE)AB) = A*(B) + > A(énb)

n>0 n>0

where we have used 2.2.
To prove (i) we must show that T' = A*(b)+3_,,50 AM(éab) and Ty = A*(1)+32,,50 Mdn(b)énd)
have the same distribution in (4(1),&1). In view of 3.4 we have

d(5)T = T1d(b)
and hence

ex(TA(b1)... TA(ba)) = (TA(b1)... TA(ba)1)o =
= (d(B)TA(b1) ... TA(bn)1)o =
= (Tyd(®)M(b1) ... TA(b)1)o =
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= (T A(B1)d(B)TA(by) ... TA(bn)1)o =
== (TiM(b). .. Tyd(b)A(bp)1)o =
= e2(TiA(br) ... TyA(bn)).

(ii) To prove (ii) we proceed similarly using the second group of formulae in 3.4. Let

T = A(b)(A*(1) + 2on>0Mén)) and let Ty = A*(1) + 2on>0 A(0n(b)én). We have
s(b)T = T s(b).
It is also easy to check that
We have
e1(TA(b1)...TA(bn)) = (TA(b1)...TA(bp)1)e =
= (s(D)TA(b1)...TA(bp)1)o =
= (T3 A(b1)s(d)TA(bz)...TA(bp)1)p =
= (T1A(b1)... TiA(bn)s(d)1)p =
=& (T1 )\(bl) e T1 )\(bn))

a

3.6. Proposition. Let (4,¢) be a B-probability space, let a € A be a random variable
and let e € B be an idempotent e = ¢? s 0. Let

=X 1)+ Y Ma) (€n € Xu(B))

n>0

be the canonical form of eae € A and let

S = X&)+ 3 Alra)

n>0

be the canonical form of the eBe-valued random variable eae (i.e. eae € eAe, where
we consider the eBe-probability space (eAe, (e - €)), so that e is the unit of eBe and
Mn € An(eBe)). Then we have

fn(bl R ® bn) = nn(cble Rebe®: - @ ebne).

Proof. In view of Proposition 3.5 we have

En(by ® - @ by) = ebn(eb1e® - @ ebpe)e.
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We identify [],,5o Xn(eBe) with asubspace ¥ C ], X,(B) by identifying x» € An(eBe)
with {,, € Xn(B) defined by

(n(b1 ® -+ @ bp) = xn(eb1e @ - @ ebne).
Remark that TY C Y, A*(1)Y C Y, A(én)Y C Y and A*(1) | ¥ = A*(e) | V. Moreover

(TA(b1)TA(b2)T ... A(bxYT'1)o =
= p(eaeb; eaebse. .. ebreae) =

= (TA(ebie)TA(ebze). .. A(ebre)Te)o =
= (SA(ebs e)SiA(ebze) ... M(ebre)Se)o.

To conclude from here that
€n(bi ® - @ bn) =1nn(ebie ® -+ @ ebne)

one proceeds by induction on n. Let

T, = X*(1) + 2'1: M)

k=0

n—1
o= A*(e) + 3 MER) + A6n)

k=0
n
Sn=2"(e) + 3 A(mw)-
k=0
Assume we proved £x(by ® --- ® bx) = ni(ebre ® -+ @ ebre) for k < n. This implies

Mé) | Y = Ame) | Y for k < n. It follows that

(SnA(ebie). .. SpA(ebne)Sne)o =
= (S\(ebre)...SA(ebne)Se)o =
= (TA(by)...TA(bn)Te)o =
= (TaA(b1) ... TaA(bp)Tne)o =
= (TuA(81)... TuA(bn)Tne)o-

Like in 3.1 we get from this equality
En(by ® - @ bn) =Nn(ebre @ --- @ ebne)

(since the terms involving ni(k < n) are identical). |

3.7. The next corollary outlines a standard application of the preceding result.
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Corollary. Let X;; (1 < 4,7 < n) be free random variables in a C-probability space
(A4,7). Consider the M;,(C)-probability space (A ® M4(C),T ® idn) and the M, (O)-
valued random variable

X = Z Xi; @ eij

1<i,j<n
where e;; (1 < ¢,j < n) are the canonical matrix units of My (C). Let
oo
R(Xij)(2) = ) Ruga(Xij)2"
n=0

be the R-series of X;;. Then the canonical form A*(1) + Ekzo A(lx) of T 1'3 given by

Ek(M(l) R M(k)) = Z RL+1(X,J)m§;l) N mgf)eu
1<4,5<n

where M(s) = Elsi,jsn mg;)eij € Mﬂ(c)'

Proof. The random variables X;; ® I,, are M (C)-free in (A ® M,(C), ™ ®id,) and hence
Xij ® €ij (1 < i,j < n) are also M, (C)-free. Using the fact that the R-series gives the
canonical form of a C-valued random variable and 3.6, we get that the canonical form

(1) + D Anm)

n>0

of Xi; ® ey is given by

77n(M(1) X ® M(n)) = Rn+1(XiJ')m$3) . .mS?)e,'.'.

If ’\*(1)+En20 A(¢n) is the canonical form of X;; ®eij, then X;j®e;j = (Xi; ®eii)(I ®eij)
together with 3.5 gives

Cn(M(l) ®---Q M(n)) = nn(eijM(l) Q- ® e‘jM(n))eij

so that
MDY @ @ M™) = Roy1(Xij)mPmD . m(De;.
To conclude the proof it suffices to use Proposition 3.2. O
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4. The differential equation for B.

4.1. Lemma. Let T € A(1) and let A*(1) + 35,50 Mén) € A(1) be a canonical element.
Then if Y(a) = hi(A*(1) + @ 32,59 A(én)), we have

Edzsz()\(b))(Y(a) + ha(THAB)™amo =

=y DY e1(A(B)(TAB))*° M(En((b(e1 ((TA(B))*))®
n=0 ko+:-+kny1=m—n~—1
ko>0,...;kn 4120

o+ @ (ber ((TA(B))¥))(BNTAB))Fr+1)
where a € C and b € B.

Proof. The expression the derivative of which must be computed is a polynomial in a €
C with coefficients in B, which shows also the sense in which this derivative should be
understood.

We have Y(a) = M*(1® 0) + a5 A(§,) where £, = &n qpri@". Let 7, = A(€L)Y,
S = ho(TA(D)) and X(a) = A* (BB 0) + @ X150 A7In)-

We have -

e2(AB)N(Y (@) + h2(T)AB)™) =
= &2(A(B)(S + X(a))™)

and hence

zid—a-ez(/\(b)((Y(a) + ho(T)A(8))" |a=0 =
m—1

=3 &(AB(S + A C@OY D Aua)(S + N (b 0)" ).

j=0 n2>0

For the computation which follows one should keep in mind that ep(R) = (R1)o and
the proof of Proposition 2.7. We have -

m-—1

3 (MBS + A B @0)) D Ama)(S + A (@ 0)" ) =
j=0 n>0
m-—-1 J
=> > bea(S*N* (b @ 0)... 8510 (b @ 0)S** A(np)S™ 1 77) =
J=0 n=0 nt-ko+++kn=j
ko2>0,...,kn 20
m-—1
=3 > bea(SEA*(b @ 0)... S* =1 X*(b @ 0)S*» A(ns)SFn+1) =

n=0 ko+:-+kpy1=m—n-—1
k020,..,kn 4120

15



m-—1

=) ) be2(S* A7 (5 @ 0)e2(S*) ® . ..

n=0 ko+--+kpnp1=m-n—1
koZO,...,kn+1 >0

® (b @ 0)ea(57)))8* 1)) =

= mE_I > - e1(AB)TA®)* e An((ber (TA(B)*) ® ...
e

® (be1 ((TAD)*))ABNTA®B))*»+).

4.2. It is easy to see that the same conmiputation yields the more general formula

2 e2(AB)(¥ (@) + Ba(TIAG) - Mbms J¥ (@) + ha(T)A(b)]mo =

m-—1

= Z Z 61(/\(‘120 JTA(b1)... T’\(bko)

n=0 ko4 -+kpnp1=m-—n-—1
ko20...kn4120

Alén(e1(A(bko 4t knos40)T - o« ABkgrtrrotkn e ) TA(Bkg e ki 4 ))®
@ €1 (A(bko+1)T - - . A(Bkotky+1)TA(Bky ki 42)))

Aokt batnt1)T oo M(Bkot oot kg1 +0) TA(Bkg by bt 1))
where by,...,b, € B.

4.3. Before passing to the differential equations we have to discuss certain formal series
which are the analogue of formal power series when maps C — C are replaced by maps
B — B.

Let SXn(B) C Xu(B) be the subspace of symmetric n-linear maps i.e. €n(01®- - @by) =
n(bo(1) ® @ by(n)) forallo € G,. fn e Xn(B) we denote by Sn € SA,(B) the element
such that Sn(b%") = n(6®"). Elements of SX(B) = I1,>0 SXn(B) will be written

> ta

n>0

SX(B) is a ring with multiplication such that (£, &, )(b2(m+)) = Em(B2™)E,(0%). SX(B)
has a natural filtering given by the powers of the ideal formed by elements of the form

EnZl €n. T = Enzo én and ¥ = ZnZl Nn then the composition ¢ o 1 is easily seen to
be well defined as follows ¢ 0 ¢ = La>0(n where

Co=¢& andif k> 1
6= T (%) @ @, (52,

m2>1 k4t hkm=k
k131, k21
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The differential of ¢ € SX(B) is an element of [],,5, SL(B®", L(B, B)) where SL(B®", E)
denotes the symmetric n-linear E-valued maps. If ¢ = 3_ 5 &n then the differential is

Dp =) Dt

n>1

where D¢, € L(B®™"=1), £(B, B)) is such that (D&, (b2("~1))(8) = "l (3@ ®bO

ﬂ@b@@b) k-times
We shall write formally also @(b) = 3,50 &a(6%"),(De)(b)[B] or (Dy)()[B] and
p((b)).

Ko =Y ,506n and the {,’s depend on a parameter then the derivative of ¢ with

respect to this parameter is meant component wise.

4.4. If u € ST we consider the formal series

Gu®) = 3 u(B(XB)™).
n>0
It will be also useful to consider
Tu(d) =) u(XB)"X)

n>0

so that
Gu(b) = b+ b, (b)b.

I 1 € ©p we shall write also G, for Gg, for T, for I's,. Also if y is a distribution pr
we shall write Gr and I'r instead of G, and T,

4.5. Proposition. Let T € A(1) and let Y(a) = hi(A*(1) + @ >0 Mén)) € h1(A(1)).
Let T(a) = Y(a) + ho(T'). Then we have Gr() = Gt and

%GT@@) = (DsGr(o))(D)EE(Gray (B))8,

where E(b) = 3,5 £n(b%").

Proof. If a = 0 the equality of the terms which are of degree m 41 in b in the differential
equation is precisely the equality established in Lemma 4.1. The general case can be
reduced to the case a = 0 since in view of 2.7 and 3.2 we have

BT(a) = BT B by (a) = BT(a0) B LY (a—ay)-

17



4.6. Corollary. Let u € Zp and a = X\*M) + 3 _ A(¢,) be the canonical element with
distribution u. Then the (S€n)n>0 depend only on .—S'p and conversely Sy depends only on
the (S&n)n>0. In particular if yy,p; € Sp then S(u1 B p2) is completely determined by
Sﬂ] and Sﬂz.

Proof. Let a(a) = A\*(1) + « 2 n>0 Mén).
We have

2 e MO A@AB)™) = bSEms (b8 - @ B+
+ F(S&j,e1(MB)(a(@)A(B)))b,0 < j < m — 2)

where F is a “polynomial” of the quantities on which it depends. These differential equa-
tions with initial condition &; (A(5)(a(0)A(b))™) = 0 if m > 1 can be solved recurrently and
‘we obtain that

e (AB)a(@AB)™) =
= abS¢m-1(b® -+ @ b)b+
+P(a’b"5’§j70 S] <m ‘—2)

where P is “polynomial”. Taking a = 1 we see that S ¢ completely determines the (5¢,)n>0
and also that conversely the (S €n)n>0 completely determine Su. The assertion concerning
S(p1 B po) follows now from 3.2. O

4.7. The differential equation in 4.5 immediately implies the following fact: if M1, 2 € SEp
and p(a) € STp is such that SRn(p()) = SRa(p1) + @SRy(p2) then
0 -
36 Cue)(8) = (DoG () )(B)[BE(G (o) ()]
where = = ano §n where & = SR,11(u2). Interpreting this equation as a system of
ordinary differential equations as in 4.6 we see that with the initial condition G u(0) = Gy,
we have G (1) = G, m,, which is completely determined by the differential equation.

4.8. We shall now assume B is a Banach algebra and T, and hence G, is an analytic
function in some neighborhood of 0 € B. This implies that the symmetric moments of
p viewed as n-linear maps B® — B are continuous and the formal series defining G, is
absolutely convergent in some neighborhood of 0. For instance if T is a B-valued random-
variable T € A where A is also a Banach algebra, A O B with a continuous conditional
expectation ¢ : A — B then Gr(b) = 2 om0 PO(TH)™) = o(b(1 — Tb)™!) satisfies these
assumptions. -

For the lemma which follows we shall denote by M the set of germs at 0 € B of analytic
B-valued maps and we shall use the notation F~1 only for multiplicative inverses, not for
inverses with respect to composition.

18



Lemma. Let I',G € M be such that G(b) = b+ bI'(b)b near 0.
(i) If K € M is such that K(G(b)) = G(K(b)) = b near 0, then there is Q € M such
that K(b) = b+ bQ(b)b. '
(ii) There is R € M such that for some neighborhood V of 0 € B we have (K(b))™! =
b~ 4+ R(b) if b€ VN GL(B). R is unique.

Proof. (i) If ||b|| is small enough, we have
b= G(b)(1 + T(0)b)™* = G()(1 + N(K(GH))K(GE))™
so that there is H € M for which
K(5) = bH(b).
Similarly there is J € M so that
K(b) = J(b)b.
We have
b= G(b) — bL(b)b = G(b) — G(B)H(G(B)T(X (G(5)))J(G(b))G(D)

so Q(b) = —H(b)T'(K(b))J(b) will do.
(ii) Choosing V small enough, if b € V' N GL(B) we have
Kby =7 (1+0Q(0)) " =
= b1 Q(b)(1 +bQ(b)) .
The uniqueness of R is easily seerrfrom the fact that R | (V N GL(B)) determines the
germ of R at 0. o

4.9. Theorem. Assume B is a Banach algebra and p € ST p is such that I',(b) is analytic
in some neighborhood of 0 € B. Let K and R be germs of B-valued analytic functions at
0 € B such that

K(Gu(b)) = Gu(K (b)) = b

and

K()™ =b"1 + R(b)
for b € GL(B) in some neighborhood of 0. Then we have

R®) = 3 SRupa(W)(E°")

n2>0
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where the SRp.1(u) are given by the canonical element with distribution H.

Proof. Let
K(a,b) = (b"! + aR(b))™! = (1 +\a‘bR(b)))'1 = (14 abR(b))™ b

which for 0 < o < 1 makes sense in some fixed neighborhood of 0, the last equality
making the invertibility of b superfluous. There is a neighborhood of 0 independent of
0 < & <1 for which K(a,b) has an inverse (with respect to composition) K(a, G(a, b)) =
G(a, K(a, b)) = b.

We have

d
aG(a, K(a,b)) =0

which with b, = K(a,b) gives

0= 2-Gla, br) + (DsG)(a, by )by RO =

- a%a(a, b1) — (DyG) (e, by )by R(G(a, by ))by].

Moreover G(0,b) = b. Thus defining #(a) € SZp by Gua)(b) = G(a,b) we have that
%Gu(a)(b) = (DbG,,(a))(b)[bR(G,‘(a) (6))] and u(0) is the distribution of the 0 random-
variable. In view of 4.7 this implies that G is the generating series for a symmetric distribu-
tion for which the corresponding symmetric parts of the components of the corresponding
canonical element yield the series R(b). Thus we have

R(b) = SRut1(u(1))(%™).

n>0

On the other hand Gua) = G so that u(1) = p. _ O

4.10. We have chosen in 4.8 and 4.9 to work in the Banach algebra context where we work
with genuine functions since this is the situation for the applications to computations of
spectra. On the other hand the reader will not find it difficult to transpose Lemma, 4.8
and Theorem 4.9 in the framework of formal series and general B where similar statements

hold.

4.11. Thus in the B-valued case the computation of p3 B py, pj € SEp is done as in the
scalar case: one forms G, ;» then the inverse K u; then the multiplicative inverses b~! +Ry;.

Then R, m,, = R,, + R,, and from R, m,, one goes back to Ky mp, and G m,,.
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5. The differential equation for K.

5.1. Lemma. Let T,...,Tm € A(1), let a(t) = X*(1) + M1) + 7 L ,51 Aln) € A(1) be
a canonical element and let Y(7) = hy(a(7)). Then we have

L e (YT (Ia(T2) .. Y (TYha(Ton )0 =
=y S a(@ T M (Tiottipmrtt - Tioktip)®

P21 jo+ -+ ips1=m
., Jo20
121, 0dp4121

o+ @ €1(Tijot1 « - Tjot 51 ) Liotwdpt1 - - - Lot ookipgn )

Proof. For the computation it will be convenient to put £, = & 0 pr?” so that A({,) =
hl()\(fp)) a.nd Sk = hz(Tk).
We have

321;82(1/(7)51 e Y (7)Sm)lr=0 =

= (Y (0)81...Y(0)Sm—j D _ M&p)Sm—j1Y (0)Sm—jiz ... ¥ (0)Sm) =
Jj=1 p>1

=Y (A1 ®0) + A1)S1 ... (A A B 0) + A(1)Smj Y AE)Sm—js1 ... Sm) =

m
=¥ > €2(51 - .. SjeA* (1 ©0)Sjo41 - - - Sjo+i, A*(1 B 0)
5=1p21 jo+--+jp=m—j

. Jo20
1121,-")]?21 .

A*(1 @ 0)Sjorrtjport1 « + » Sioteetip MEp) Sioteertjpt1 + + - Sm) =
= Z Z 62(51 ces .S’jo/\(ﬁp(ez(S,-o+...+jp_l+1 e Sj0+."..+jp )®

P21 jot o tippr1=m
S
n 211‘--1Jp+1 21

o @ E2(Sjot1 + - - Sjotr ) Siod ot ippr ¢+ o Sm) =

= Z Z 61(T1 cee Tjo /\(.fp(éil (Tjo+"'+jp-1+1 e Tjo+'"+jp )®

P21 jot+++jpg1=m
. Jo20
J121,e03p41 21

e ® E](Tjo+1 e Tjo+j1 )))T.’io+°"+jp+1 ‘e Tjo+"'+jp+1 )
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5.2. Corollary. Let T € A(1), let
a(m) = X (1) + A1) +7 > Méa) € A(1)

n>1
be a canonical element and let Y (1) = hy(a(r)). Then we have

e (DY (a0 =

=3 Y aQ@@GO M@ (TAG) ) D ...

p>1 jot+ st jppr1=m
. Jo20
n 211'"1.71)4-1 21

® e1((TA(B))* T(A(B)T)’r+1 %)
where b € B and 7 € C.
5.3. Proposition. Let T € A(1) and let

Y(r) = ha(\*(1) + A1) + 7 ) Mén)) € 4Q1).

n>1

Let T(1) = Y (7)ho(T). Then we have
(BT (B0 = (Ds(E 200 OO rco) (B

where O(b) = 3,5, £a(6%™).
Proof. The proposition is obtained from Corollary 5.2 by looking at the terms which are
degree m in b. O

5.4. The use of differential equations in the study of the operator & relies on viewing

T,8={p€Zp|pX)=1}

as a kind of infinite dimensional Lie group with respect to multiplicative free convolution
and to identify the solutions of the differential equations:

diTu(T)(Xbl o Xbm) =

=X > ur)(Xbi...Xb;

P21 jo+- +]>p(-)f-1—m
(*) 121, 0,],,.,.1 >1
Ep((B(T) (X Bjottpmstr o« Xty )) ® - .
® (“(T)(ijo+1 KR ijo+j1 )))
ijo+ +ip+1 - .. Xb Jo+--+Jp41 )

with the integral curves of right-invariant vector fields on this group. Here u(7) € 1,8,
¢p € Ap(B) and the equations are obtained from those in Lemma 5.1 by taking T; = TA(b;)
with T' a function of 7 and u(r) the distribution of 7.
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5.5. Before looking at the differential equations let us note a few facts about (Z1,5,X).
The set £;,p has an obvious affine space structure. Denoting by Eg"% the set of n-th
order distributions (i.e. the restrictions of distributions to noncommutative monomials
b1 XboX ... by Xbma1 of degree m < n) it is easily seen that (Z1,B,R) is the inverse limit

of groups (Eg’:};,gn). We shall denote by gy the distribution of 1, which is the neutral

element of (X1,p,X) and by ugn) the corresponding n-th order distribution.

It is easily seen that if p,v € ¥y p then

(uRV) (01 Xbo X .. by Xbma1) =
= u(01 Xbz ... Xbm1) + (b1 Xbz ... Xbi1)+
+ F(p(n—l)’y(n-f))

where F(p("=1, »("~1) depends only on p(*~%), v("=1) Note also that &, is a polynomial
map in the sense, that if Vi,V C 2&"% are finite-dimensional affine subspaces then there

is an affine subspace V3 C 2(1?,)3 such that

and the map
NixVeo—=V3

defined by K, is a polynomial map of degree < n. A more careful inspection of the map
defined by K,,, also yields the following fact which we record as a lemma, the proof of
which is left to the reader as an exercise.

5.6. Lemma. Let V},V5 C 2571)3 be finite-dimensional affine subspaces. Then there is a
finite-dimensional affine subspace W C 2&"% such that

VoecWand ViR, WCW.

With these preparations we are ready to study the free exponential.

5.7, Definition. The free exponential is the map

fexp : H Xn(B) = X1.B

n>1

defined by fexp((€n)n>1) = p(1) where p(7) satisfies () with initial condition p(0) = pa.
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5.8. Proposition.
a) The map fexp is a bijection.
b) If u(r) satisfies (*) with initial condition #(0) = v € T, p, then

¥(1) = fexp((én)nz1) B v.

Proof. a) Denote by u(r;n) the element (b) @ -+- ® bn) = u(T)(Xby...Xby) of Xy(B).
The system of differential equations (%) for the p(T;n) can be solved recurrently. It is
easily seen by recurrence that the right-hand side of (*) is a polynomial in 7 of degree < m

with zeroth order term
£m—1(bm—1 ®--- ® bl)bm

while the higher order terms depend only on {1,...,€m—2. This easily gives that fexp is a
bijection.
b) It will suffice to prove that
lim -/‘Z(n;r) = #(T)

n—0o

where

Z(n;7) = hna(Y(7/n))... ha(Y(7/n))hy (1),

T € A(1) has ur = v and hy,...,hpy are the homomorphisms A(1) — A(n + 1), corre-
sponding to the canonical summands in B"+!., Note indeed that this means

HzZ(nr) = By (rfn) & --- NY(-r'/n)Jm v
n-times

and that for the special case T = A(1), pur = py we also get

B (ty(r/m))®" = fexp((€n)nz).

n—oo

In all these considerations, the limits make sense in view of Lemma 5.6. Indeed, by
Lemma 5.6 we have that for fixed b1,...,bm and all n

NZ(n;r)(Xbl oo Xbm)

takes values in a fixed finite dimensional vector subspace of B. The limit is with respect
to the usual topology of this finite-dimensional complex vector space.

To prove the assertion we have to use again Lemma 5.6. Let V;,V, C Eg"’g be finite-
dimensional affine subspaces, such that

ﬂgle) eViforallTeC
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and V("‘),ugm) € V3. Let W be as in Lemma 5.4. Then
D(r)y: W =W

is a polynomial map of bounded degree, depending polynomially on 7 € C and such that
D(0) = idw. The first m equations () describe in view of Lemma 5.1 precisely the integral
curves of the vector field on W defined by

d
ED(T)U)I-,-:Q at we W.

In this context, where all the maps etc. are polynomial it is immediate that
lim (D(r/n))"v(™ = (u(r))™
n—roo

which is the desired result. O

5.9. Proposition. The symmetric part Su(r) of a solution of (*) depends only on the
symmetric parts (S€s)n>1 and on the symmetric part Sp(0) of the initial data. In partic-
ular, there is a map fexp : [],5; SXn(B) — STp,1 (the free symmetric exponential) such
that -

[Ins1 An(B) —2+ Tp,

s s
[1.>1 S¥a(B) P, ST,

is a commutative diagram and fexp is a bijection. Moreover S(y; ® u3) depends only on
Spy and Spg.

Proof. For the first assertion it is clearly sufficient to show that the system of differential
equations (%) yields a system of differential equations for Su(r), which completely deter-
mines Su(r) for a given initial condition and which involves only the symmetric parts
of the £,. Such a system of differential equations is provided by the equations (%) with
by = +++ = by = b and b,, = 1. To see that this system involves only the symmetric
parts of £,, note that the sum inthe right-hand side sum of () when restricted to fixed p,
jo and jp+iisasumover j; > 1,...,5p 2 1, j1+- - +Jp = m—jo— Jp+1. The permutation
group G, acts on this set of p-tuples (j1,...,Jp) and the partial sums over its orbits involve
only symmetrizations

Z £p(Bo) ® -+ ® ﬂc(?))

O‘GGP

where f1,...,B, € B, which are completely determined by S¢,. In turn, the partial sum
for fixed p, j1,...,Jp is a sum of the form

u(r)(BXbXD. .. X) + u(r)(XBBXX ... bX)+
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s p(T)(XBXB. .. XBBX) =
= Bu(T)(XbX ... bXbX)+

L U(T) XU+ F)XH(L+eB) . XB(1 + eB)X)]e=o.

This concludes the proof of the first assertion (an alternative proof could have been based
on 5.3 and 4.6). The existence of the map fexp is an immediate consequence.

To see that fexp is a bijection, remark that

d ‘a ‘4
—H(r)(XbX ... XbX)-

~€m—1(b®"‘ @b) =
= right-hand side sum of (*) restricted to1 < p <m —2

and hence this difference depends only on S¢;,... y S&m—2. The last assertion is now an
immediate corollary in view of 5.8. O

5.10. Remark. The differential equations for S #(), in view of the preceding proposition
and of Proposition 5.3 can also be written in terms of “generating series” in the form:

(BT (1) =
= (D (8T s(r)))(B)[B(O(T 5,1 ) (b)b))]

where

Tsu(rn(8) = 3 Su(r)(B(Xb))
n>0

and

O(b) = 3 €n(b®").

n>1

This differential equation can also be used to compute the symmetric multiplication free
convolution

Spl @Sﬂz

provided we compute (fexp)™1Sy;.
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6. Computation of spectra.

As we mentioned in the introduction the results concerning the operation H provide a
method for computing spectra of left convolution operators in I*(G) where G = Z*Z is the
free group on two generators gi,gz. Actually the same ideas provide a method for dealing
with more complicated groups obtained by taking free products with amalgamation. We
shall however stick here to the case of Z * Z since we think this particular example will

suffice to explain our approach.

6.1. LetY =3 ¢ ¢y \(g) where ¢4 € C, ¢4 # 0 only for finitely many g € G and where A
is the left regular representation of G on I?(G). To compute the spectrum of ¥ we have to
provide a method for deciding whether ¥ — zI is invertible for a given z € C. Since ¥ — zI
is of the same form as Y we may state our problem as deciding whether Y is invertible.

6.2. We recall one of the standard algebraic tricks with matrices.

Let A be a ring and let co,...,cn and uj,...,un be elements in A. Let further y =
o+ Y pey CkUk ... U1 and Yp = Cp + D g pyg CkUk - - - Up+1. Then in the ring Maut1(A) of
(n +1) x (n + 1) matrices over A we have:

1y1 ... ¥n y 0 1 0
0 .0 . —uy -
1 0 1 0 —uy 1
Co Ci1 Cn
—U1 1 0
0 _un 1

This identity shows that y is invertible if and only if the matrix

cCp C1 ... Cqn
—U1 1 0
0 —uy, 1

is invertible.

6.3. Let C*(G) be the reduced C*-algebra of G. An application of 6.2 to the element Y in
6.1 with A= C*@), y=Y, ¢; € C, uj € {M(91), Mg2), Mg7'), Mg5 ")} shows that given
Y there is ¢ € N and there are aj, 8; € M¢(C), (j = £1) and v € M(C) with «;, B; and
g depending on {g € G | ¢y # 0} and « a first order polynomial function of the ¢4, such
that: (Y invertible) & (a—1 ® A7) + a1 @ Mg1) + -1 ® A(g7) + b1 ® M(g2) +7® 1
invertible).
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6.4. It will be convenient to make one further matrix transformation so as to be in the

self-adjoint case. With the notations of 6.3 put

a=a1 QMg )+ a1 ®Mg1)+7®1
b=p-1®Mgz") + B1 ® A(g2).

Then we have

. . 0 a+b . .
(a + b invertible) & ( (a"‘ L0 )> 1nvert1ble) .

So defining X; = ((3, g) and X, = (;,), 8) we have

(Y invertible) & (X; + X; invertible).
Moreover
X;j = X € M2y(€) @ C*(\(g;)) C May(€) ®CX(E) (= 1,2)

and if {9 € G | ¢; # 0} is a fixed finite set then X, is constant and X is a first order
polynomial in ¢, and ¢,(g € G). Also only A(gf:l) appear in the expression of Xj.

6.5. Let B = M3 (C), A = M2,(C) ® C*(G), Aj = M3(C) ® C*(X(g;j)) C A and
¢ : A = My,(C) the conditional expectation ¢ = id®7 where 7 is the canonical trace
on C(G). Then {A;, A,} is a free pair of subalgebras in (A4,¢) and hence {X;,X,} is a
free pair of M2,(C)-valued random variables. It is especially easy to compute G X; since
Aj =~ M3(C) ® C(T). Using the results of section 4 we have a method for computing
Gx14+%,(8) = o(b(I — (X1 + X2)b)™!) for b € M24(C) ® I C A. Note that Try, 0p is
faithful on A4 so that taking b = 2I,, ® I, z € C and Trog(G x4 x,(2124 ® I)) gives us
the generating series for the moments of X; + X2 with respect to a faithful trace on A.
Solving this moment problem one gets the spectrum of Xy + X, and hence the possibility
of deciding whether X; + X, is invertible.

7. Dual algebraic structures.

This section deals with the necessary adaptations that have to be performed in our
considerations in [10] in order to fit the B-valued case.
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7.1. The basic idea is to replace the category of unital pro-C*-algebras in [10] by some
other category. Corresponding to the two cases: the purely algebraic one when B is just
a unital algebra over C and the C*-algebraic one when B is a unital C*-algebra, we will
consider the categories Cp and respectively Cj.

Cp is the category of unital algebras A over C containing B as a subalgebra B — 4,
the inclusion being unital and the morphisms are homomorphisms for which the diagrams

Al 4 A2

N
B

are commutative.

C% is the category of B-pro—C’*-algeb‘ras, i.e. unital C*-algebras (4,] ||) withle B C
A and endowed with a family of C*-seminorms (|| [la) o € I indexed by some directed
set I so that ||b]la = ||b]| if b € B and @ < 8 = ||z]lo < ||z]ls, llz]| = supges l|zlla if z € A
and moreover

Ay = lim A,
a€l

where the subscript 1 is for the unit ball and A, is the quotient of A by the ideal annihilated
by || |la- Morphisms in C} are morphisms of unital pro-C*-algebras (see 1.4 in [10])

A — A’ making the diagram
A - A

N
B

commutative.

7.2. A dual algebraic structure is an algebraic structure in a category as defined in Chap-
ter IV, §1 of [2]. We examined in [10] what a dual group structure means in the category
of unital pro-C*-algebras. In Cp and C; we have a similar situation.

Let u, j, x be the binary, unary and nullary operations defining the dual group structure
on A. Here

A X% B
N/
B

is commutative.
Also the free products with amalgamation over C have to be replaced by free products
with amalgamation over B. Thus y: A — A; A. If A € Cg, this free product is defined as

follows: it is the inverse limit of the C*-algebraic free product with amalgamation A, x Aq.

7.3.IA € Cp the state space of A denoted by S(A) is the set of conditional expectations
¢:A— B. If A€ C} then S(A) is the set of conditional expectations ¢ : A — B such
that ||¢(a)|| < lla||« for one of the seminorms of A.
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Ifp; € S(4;) (j = 1,2) then there is a unique ¢ € S(AlgAz) such that ¢(a;...a,) =0
whenever ar € A;(k), j(k) € {1,2}, vimlar) =0, j(k) # j(k+1) (1 <k <n-1)and

¢ | Aj = ;.
Uniqueness of ¢ follows from 1.3 both in the C B and Cj, cases. Existence of ¢ in the C}
case is obtained from §5 of [7].

The existence of ¢ in the Cp-case is seen as follows. Let Aj = keryp; and D, =
{GG1,...13n) | 45 € {1,2}, 88 # tg41,1 <J<n,1<k<n-1}. Then we have

A1§A2’-‘-’B€B@ @ A;, ®p Ai, ®p - ®p A,
nZO (ilv--,v‘n)eDn

and we define ¢ as the projection onto the B-summand.

We shall denote ¢ by 3 * .

7.4. If (A, 1, 7, x) is a dual group in Cgor C% (actually dual semigroup would suffice) and
if 1,02 € S(A) then (21,92) ~» 9102 = (1 * ¢2) o p defines a semigroup structure on
S(A) with unit y.

7.5. In Cp there is a dual group structure on B (X) defined by

B(X) 5 B(X) *p B(X) ~ B(X1,X)
MX) = X1+ X3, j(X)=-X

and x(boXby...bp—1Xb,)=0if n > 1 and x(b) = b. Then S(B(X)) =Zp and © is H.
Similarly in C} a corresopnding dual group is A = Rg e *c B (with the notations of 5.1
[10]) and since (Rgne *c B)*p (Rgpne *¢ B) = (Rgne *¢ Rene) *c B we define u from the
dual operation of Rcne-
It is easy to construct similar examples for other dual groups considered in [10] by taking
free products with B.

7.6. There are also examples of a somewhat different nature involving tensor products. For
instance let B[X] be the polynomials in X with coefficients in B (X and b € B commute)
and let

MX) = X1 + X,

where X; are the two images of X in B[X]*p B[X], j(X) = =X and x(bX™)=0ifn > 0,
x(b) = b.
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8. The B-valued Central Limit Theorem.

The B-valued central limit theorem for free random variables is an immediate conse-

quence of the properties of the canonical form.

8.1. Definition. A random variable a is called B-semicircular if its canonical form is

A*(1) + A(éo) + A(&)-
The distribution of such a random variable is also called B-semicircular. The B-semicircular
random variable is centered if ¢(a) = 0 (equivalently if £ = 0).

8.2. Since this paper concentrates on algebraic aspects, we will use the weakest kind of
convergence for distributions. Clearly, there is a lot of room for improving the convergence

side in our central limit result.

Definition. Let B be a Banach algebra and u, uy, : B(X) — B (n € N) B-valued dis-
tributions. We shall say p, convergence pointwise to u if for every P € B(X) we have

lit oo [l (P) = u(P)l] = 0.

8.2. Remark. It is easy to see along the lines of 3.1 if (u,).er is a family of B-valued
distributions (B a Banach algebra) with canonical forms

ML)+ Y Ane)

n2>0
then the following two conditions are equivalent
(i) there are constants Cy,...,Cyp such that

sup (X0 X .. 0p X)|| < Ciellba]] - [[Bx]l
¢

for all by,...,bpb € B,0<k<n.
(ii) there are constants Dy,..., Dy such that

sup €x,i(b1 ® -+ @ bie)l| < Dl[da ... |1l

for all by,...,bx € B,0< k < n.

8.3. Remark. Assume B is a Banach algebra, u;, u are B-valued distributions (j € N)
and assume the equivalent conditions of 8.2 are satisfied by (1;)jen. Then the following
are equivalent:

(i) Jim pi(X0X ... 5eX) = (X0 X . b X)
forall0 < k<nandby,..., by € B.
(ii) jlig,lofk,j(bl Q- ®@br) =Er(b1 @ ®bi)
forall0<k<nandb,...,bx € B.
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8.4. Theorem. Assume B is a Banach algebra and a; (j € N) is a B-free sequence of
random variables, such that
1°. p(a;)=0,5€N
2°. there is a bounded linear map ) : B — B such that
Jim 27! 1925,; ¢(ajbas) =n(b)
3°. there are constants Cy (k > 1) such that

sup [lp(asbray ... beaj)ll < Cillball - f1Bal-
j

Let S, = n—1/2 (a1 + -+ + ay). Then the distribution of S converges pointwise to the
semicircular distribution with canonical form

A*(1) + A(n).

Proof. Let
X1+ M)

k>0
be the canonical form of a;. We have

f,;=0 (jeN)
Jim 077 e 5(8) = q(b)
J=1

SUD [[€n,i(b1 @ -+ @ bu)I| < Callball... Ifoull (2 1)
2

for some constants C, (n € N).
Let

X*(1)+ 3 Alme,n)

k>0
be the canonical form of S,,. It follows from 3.2 and 3.5 that

M = n~EEDRE L 4o E).
Clearly 7o, = 0,
m 11,n(8) = n(0),
76,2 (81 ® -+ ® bi)|| < Cillba]l ... |[bi|ln=*=D72,

and
lIn1,2(B)I] < Caljb]l.
In view of 8.3 and 8.2 this implies that the distribution of Sn converges pointwise to the

distribution of

A*(1) + An)

i.e. to a B-semicircular distribution. a
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