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A mathematical model for the scaling of turbulence
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We present a simple physical model of turbulent wall-bounded
shear flows that reveals exactly the scaling properties we had
previously obtained by similarity considerations. The significance
of our results for the understanding of turbulence is pointed out.

I n a series of papers (1-13) we constructed a model of
wall-bounded turbulent shear flow based on a hypothesis of
incomplete similarity (14) and a vanishing viscosity principle
(15), and then compared the model with the data and found an
excellent agreement. In particular, we found that the mean flow
in wall-bounded turbulence had a persistent dependence on the
Reynolds number, contrary to often-used assumptions, and that
the well known logarithmic law of the wall was invalid.

In the present paper we offer a simplified qualitative model of
a turbulent boundary layer and, more generally, of wall-bounded
turbulent flows. The derivation of the model is heuristic, but
once the model is derived, we prove rigorously that it has the
scaling properties that we had obtained for wall-bounded tur-
bulence. This establishes the self-consistency and realizability of
our assumptions, and also provides a mathematical explanation
of their origin and meaning. Incomplete similarity leads to
scaling laws with anomalous exponents and is closely related to

- the renormalization group (14, 16-18). We furthermore discuss

the significance of the results for turbulence theory and in
particular for scaling in the Kolmogorov range of scales. The
striking conclusion from our analysis and the experimental data
is that, as the Reynolds number R tends to infinity, the deriva-
tives of the velocity field reach a limit and do so at an inverse
logarithmic rate in R.

‘We briefly remind the reader of the fundamentals of similarity
theory (14, 16). Suppose a variable « is a function of variables a4,

@2 ..., 8m, b1, ba, ..., By, where ay, . . ., 4, have independent
units {for example, units of length and mass), while the units of
b1, ..., by can be formed from the units of @y, a2, . . ., @. Then
there exist dimensionless variables IT = (a/af'---a5™), II; =
(bifai"--aym), i = 1,..., k, where the o, oy are simple
fractions, such that IT is a function of the I1;

H = ‘I’(Hl, ceany Hk) [1]

This is just 8 consequence of the requirement that a physical
relationship be independent of the size of the units of measure-
ment. At this stage, nothing can be said about the function ®.
Now suppose the variables II; are either small or large, and
assume that the function ¢ has a nonzero finite limit as its
arguments tend to either zero or to infinity; then IT ~ constant,
and one finds a power monomial relation between g and the a;.
This is a complete similarity relation. If the function @ does not
have the assumed limit, it may happen that for II; small or large,
$(II;) = II1P4(I1;) + ..., where the dots denote lower-order
terms, o is a constant, the other arguments of ® have been
omitted, and ®, has a finite nonzero limit. One then obtains a
scaling (power monomial) expression for a in terms of the 4; and
by, with undetermined powers that must be found by means other
than dimensional analysis. The resulting power relation is an
incomplete similarity relation. Its existence is equivalent to the
asymptotic invariance of the problem under the renormalization
group (14, 16). Of course, one may well have functions & with
neither kind of similarity.

www.pnas.org/egifdeif10.1073/pnas.0406291101

Derivation of the Model

We first present a heuristic derivation of an equation for the
mean flow in the intermediate layer in a wall-bounded turbu-
lent flow. This derivation is heuristic, but the analysis of the
equation will be rigorous, and the heuristic derivation includes
several points needed for the interpretation of the rigorous
results.

Consider a turbulent flow bounded by a wall, and a point P a
distance y above that wall (Fig. 1}. We wish to determine the
mean velocity profile # = u(y)} parallel to the wall a8 a function
of the distance y from the wall. We consider the flow in the
region 8 =y = 4, i.e, outside a viscous sublayer of thickness &
near the wall where viscous effects are dominant; 4 is a length
typical of the height of the intermediate layer. A prime example
of a wall-bounded flow is flow in a pipe, where d is the diameter
of the pipe.

It is widely believed that the mechanics of a turbulent flow are
determined by a mixing length €, a turbulence analog of a
mean-free path in kinetic theory (19, 20). Following von Kérmédn
(21) we assume £ = —u’/u”. The simplest assumption about £
is € = y {(an irrelevant proportionality constant is omitted), and
thus yu" + u' = 0, yu’ = Cy, and

w=Clny+ C,. [2}

(We denote by C; constants whose value is immaterial and,
whenever it leads to no confusion, set C; = 1.) From this
assumption we obtain u(d) = Ind + C;, u#(8) = In 8 + (5, and
u(d) — u(8) = In(d/8). Redefine the velocity i as i = u — u(d);
then u(8) = —In(d/8). Clearly, u'(8) = 1/8.

We now ask how these conclusions are modified when one
takes into account the direct effect of viscosity on the flow. The
analog of a Reynolds number here is d/8, the ratio of the scale
of the domain to a viscous length. The boundary conditions,

u(d) = ~In(d/8), u'(8) = 1/8, 31

should remain unchanged; they describe the mean velocity on the
outer edge of the viscous sublayer 0 < y < § whose formation
is due to viscous effects and which is not modified by the
inclusion of viscous effects in the description of the layer inwhich
we are interested. The importance of coherent structures in
turbulence has been shown in numerical computations (22) and
in experiments (23), they are responsible for most of the
turbulent shear (24), and their scale increases with the Reynolds
number (22, 25). Thus, € should increase; assume the increase is
proportional to the small parameter 1/In{d/8); this is plausible
since the quantity In{d/8) has already appeared in the analysis
as the major large parameter (also see the discussion below).
Thus, .

1
=t i) “

Then u” = —(u'/¥)(1 + (1/In{d/8))~! and neglecting terms
quadratic in the small parameter 1/In(d/8) we find
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Fig. 1. The geometry of the problem.

I
u"=—(1———1n(d/6))u’/y. [5]

This is our model equation. The main assumption in this
heuristic derivation is Eq. 4, which quantifies the impact of a
viscous length scale on the mixing length.

Properties of the Mode! Equation
The derivation we have just given is heuristic, but there is nothing
heuristic about the analysis we now give.

The solution of Eq. 5 with the boundary conditions of Eg. 3

is
d y 1/1n{d/8) d
u=ln(§) (E) —Zin("é').

The quantity yu'(y) = (d/d In y)u can be calculated,

! = (VIS = exp( W) ’

so that for each fixed y, its limit as 8 = Qise = 2.71.... As
& — 0, u converges pointwise to the curve (or, in logarithmic
coordinates, straight line) 4 = e - In y, There is a separate
function « for each value of 8/d; the envelope of these curves is
# = In y; thus, in the (In y, &) plane the curves have this straight
line as envelope and have a common asymptotic slope e (see
Fig. 2).

Consider these facts from the point of view of the similarity
theory presented above. The solution u is a function of y, 8, and
d. The derivative du/dy must satisfy the relation

1z )
d_}’_y 5:6 3 []

In y
Fig. 2. The solutions of Eg. 5. Continuous straight line, envelope; broken

fines, asymptotic slopes.
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where u is dimensionless, though we have omitted a division by
a characteristic velocity scale, y/8, d/é are large and @ is
unknown. If one makes an assumption of complete similarity,
D ~ C, where C is a constant, one finds #' = C/y, and from the
boundary conditions # = In y, which is the equation of the
envelope. The same wrong result can be obtained by simply
neglecting the small term 1/In(d/8) in Eq. 5. A substitution of
the true expression for i yields relation

a y 1/in{d{8)
@—(5) , 7}

which represents incomplete similarity in y/8 with anomalous
exponent 1/In(d/8) and no similarity in d/8.

The relation between the coefficient of the right hand side of
Eq. 5 and the parameter 8 is a critical relation in the following
sense: Consider instead of Eq. 5 the more general equation

u'=—(1-4(8/d)u'ly, [8]

where i = (8/d) is a monotonic function of 8/d, withdy/d8 >
0, and with the boundary conditions of Eq. 3. The solution of Eq.
Bis

uy = ()@ 8)Y —In(y/8) — ¢ 9]

One easily finds yduy/dy = (y/8)" and hence that the limit of
yeduy/dy as 8 = 0 is

1 ifyInld/8) — 0;
e ifyn(d/8) — 1;
w if y In(d/6) — o=,

In the first case the solution is asymptotically given by a complete
similarity relation; the second case is the one we discussed; in the
third case there is no similarity result. This conclusion affirms
once more the close connection between criticality and incom-
plete similarity (see refs. 17 and 18). Note that in the first two
cases the limit 8 — 0 is approached at the a rate proportional to
§, iLe., logarithmically in the critical case and faster in the
subcritical (¢ In{d/8) — 0) case, as is consistent with the
assumed form of the coefficient £.

In summary, one of the following possibilities must hold for
solutions of Eq. 8: (7} A faster than inverse logarithmic rate of
convergence {in 8) of the profiles gradients to a limit, asymptotic
complete similarity, and a logarithmic dependence of u ony; (ii)
an inverse logarithmic rate of convergence of the profile gradi-
ents o a limit, incomplete similarity, and a power law profile; or
(iif) no well defined limiting velocity profile.

The Scaling of Turbulence

Consider first wall-bounded turbulent flows, for example, flow
in a pipe. In Fig. 3 we display mean velocity profiles obtained
experimentally by Zagarola in a Princeton experiment (26). The
flaws in the experimental procedure (see ref. 11} do not inval-
idate the qualitative shape of the curves.

It is usually stated that the mean velocity profile in most of the
pipe, at large Reynolds numbers R and away from the center and
from the near vicinity of the wall, is logarithmic and R-
independent; this is usually derived by a complete similarity
argument {(see ref. 19): the mean velocity u should depend on the
viscosity v, the fluid density p, the pipe diameter d, the shear
stress at the wall 7, and the distance to the wall y. Dimensional
analysis allows the relationship between these quantities to be
written in the form

dufdy = (ux/y)®(y/8,d/8),
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Fig. 3. The experimental graphs of velocity vs. distance from the wall [re-
produced with permission from ref. 26 {Copyright 1996, Mark V. Zagarola)].

where 4y = V(1p), 6 = ¥/u,, and d/8 = u.d/ v is a function of
the conventional Reynolds number R = @d/v, with & equal to
the flux divided by the cross section of the pipe (compare with
Eq. 6). This can be rewritten as

dujdy = (u./y)®(y/8, R),

where both arguments of the unknown function @ are large. If
one then makes a complete similarity assumption that the
function ® tends to a nonzero constant C as its arguments
become large, one obtains (du/dy)/u. = C/y; one usually
defines k = “Kdrman’s constant” = 1/C so that this becomes
(dufdy)/us. = (1/x)/y. An integration, and an additional
assumption about the integration constant, yields the “logarith-
mic law of the wall” /1, = (1/x) Iny + B, where B is implicitly
claimed to be R-independent. This conclusion s consistent with
Eq. 2.

However, though this derivation is often reproduced, the
conclusion is untenable. The “constants” k, B vary widely
from experiment to experiment, and the data (see Fig. 3}
do not show a single R-independent line in the (In y, u)
plane but rather a series of curves, one per Reynolds num-
ber, with a straight envelope and a common asymptotic slope,
much like Fig. 2. It is therefore more sensible to assume (see
Eq. 7)

P = AR)y/8)*® {10

(incomplete similarity in y/8 and no similarity in R); a{R) and
A(R) are functions of R. We further expand A(R), «(R) in
powers of 1/In R, consistent with Eq. 4. One can show directly
that this dependence of A, « on R is critical. This yields
ARY=Ag+ A/t R+ ... ,alR) =g+ ay/InR+ .. ..
‘We then keep only the two leading terms in the series. To have
a finite limit in the subcritical case one must have ag = 0; this
leaves three constants, oy, Ap, and Ay, to determine. We
determined them by comparison with experimental data (9, 4,
6, 12). The results agree extremely well with experiment, and
even more important, the constants do not move as one
processes all pipe and boundary layer flows for which data are
available (12). The logarithmic law of the wall corresponds to
the wrong logarithmic selution in the analysis of the previous
section.

A significant conclusion one can now draw is that as the
Reynolds number increases, the first moments of the velocity
tend to a limit, and do so at an inverse logarithmic rate.
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One may ask next how higher moments of the velocity field
behave as the Reynolds number increases. If the first moments
tend to a limit at an inverse logarithmic rate, one expects higher
moments to converge to a limit at the same rate or af a lower rate;
they can also fail to have a limit. Consider for example the
structure functions for the velocity field in homogeneous iso-
tropic turbulence (the objects of Kolmogorovs theory). Con-
sider a homogeneous isotropic flow and the velocity u at two
points x, x + r, and in particular the velocity component up in
the direction of the line that joins these points. Then, drop the
subscript . The pth order structure function is s, = ((u(x + r) —
1(x))’}, where the brackets denote an average. The function s,
depends on the Reynolds number R (for a suitable definition of
R, see refs. 3 and 14), abulk length scale L, the variable distance
r = |r}, and the mean rate of energy dissipation &. Dimensional
analysis yields s, = (er)¥3®,(L/r, R}, where @, is an unknown
dimensionless function of two large arguments. If one makes the
complete similarity assumptions &, ~ C for large argunients,
one finds the classical Kolmogorov scaling s, ~ (er)?>, and in
particular 52 ~ (&R)%?, from which it follows that in the inertial
range the energy spectrum E(k) is proportional to k=33, the
famous Kolmogorov-Obukhov spectrum.

But it is not necessarily so. One should expect the Kolmog-
orov—CObukhov spectrum fo be a manifestation of criticality
(see ref. 13), and one should assume incomplete similarity
(also see ref, 8). In the plethora of possible assumptions one
may as well start with the form of Eqs. 7 and 10 so that forp =
2 one finds

5o :A(R)(EJ’ ZBru1Iln R+, ., "

with A(R) = A9 + A1/In R + ..., assuming, of course, in
addition that the critical dependence on R is inverse logarithmic
as above. This yields a spectrum

E(k) —~ kw5l3+mu'InR

i.e,, a viscous correction to the Kolmogorov spectrum that
changes slowly with R. Such a correction could easily be
mistaken for a constant correction if one is not too careful with
the data, and it is perfectly consistent with at least some of the
data (see ref. 11). However, the critical dependence on R may
well be slower than inverse logarithmic, in which case it would
be even easier to overlook it in the processing of the data,
especially when one is unaware of the possibility of such
dependence. It has long been speculated that the exponent in
the spectrum of the inertial range was in some sense a
“critical” exponent, but the possibility that it should be
R-dependent had not been properly considered.

The same argument applies to the case p = 3, where it is
believed that the Kolmogorov scaling is exact; this would simply
mean « = { for p = 3. As one goes up in p, one should expect
the critical dependence on R to slow down and even change sign,
so that eventually the moments do not have an inviscid limit and
the critical dependence becomes a dependence on a growing
function of R. It is compatible with the data, and with some
numerical simulations (7, 13), to assume that this turnover
happens at p = 3. If this is so, it explains the divergence of the
measured higher structure functions from the Kolmogorov
predictions without in any way invalidating the Kolmogorov
theory.
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