On the Convergence of Discrete Approximations
to the Navier-Stokes Equations*

By Alexandre Joel Chorin

" Abstract. A class of useful difference approximations to the full nonlinear
Navier-Stokes equations is analyzed; the convergence of these approximations to
the solutions of the corresponding differential equations is established and the rate
of convergence is estimated. |l .

Introduction. The Navier-Stokes equations, describing the motion of a viscous
incompressible fluid, can be written in the dimensionless form
(1) azv;—l—a,-p = —v,-a,-vi—l— V22)¢+E-;, (VzE Zaj2)

@) dive=0

where the vector v, with components v,, 7 = 1, 2, 3, is the velocity, p is the pressure,
E is the external foree, 8. denotes differentiation with respect to the time ¢ and 9.
denotes differentiation with respect to the space variable z;, ¢ = 1, 2, 3. Vector
quantities are denoted by bold-face characters and the summation convention
applies to the index j.

When a solution of these equations is required in some bounded domain @ with
boundary 99, use is generally made of an appropriate difference approximation. A
new class of such approximations was introduced and utilized in [1] and [2]; it 1s
the purpose of this paper to establish the convergence of the solutions of such
approximations to the solutions of Egs. (1) and (2) in Q.

To our knowledge, the first convergence proof for a difference approximation to
the complete system (1) and (2) was given by Krzywicki and Ladyzhenskaya
(see e.g. [3]). Their proof gives both more and less than the numerical analyst re-

_quires. It gives more because it actually establishes the existence of a certain weak
solution of the equations. It gives less because it provides no estimate of the error
and because it applies to a scheme which is not readily applied in practical calcula-
tion. Proofs related to that of Krzywicki and Ladyzhenskaya have been given by
Temam [4], [5], for schemes which are as yet untested in practice.

In the present paper we shall adopt a different point of view. We shall assume
that the differential equations have a solution with a certain number of continuous
derivatives. Armed with this knowledge, we shall study difference schemes which
are not merely usable, but even efficient. The methods analyzed are based on the
following observations: Equation (1) can be written in the form

1" dv -+ gradp = §v+ E
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where the vector §v, with components —y 9 + V%, is a functional of v; Eq. (2)
can be differentiated to yield

2 div (0xv) = 0.

(1") can therefore be written in the form

3) dv = ®(Fv + E)

where @ is an orthogonal projection operator which projects vectors in Ls() onto
the subspace of vectors with zero divergence in @ and satisfying an appropriate
boundary condition on 92 (see e.g. (6], [7]). Usually the appropriate boundary con-
dition is that the normal component of v vanishes. On the basis of these remarks the
following procedure is followed: The time ¢ is discretized ; at every time level gv,
then ®(v + E) are evaluated; this yields an approximation to v which is used
to obtain v at the next time level.

As will become apparent in the course of this work, the author has not obtained
results as general as he may have wished. A convergence proof in both the maximum
and L, norms, with a suitable error estimate, has been obtained only for the special
problems in which the boundary conditions are replaced by periodicity conditions.
This proof is presented in the next two sections; first the discrete analogues of the
operators grad, div and @ are described and studied ; these operators are then used
to present and analyze a difference scheme for the periodic initial value problem.
The mixed initial value-boundary value problem is briefly discussed in a final section.

Preliminaries; The Operators D, G and P. We assume that Eqgs. (1) and (2)
have a solution v, p, periodic in all spatial directions; without loss of generality in
the proofs the periods can be taken equal to 1. Let I be the number of space di-
mensions;  is then the cube 0 < z; < L2 =1, ---,1. We cover Q by a rectangular
grid and assume that the mesh-widths in all directions are equal to the same small
number k. The set of all mesh-nodes is denoted by Q; @0 is the set of nodes in the
interior of @ and 39, is the set of nodes on the boundary of Q. @0 + 99, = Q..
N = k' + 1 is the number of mesh-points in each space direction.

Let f be a scalar function and let u be a vector function with components u,
defined at the points of Q. Let z = g7l ifl =2)orz =[gr s](ifl =3)bea
point in @, with coordinates gk, rh (gh, rh, sh if I = 3). The values of f, u; at 2 are
denoted by f., wic) or fy s, Uicg.ry (Faur,o Uitq,r,09, if 1 = 3). The periodicity conditions
become foyn-1,» = f,., ete.

The inner product is defined for scalar functions 5, g, by

)= X, fah'+~ 3 fgb’

zEQh ’ zeaﬂh

and for vectors u, v by
I

(u-v) = E (ui: vi) ’ ‘

=1

where only half the vertices are counted in the boundary sums. As usual, we set

LAl = (™, el = ()
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The shift operators S, ; are defined by

Silfq.f = fq:!:l.r

Siefar = forsr
with similar definitions in the three-dimensional case. The difference operators
Dy, D_;, Dy; are defined by :

D+i = (S+i - I)/h,
D_;= (I - 8-)/h,

;= Dy +D_)/2 = (S4s — S_:)/2h,

where T is the 1dent1ty D, D_; and D,; are respectively the forward, backward
and centered difference operators in the sth direction.

Let D and G denote respectively the discrete approximations to the operators
div and grad. Both D and G employ centered differences, i.e. for a vector u on & we
set Du = Dyju; and for a scalar function ¢ we set Gip = Doip. With these defini-
tions, the following identities can be readily verified:

) ~ (Du,e) =0,
where ¢ = 1 at all points of &, and
(5) (Du, ¢) + (u,G¢) =0

for all u and ¢. These are the analogues of the identities
/ divudr =0
Q

and

/ ¢ div udz + / u grad ¢dz = / div oudz = 0

which hold for smooth periodic functlons u and ¢ on Q. For u, ¢ perlodlc and three
“times continuously differentiable, we have - :

166 — grad ¢l = O®"),  [[Du — divu| = O®") .
We shall now discuss some consequences of our systematic use of centered differ-
ences. Let ¢ be a function on @, let z_, z,. be two points a distance 2k (modulo 1)
apart, and let zo be the point on the line joining z_ and z, and at a distance A from
each. One of the components of Gy at 2o is a linear combination of ¢, and y¥._; we
describe this situation by saying the z, and z_ are G-connected. We say that points
2, 2’ belong to the same G-chain if there exist points 2, 2s, - - +, 2, such that any two
successive points in the sequence
221,28, "y 2y 2 V

are G—connected Clearly €, is the union of some number L of d1s301nt G-chains. If
Niseven L = 1;if Nisodd L = 2% (Had we allowed the numbers of mesh-points in
the several space directions to differ from each other, we would have found that -
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L = 2% i between 0 and .) The following facts can now be verified: (i) when Go is
given, ¢ is determined only up to L arbitrary constants; and (ii) the sum on the
left-hand side of the identity (4) can be separated into L partial sums, each vanish-
ing separately. We refrain from assuming that N is even and L = 1 so that our dis-
cussion remain valid for the nonperiodic case where I 5% 1 for all N ; see the last
section of this paper.

We are now ready to prove the following discrete analogue of a well-known
decomposition theorem: -

TueorEM 1. Let u be a vector on O, satisfying the periodicity conditions; then there
exist @ unigque periodic vector u? and a periodic function ¢ such that

(6) Du” =0

@) - u=u’+ G¢
at all points of X, with

®) ®® G¢) =0.

Proof. If u” satisfying Eq. (6) exists, then Eq. (8) is clearly satisfied because
(uD7 G¢) = _(DuD; d’) = 0.

We already know that ¢ in Eq. (7) can be determined only up to L arbitrary
constants. To lift this indeterminacy we can impose L additional conditions; for
example, we can number the G-chains and require that

(9) Z(bz:O, 7::17"'7L;

where ) ; denotes summation over the ith G-chain.

The theorem is proved by verification of the Fredholm alternative. Let g be
the number of points in £,° and ¢» the number of points on %, (go + gs = NY).
There are go + ¢4/2 values of ¢ and l(go + q4/2) components of u? to determine.
Equation (6) represents (g0 4+ ¢4/2) equations related by the L identities (4), Le.
g0 + 93/2 — L independent equations. Equation (7) represents I(go 4+ g5/2) rela-
tions; together with Egs. (9) the number of equations equals the number of un-
knowns. ‘

Squaring (7) and using (8) we obtain

(10) lull® = [[u®)* + G|
Therefore, if u = 0, then u? = 0, G¢ = 0 and ¢ = 0; this proves the theorem.

Let H be the space of periodic vectors defined on O, let Hp be the subspace of
periodic vectors v such that Dv = 0, and let H¢ be the subspace of vectors of the
form G¢, ¢ periodic; Theorem 1 states that Hy and H p are orthogonal to each other,
and that H is their direct sum. Let P be the orthogonal projection projecting H on
Hp; (7) can be written in the form

u=Pu-+ Gg¢.

We obviously have for all u

(1) ' 1Pull < ]
P is the discrete analogue of @ (see Eq. (3)). Given u, it is a fairly simple matter to
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evaluate Pu; efficient methods for so doing were described in {2]. For the sake of
completeness, we exhibit a method for finding Pu which, albeit inefficient, has the
merit of simplicity. Consider the iteration system

wtl=u—-G¢" m=1,
" =¢" —0Dw™  mz1l, 6>0

where w™, ™, m = 1, are periodic and fis a parameter. It is readily verified that for
0 < 6 < h¥/l2, w™ converges to Pu as m increases for all initial guesses ¢'.

To conclude this section, we prove a number of inequalities which will be needed
in later sections. We start with a discrete analogue of the Poincaré inequality. Con-
sider the case I = 2. Let ¢ be a function defined on @, and let z = [p, ¢l, 2 = [P, ¢]
be two points on the ¢th G-chain; p’ = p + 2my, ¢ = ¢ + 2m,. We have,

m —1 mz—i

Yo'id' — ¥og = ; (Gi¥ pi1420,0- 2k + k_ZO (G)p’ o142 2h .

. Therefore

’ N—1 N—1 2
!‘»bp'.q' - ¢p,ql2 = 4[; IGI‘»&'k,qh + kz=:1 |G2§(’lp'.kh:l

N1 N—1
< 8[,; |G|t b + ?;1 |G2¢]§’.kh:|7

where the relation (N — 1) = 1 is used. We multiply both sides by A* and sum over
all [p, ¢ and [p’, ¢'] in the 7th G-chain, giving points on 3%, the weight 3, and obtain

IUEDMITEEED SUED M VNGRS DI M D WA
= 8 2 K|GylI" = 86y’

where Y ; denotes summation over the 7th G-chain.
Let N ; be the number of points in the ¢th G-chain. We have

N:iz N — 1)*/L > 3N°/L.
Therefore '

1
L

v
o

2

i

and

71: 2 W’ = 2(? ¢p,qh2>2 + 8liGyl”.

Summing over all G-chains we obtain
. P
(12) el = 2L 2 (Z wp,q%f) + ailleyl’,

where 1 = 8L A similar inequality can be derived in \the»t;hree—idimensional case, .
with C1 = 1212 The inequality (12) can now be used to prove the following theorem:
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THEOREM 2. Let u be g periodic vector defined on Q.. Then the Jollowing inequality
holds

(13) it — Pul < v/CyDu] |

where A/C is a constant independent of u and h.

Proof. By Theorem 1, u — Py = Goisin Hg. Let Gy be an arbitrary unit vector
in He, (IGY]| = 1). ¢ is determined only up to L arbitrary constants which can be
chosen so that :

Zilsbz% 0, i=1,--- L.

We have _ .

 (64,64) = (u— Pu, Gy) = (u, Gy) = —(Du, y) .
Hence, using (12), we obtain

(G, Gy)| = |(Du, ¥)| = |IDull |¥] = v/Ci|Dy] .

Since Gy is an arbitrary unit vector in Hg, (13) follows.

Solution of the Periodic Initial-Value Problem. In this section a scheme for
finding periodic solutions of Egs. (1) and (2) will be analyzed. The particular
scheme discussed has been singled out because it resembles schemes the author has
used in actual computation (see [2]); it will be evident that the analysis applies to
wide classes of schemes. We shall again simplify notations by writing the equations
~ for the two-dimensional case; the scheme as well as the proofs generalize to the

three~dimensional case without further ado.

Let u, with eomponents %3, be the computed velocity, let = be the computed
pressure, and let & be the time step. We write

u" = unk), T = x(nk), ete.

At the time ¢ = 0 a periodic velocity field u® is assumed given. (More will be said
later about the proper choice of u’.) Given u*, u*H is evaluated in three fractional

steps: :

(14a) u M = Ui — ku" Do T kD D_ju 17
(14b) uin+2/3 = uin+l g kuanozuinH/s + kD+2D_2u. in+2/3
(14¢) u™ = PP 4 kg ‘

with um+/3 un+2/3 perigdie,
Equations (14a) and (14b) can be rewritten in the form

(15a) T = R ut <
(15b) (I — kQy(u™)u™?" — yn+i5 7

' where Q,(u"), @2(u~), are linear operators dependent on the parameters Wiz
Equation (14¢) can be rewritten in the form

(15¢) u"“‘-}’-’ka":H = gt + kEﬂ-H' (Du™ = 0)
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which defines ="+, the computéd pressure at the time (n 4 1)k. (u=+2/3 corresponds
to u**= in the notations of 1] and [2].) It can be seen that the vector (u 128 — un)/fl
approx1mates Fu and that Eq. (14¢) which i is equivalent to ‘

@ = u)/k = P{@™**" — u")/k+ B}

is the discrete analogue of Eq (3). >
' The task now at hand is to prove that un1/3, u=+2/8 y=~H exist, i.e. that the
operators (I — kQ.(u)) are invertible when u? is chosen appropriately, and that the
vectors u™ converge to the solution v(nk) of Egs. (1) and (2). We start by showing
that Eqgs. (14) are consistent with Eqs. (1) and (2); this is the content of the follow-
ing lemma.:

Lemma 1. Let k = O(h?), and assume that Eqgs. (1) and (2) have a periodic solution
v, p, which has continuous derivatives up to order five in the interval 0 < t < T. Then
there extst two times continuously differentiable vectors w», w3 wnta/s O=nk<T
such that

(16a) (I = QW))W = w" + 0%,

(16b) (I = kQ2(w))w™H*" = w1 0(k?) ,

(16¢) W= P(w" 4 kB 4+ 0 |
with :

(17) ' v — w*[| = O(k) .

Proof. We simply construct the required functions. We have

2

Dv" = div v* + Z aﬁ3v5"+0(h)

Therefore, putting

. -
(18) wg' = vg" — g' dsws" B =1, .-, 1 (nosummation over 6)

we obtam Dw* = O(h*) = O(k?). Equatlon (17) is clearly satisfied, and by Theorem 2

(19) : - Wt — Pw"| = O(kY) .

We now put v ’
Win+l/3 — ,w. — kazz 1 -+ kvznazviﬂ'_’-l -+ kaipn+l — kEin+l
w] n+2/3 - wln-{—l + ka ]CE 7l+1

Equatlons (16a) and (16b) are clearly satlsﬁed and since
. Gp = gradp+ O(4") = grad p + O(k)
we have
Pk grad p) = O(k%) .

-On the other hand, it can always be assumed that div E = 0. (Since adding a
gradient to E merely changes the definition of p; see e. g. [7]), and therefore by
Theorem 2
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[kE — kPE|| < \/C\k||DE|| = 0% .

These equations, together with Eq. (19) show that (16¢) is satisfied, and the lemma,
is proved. ‘

We shall use w» as a comparison vector, i.e. we shall prove that lu* — wo| is
small, and use (17) at the end of the argument to show that |[u* — v is small. The
lemma assumes that v has continuous derivatives up to order five. Had we assumed _
the existence of only four continuous derivatives, the error term in (16¢) would
have been of order kh. This is sufficient for convergence ; however, the proof becomes
somewhat more complicated and we shall be content with the assumption of the
- lemma,

We now introduce a second norm, the discrete maximum norm, defined for

scalar functions ¢ by

|¢]lmax = féaéf [
and for vectors u by

[0]lmex = m?,x |77 F—

We have .

LovMA 2. ([¢]lane < 5228, [tlmex < H22)fu].

The proof is obvious from the definitions. This lemma, is crucial to the sequel
since, as we shall see, it implies that if u converges to v with sufficient accuracy in
the L, norm, then u also converges to v in the maximum norm.

Lemma 3. Let [t"lmax < K, and let k be smail enough for the inequality LK>/4 < 1
to hold. Equations (14a) and (14b) can then be uniquely solved for ur+1 3, unt2/3,

Proof. Multiplying (14a) by u,**1/3 we obtain

a3 = — k(i Do)
+ k(uss DDy 1%
S ' + (ud uin+1>/3),
however, we have
(Uz-"fl/a, DiyD_jH ) = _”D~i'—luin+1/3”2

@, Dot )] 5 e [ Do)

On the other hand, Dy, = 3(D41 + D_,), therefore

.’,’Dmui""‘l/:"” < %(”D+1uin+1/3” + “D—Iuin+1,3”) — HD+1u,-n+”3N
and
,k(’ltin+l/3, ulnDOIuin+1/3)l é K]C,’?J,in+l/3’, ”D+luin+1/3”
= k|| D) K’k /4) w72
-and hence '

| 20) | Hu{‘ff”l-l(l - ’—f—) =< e




APPROXIMATIONS TO THE NAVIER-STOKZRS EQUATIONS 349

The existence and uniqueness of u;7+1/3 follow by the Fredholm alternative. The -
existence and uniqueness of «;***/® are established in the same way.

LemMa 4. Let |[u™||lmax < K, and let k be small enough for the inequality kK2 < 1
to hold; then, if k = O(h?), we have

1) W S BRI — ¥ 4+ e

where Cy is a constant, and C2(K) is a constant whose magnitude depends on K.
- Proof. Subtracting (14a) from (16a) we obtain

Catlfd 1/3 1/3
u;"“/s e 'Win+ = — ku1nD01(ui"+ " win+ /) - k(uln - wlﬂ)Do1w;n+1/3
173 1/3 72
+ kDD (ui P — w My 1+ o) .

Multiplication by u;"*/ — 1;**1/3 and manipulations similar to those in the proof
of Lemma 3 yield

n+1/3 _  ntl/3 sz _ 2
e = w1 = 55) & Jof = 0@+ 1) + 06,

where

1/3
M, = max max max |d,w;""'"?| .
T =T Q@

Similarly, we obtain

- 2 k
”’U, n+2/3 — ll)in+2/3”(1 _ %) § ”uinji-llii . win+1/8” + kMz"'uin . w;l“ + 0(k2) ,
where

2/3
M, = max max max |d.w;" "’
t 0T Q

and hence
[ — W < (1 + RCED) o = W + OGY
where C3(K) depends on K. Finally : _
™ — W = P — w0

and, therefore, using (11)

| ™ = W = [ — w4 O

< (1 + kCo(K)u* — w| + Cskh’

and the lemma is proved.

Let u® be the initial value of u, for use in Eqs. (14). We assume that
(22). [u® — W = Ca?.

This can he achieved for example by putting u® = v°. Let W be defined by

W max max max (Wi .
i 05T Q0
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Let C be the largest of C's, Cy and C2(2W). Assume k is so small that k¢ < < 1 and
that 4 is smaller than &y, where

max (C, Da PP =3 e, <.
Equation (22) and Lemma 2 then show that
[0nax < W+ 3 W < 2,

By Lemma 3 u! exists and by Lemma 4 we have [ju! — w < (1 + Ck)Ch? + Ckhe.
Therefore

o — W' max < 5 1+ Cyw + Zi'kW S WKW, [t < 2W,

and we can evaluate u?. In general we have n _

(2;3); o™ — W™l < (1 + Ck)y™"'CR? + 1 + A+ Ck) + -+ + (1 + Ck)"|CkR?
< 265 max (€, 1)k

and |

24) 0™ — WM < WS t= (n+ k).

Let Ty be defined by exp CT, = 1/eandlet 7'y = min (7, T'). Inequality (24) shows
that for 0 < ¢ < Ty, [[uflmex < 2W and hence for 0 = nk < Ty, u™ exists and

(253) ”u"’H _ W"‘H” < 2max (C, l)eCthz '
as well as
(25b) [ = W™ lax < 2max (€, 1)eS R0

If 71 < T, ie. if the inequalities (25) hold for a time interval shorter than the
time interval for which the solution of the differential equations has five bounded
derivatives and for which a numerical solution is required, the above process can
- be restarted at ¢ = 7', to yield convergence for the whole finite interval 0 < ¢t < 7.

Bearing in mind the definition of w and Eq. (17), we obtain the following
theorem: ‘ '

THEOREM 3. Let Egs. (1) and (2) have a periodic solution with continuous deriva-
tives up to order five for 0 St T. Letk = O(h?); if Jud — w0, k and h are sufficiently
small, Eqs. (14) have o unique solution which converges to the solution of (1) and (2) in
both the Ls and mazimum norms. The error in the Ly norm is of order h? ; the error in the
mazximum norm is bounded by O(h) in the two-dimensional case and by O(+\/h) in the
three-dimensional case. _ :

Theorem. 3 and its proof can be summarized as follows: Let u,”, w," be vector
functions defined for z in @, and for n such that 0 < nk < T; introduce the “space-

time” maximum and L; norms

”u”max,T1 = max ”un”ma.\-
- 0=nk<Ty
lullzy = max fu")j.
) 0=nk<Ty . -

The équatidns-v. -
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(I = kQu(o™)um™ =y,
([ __ sz((’)n) )un+2/3 — un+1/3 ,
. un+l = P(un+2/3_+ kEn-{-l) ,
- u’ given ,
define a mapping & — u. This mapping maps the maximum norm sphere
|o/lmex,r, = 2”“’”@lmﬁ

into the L, norm sphere

I — Wiz, < [Wllmaxri 2.

For [ju® — wY|, k£ and h sufficiently small, this mapping has a unique fixed point

which is the solution of (14) and lies close to v, the solution of (1) and (2).

In our analysis we have neglected the effect of round-off error and of the er-
rors arising from the possibly incomplete iterative evaluation of urtl =
P(um2 - pE~1). It is obvious, however, that the analysis remains valid if the
round-off errors are of order k? and provided u™+ is approximated by a vector
(u™)* such that D(ur+)* = .O(k?). Furthermore, in the dimensionléss variables
used in this paper the effect of the Reynolds number R on the error is not in evi-
dence. Clearly C' depends on R and increases as B increases; i.e. as R increases k and
h have to be reduced for accuracy to be preserved. Finally, it is clear that the results
of this section apply to certain other quasi-linear equations besides the Navier-
Stokes equations, provided the boundary conditions are homogeneous. In this sense,
our results generalize the work of M. Lees (see e.g. [8]), who considered equations
with nonlinear terms of a simpler nature.

The Mixed Initial Value-Boundary Value Problem. The main interest of methods
such as those considered in this paper lies in their applicability to mixed initial
value-boundary value problems. Schemes similar to (14) have been successfully
applied by the author to a variety of such problems (see. e.g. [2]). The convergence
proof however, becomes considerably more difficult in the presence of boundaries.

- Consider in particular the problem of solving 'Eqs. (1) and (2) in a domain Q,

+“with v° given and with the ‘bbuhdéry condition

,,,(26),: e o .w=0 ondQ.

Operators D and G can be constructed so that the identities (4) and (5) are satisfied
and Theorems 1 and 2 hold. D and G thus constructed employ centered differences
except on dQ. On 9Q one-sided first-order diffépences are used whenever the use of
centered differences would require functional values at points outside Q. The pro-
jection P associated with G and D is orthogonal in the space of functions satisfying
(26). The proofs of all these statements take into account the fact that the number
of G-chains is 2! independently of the number of points in the mesh.

Difficulties arise, however, when one approaches the convergence proof proper.
It is clear from the proof of Lemma 1 of the last section that, were one to use
schemes such as (14), one would have to impose on u®t%:y~+2 inhomogeneous
boundary conditions of the form
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n

(27a) u™? = kGr™ on o
(27b) W™ = G on o,

where 7* is the pressure computed at time ¢ = nk. Such a procedure has indeed been
followed in practice. Unfortunately, in the presence of inhomogeneous boundary
conditions the author has not been able to establish the analogues of Lemmas 3 and
4. Moreover, the construction of w in Lemma 1 does not carry over to the present
problem, since w, as given in the last section, does not satisfy the imposed boundary
conditions. Both difficulties stem from the fact that in the presence of boundaries
the operators P and V2 (linear part of §) do not commute. This is reminiscent of
other situations in numerical analysis where the noncommutativity of certain
operators hinders the analysis of fractlonal—step methods without detracting from
their practical usefulness.

It is nevertheless possible to develop schemes for which convergence in the L,
norm can be established. As an example cons1der the followmg scheme with two

fractional steps:

(28a) ul =l —k % {3(S4s+ S-p) (ua Dogui %)
+ DigD_pui*'?} inQ,°

(28b) W ”? =0 onow
(28c) ut = P 4 KE™Y) .
It is clear the homogeneous boundary condition (28b) contains an error of order k.

However, since the number of mesh-points on the boundary is O(k) times the num-

ber of mesh-points in the whole domain, some accuracy in the L; norm will be pre-
served. We shall indicate how one can establish that in the I, norm the solution of
(28) converges to the solution of the Navier-Stokes equations which satisfies the
correct boundary conditions. u”, as given by (28), therefore assumes the imposed
boundary conditions in a weak sense. It is clear that the estimates we shall derive
will not do justice to the accuracy of the method.

One can verify the following identity '

( Z (S+B + S_p) (uﬂ"boaf ))

whlch holds for all f prov1ded Du = 0in @, and u = 0 on the bounda,ry This of
course is a discrete analogue of the identity f ofu;9;fdr = 0, which holds whenever
divu = 0inQandu = 0 on the boundary. Usmg this 1dent1ty we can establish the

following inequalities:’
ll "“’2!! Hu”ll
and
™ = HU"H + kHPE"“H

= [ I+ % Z ; IPE° I

If we assume that Eqs ( 1) and: (2) have a solution v Wlth contmuous derivatives
"up to order four, this inequality can be used to show that if & = O(h?)
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(29) [[u* — v"|| < constant v/h 0snk=T.

For two-dimensional problems one can replace (28a) by an explicit scheme (which
does not require intermediate boundary data such as (28b)). For small enough
Reynolds number and provided & < h*/4 one can then derive an estlmate similar to
(29). Furthermore, the scheme (28) can be modified so that a ‘convergence proof of
the Krzywxckl-Ladyzhenskaya type. becomes possible. '

Since neither the scheme (28) nor its modifications are of any particular practical
significance, details and proofs are omitted. (It should be pointed out however,
that the system of linear equations (28a) can be solved by successive relaxation,
provided the relaxation factor w is sufficiently small. For proof see [9].)

In ending, the author would like to make some comments on the preceding
proofs. First of all, he would like to state his belief that the value of a scheme such
as (14) lies in its practlcal usefulness not in the poss1ble existence of a convergence
proof. The value of the convergence proofs lies in the fact that they contribute to
the understanding of the numerical processes performed on the computer.

The proof of this paper requires the existence of four or five continuous deriva-
tives of v and p. Furthermore, the error increases as the bounds on the required
derivatives increase. This situation is inherent in the very nature of difference
schemes; as a result, it is highly improbable that a flow containing a strong cascade
process, i.e. a process in which energy is transferred from large to small eddies,
can be adequately described by a difference method, for indeed, such flows are
characterized by rapid increase in the higher derivatives. This of course excludes
turbulence from the range of application of difference methods.

Finally, it has been claimed by several authors that the nonlinear terms in the
Navier-Stokes equations must always be cast in “conservation law” form, i.e. in a
form which implies the existence of identities for the momentum similar in appear-
ance to those which hold for the solutions of the differential equations. The author
knows of no good reason for following this procedure in problems with a smooth
solution and has not endeavored to do so.
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