- 1. Consider lattice paths of length n, starting at the origin and ending at (x, y), and using steps N, E, S, W where S = [0, -1] and W = [-1, 0]. Let r = (n x y)/2 and s = (n + x y)/2.
 - Show that the number of such paths is given by

$$\binom{n}{r}\binom{n}{s}$$

Solutions: r is the number of S or W steps and s is the number of W or N steps.

• Show that the number of such paths staying weakly above the x-axis is

$$\binom{n}{r}\binom{n}{s} - \binom{n}{r-1}\binom{n}{s-1}.$$

Solution: If the path x-axis goes below the x-axis, call u = (x, -1) the first vertex where the path goes below the x-axis and reflect the path from (0, 0) to u. This gives a path from (0, -2) to (x, y). The number of such paths is $\binom{n}{r-1}\binom{n}{s-1}$.

• Show that for the sequence

$$\binom{n}{r}\binom{n}{0}, \binom{n}{r-1}\binom{n}{1}, \dots, \binom{n}{0}\binom{n}{r}$$

is unimodal. As $\binom{n}{r-j}\binom{n}{j}=\binom{n}{j}\binom{n}{r-j}$. We need to show that

$$\binom{n}{r-j}\binom{n}{j} \le \binom{n}{r-j-1}\binom{n}{j+1}$$

for j < r/2. The number of paths from (0,0) to (2j-r,n-r) is $\binom{n}{r-j}\binom{n}{j}$. Use the reflection principle.

- 2. Let a be the sequence (a_0, \ldots, a_n) . Here we suppose that $a_i = 0$ if i < 0 or i > n. The sequence a is a PF-sequence if the matrix $A = [a_{i-j}]$ is totally non negative, i.e. every square submatrix has a non negative determinant.
 - Prove that if a sequence is PF then it is log concave. Solution:

$$\det \begin{pmatrix} a_i & a_{i+1} \\ a_{i-1} & a_i \end{pmatrix} = a_i^2 - a_{i-1}a_{i+1}$$

- Prove that the sequence $\binom{n}{0}, \ldots, \binom{n}{n}$ is PF. Use the Lindström-Gessel-Viennot lemma. Solution: Choose $A_i = (-i,i)$ and $B_j = (n-j,j)$. The number of paths from A_i to B_j is using N and E steps $a_{i,j} = \binom{n}{j-i}$. Therefore $\det(a_{ij})$ is the number of disjoint vertex path systems from A_1, \ldots, A_n to B_1, \ldots, B_n . Such a system exists if the paths are from A_i to B_i , $i = 1, \ldots, n$. Hence $\det(a_{ij}) \geq 0$.
- A sequence is a PF-sequence if and only if the polynomial $\sum_{k=0}^{n} a_k x^k$ is either constant or has only real zeros. Prove that $c(n,0),\ldots,c(n,n)$ is a PF sequence. Here c(n,k) is the number of permutations of [n] into k cycles.
- 3. Prove that

$$\left[\begin{array}{c} n \\ k \end{array}\right]_q \left[\begin{array}{c} n+1 \\ k \end{array}\right]_q - \left[\begin{array}{c} n \\ k-1 \end{array}\right]_q \left[\begin{array}{c} n+1 \\ k+1 \end{array}\right]_q$$

is a polynomial in q with non negative coefficients.

Solution: Let $A_i = (-i, 0)$, $B_i = (k - i, n - k + i)$ for i = 0, 1 and weight the E steps from (x, y) to (x + 1, y) by q^y .

Given $n \geq k$, let $A = (a_{i,j})_{1 \leq i,j \leq n}$ be the matrix such that

$$a_{i,j} = \left[\begin{array}{c} n+j-1 \\ k+j-i \end{array} \right]_q$$

Prove that every square submatrix of A has a determinant which is a polynomial in q with non negative coefficients.

Solution: Same for $i = 0, \ldots, n-1$.

4. Let $K_{m,n}$ be the complete bipartite graph with vertices $\{u_1, \ldots, u_m, v_1, \ldots, v_n\}$ and edges (u_i, v_j) for all i, j. Prove that the number of spanning trees of $K_{m,n}$ is $m^{n-1}n^{m-1}$.

Solution: Using the matrix tree theorem, the number of spanning trees is the determinant of a $(m+n-1)\times (m+n-1)$ matrix $M=(M_{i,j})$ with $M_{i,i}=n$ if $i\leq m$ and $M_{i,i}=m$ otherwise. And $M_{i,j}=-1$ if $i\leq m$ and j>m or i>m and $j\leq m$ and $M_{i,j}=0$ otherwise. Using row operations, M can be transformed into an upper triangular matrix: add row $2,\ldots,m+n-1$ to row 1 and dd row 1 to row $m+1,\ldots,m+n-1$. The determinant is then $m^{n-1}n^{m-1}$.

5. A permutation $\pi \in \Sigma_n$ has inversion table $I(\pi) = (a_1, a_2, \dots, a_n)$ where a_j is the number of elements of $Inv(\pi)$ of the form (i, j). Show that $0 \le a_j < j$ for all j. Let

$$\mathcal{I}_n = \{a_1, a_2, \dots, a_n\} \mid 0 \le a_j < j \text{ for all } j\}$$

Show that the map $\pi \mapsto I(\pi)$ is a bijection $\Sigma_n \to \mathcal{I}_n$.

Solution: The number of inversion sequences in \mathcal{I}_n is n!. We just need to show that the map is surjective. Easy! $\pi_n = n - a_n$, i.e the $(a_n + 1)st$ largest element of [n] and continue setting π_i to be the $(a_i + 1)st$ largest element of $[n] \setminus \{\pi_{i+1}, \dots, \pi_n\}$ for i from n-1 downto 1.

6. Give a bijective and inductive proof of the following identity:

$$\prod_{i=0}^{n-1} \frac{1}{1 - tq^i} = \sum_{k \ge 0} \left[\begin{array}{c} n + k - 1 \\ k \end{array} \right]_q t^k.$$

Induction: true if n = 0.

$$\left[\begin{array}{c} n+k-1 \\ k \end{array}\right]_q = \left[\begin{array}{c} n+k-2 \\ k \end{array}\right]_q + q^{n-1} \left[\begin{array}{c} n+k-2 \\ k-1 \end{array}\right]_q.$$

Bijection: LHS is the generating function of partition into non negative parts less than n. The k^{th} term of the sum in the RHS is the generating function of partition into k non negative parts less than n.

7. Given $m \ge 2$, use generating functions to show that the number of partitions of n where each part is repeated fewer than m times equals the number of partitions of n into parts not divisible by m.

Let $(a;q)_{\infty} = \prod_{i=0}^{\infty} (1 - aq^i)$.

$$\prod_{i=1}^{\infty} (1 + q^i + \ldots + q^{m-1}i) = \prod_{i=1}^{\infty} \frac{1 - q^{im}}{1 - q^i} = \frac{(q^m; q^m)_{\infty}}{(q; q)_{\infty}} = \prod_{i \ge 1, i \nmid m} \frac{1}{1 - q^i}.$$

- 8. A directed animal A is a subset of $\mathbb{Z} \times \mathbb{N}$ such that
 - $(0,0) \in A$;
 - If $(x,y) \in A$ then $x \ge -y$;
 - If $(-i, i) \in A$ with i > 0 then $(-i + 1, i 1) \in A$;
 - If $(x,y) \in A$ with x > -y then $(x,y-1) \in A$ or $(x-1,y) \in A$.

The size of A is |A|. Prove that the number of directed animals A of size n is 3^{n-1} . Hint: Use a bijection.

Solution: change each brick by a vertex and rotate.

- 9. A brick configuration is a stack of 2×1 bricks such that
 - The bricks in the bottom row are contiguous
 - Every higher brick is supported by at least one brick in the row below it.

Prove that the number of brick configurations with n bricks is 4^{n-1} . Hint: Use generating functions. Solution: Same as in class except $H(x) = x + 2xH(x) + xH(x)^2$.

- 10. Let $\mathcal{A}(G)$ be the set of acyclic orientations of the graph G = (V, E). Given an edge $e \in E$. Prove that there is a bijection between $\mathcal{A}(G/e)$ where G/e is the graph where e is contracted to a vertex and the subset of the acyclic orientations in $\mathcal{A}(G\backslash e)$ such that when we add back e to this orientation, it can be oriented into both directions without creating any cycle.
- 11. Let G be a graph and t a positive integer. Call an acyclic orientation O and a not necessarily proper coloring $c:V\to [t]$ compatible if for each arc $(u,v)\in O$ we have $c(u)\leq c(v)$. Let a(G,t) be the number of compatible pairs. Show if |V|=n then

$$P(G; -t) = (-1)^n a(G, t).$$

Sketch: By induction on E. If |E| = 0 then true. As $a(G,t) = t^n$. Suppose |E| > 0. If O is such an orientation and e = (u, v) an edge. If $c(u) \neq c(v)$ then we have one choice for the orientation. If c(u) = c(v) then we could have one or two choices for the orientation. If we have two choices then this is counted by a(G/e, t) (for one of the choice). The rest is counted by a(G/e, t). We get:

$$a(G, t) = a(G/E, t) + a(G \setminus e, t).$$

Using induction $P(G; -t) = (-1)^n a(G, t)$..