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The Economist’s View of Combinatorial Games

ELWYN BERLEKAMP

Abstract. We introduce two equivalent methodologies for defining and
computing a position’s mean (value of playing Black rather than White) and
temperature (value of next move). Both methodologies apply in more gen-
erality than the classical one. The first, following the notion of a free mar-
ket, relies on the transfer of a “tax” between players, determined by contin-
uous competitive auctions. The second relies on a generalized thermograph,
which reduces to the classical thermograph when the game is loop-free.

When a sum of games is played optimally according the economic rules
described, the mean (which is additive) and the temperature determine the
final score precisely.

This framework extends and refines several classical notions. Thus,
finite games that are numbers in Conway’s sense are now seen to have
negative natural temperatures. All games can now be viewed as terminating
naturally with integer scores when the temperature reaches −1.

Introduction

At every position of a game such as Go or Domineering, there are two very

important questions:

Who is ahead, and by how much?

How big is the next move?

Following Conway [1976], classical abstract combinatorial game theorists an-

swer these questions with a value and an incentive, as discussed inWinningWays

[Berlekamp et al. 1982]. These answers are precisely correct when the objective

of the game is to get the last legal move. Values and incentives are themselves

games, and can quickly become complicated.

Our ideal economist takes a different view. Following Hanner [1959] and Mil-

nor [1953], he views the game as a contest to accumulate points, which can even-

tually be converted into cash. Our modern economist monetarizes the answers to

our opening two questions into prices—real numbers that can be determined by

competitive, free-market auctions. Specifically, after two gurus have completed

their studies of a position, the economist might ask each to submit a sealed bid,

representing the amount the guru is willing to pay in order to play Black. The

bid may be any real number, including a negative one (if the position favors

White). Assuming the bids differ, the referee computes their average µ. The
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player with the higher bid plays Left (= Black), in return for which he pays µ

dollars to his opponent. The player with the lower bid plays Right (= White).

Each player is necessarily happy with this assignment, since it is no worse for

him than the bid he submitted.

For mnemonic purposes, the reader should think of µ as the market value.

Later, we shall see that it can also be interpreted as the mean value, or, in

thermography, as the mast value.

Our ideal economist also uses competitive auctions to determine the sizes of

the moves. Throughout the game, the economist requires that each move made

by either player must be accompanied by a fee or “tax”, which the mover must

pay to his opponent. At the beginning of the game, the tax rate is determined by

a competitive auction. Each player submits a sealed bid. The bids are opened,

and the higher one becomes the new tax rate. The player making this bid makes

the first play at the new tax rate. Then, at each turn, a player may elect to either

• pay the current tax (to his opponent) and play a move on the board, or

• pass at the current tax rate.

After two consecutive passes at the current tax rate, a new auction is held to

restart the game at a new and lower tax rate. Legal bids must be strictly less

than the prior tax rate. There is also a minimum legal bid, tmin. A player

unwilling to submit a bid ≥ tmin may pass the auction. The game ceases when

both players pass the auction.

If the players submit equal bids, the referee may let an arbitrator decide

who moves next. The arbitrator is disreputable: Each player suspects that the

arbitrator may be working in collusion with his opponent. Alternatively, when

there are equal bids for the tax rate, the referee may require that the next move

be made by the player who did not make the prior move. In this way, the referee,

at his sole discretion, can implement a “preference for alternating moves”.

In some traditional games, including Japanese Go, the minimum tax rate

tmin is defined as 0. When the game stops, the score is tallied according to the

position of the board, and the corresponding final payment of “score” is made.

This “score” payment is added to the tax payments that the players have paid

each other, and to the payment(s) to buy the more desirable color(s) initially.

Since all payments are zero-sum, one player’s net gain is his opponent’s net loss.

The player who realizes an overall net gain is the winner. In Economic games,

a tied outcome occurs whenever each player’s total net cumulative payment to

his opponent is zero.

For Winning Ways–style games, which include mathematical play on “num-

bers” beyond the conventional mathematical “stopping positions”, tmin is defined

to be −1. The minimum tax rate can also be defined as−1 for some non-Japanese

versions of Go rules.

When such a game ceases, no score remains on the board: the outcome de-

pends entirely on the net cumulative total of payments made between the players.
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1. A Demonstration Game

We now hold a demonstration using the Economist’s Rules. The players are

Yonghoan Kim and David Wolfe.

The referee, EB, gives each player $5 initial capital, and they get change at

the bank, in cash and chips valued as follows:

$5, $1 = US notes

Q = US quarter

G = green chip, worth 1/4 of a unit, now set at $1

Y = yellow chip, worth 1/16 of a unit

The game they will play is the sum of a Go

region and a Domineering region. The starting

position of the Domineering region is the empty

4×9 board. The starting position of the Go region

is shown on the right.

We begin by holding three concurrent auctions. Each player submits one bid

for the Vertical dominoes, another for the Black Go stones, and a third for the

first move on the sum of both games. All sealed bids are opened concurrently.

Here are the results of our demonstration auction:

YK average DW result

Go Black −2 1
4 −2 −1 3

4 DW plays Black (Left)

Domineering Vertical 1 1
2 1 1

2 DW plays Horizontal (Right)

First Move 1 1
4 1 1

2 1 3
4 DW moves first

For consistency, we decide to negate the Go board so that sides played by YK

and DW in each game match our conventional uses of Left and Right, respec-

tively. This is achieved by reversing all colors in the Go position. Here are the

auction results restated in terms of −Go:

YK average DW result

−Go Black 2 1
4 2 1 3

4 YK plays Left

Domineering Vertical 1 1
2 1 1

2 YK plays Left

First Move 1 1
4 1 1

2 1 3
4 DW moves first

The following payments are then made:

YK pays DW $2 in cash to play Left (Black) on −Go

YK pays DW $1 in cash to play Left (Vertical) on Domineering

DW pays YK $1.50 in order to make the first move.1

1In order to pay the tax for the first move, DW first gets change from YK: $1 for
1Q + 2G + 4Y. He then puts $1.50 worth of chips (4G + 8Y) onto the table for YK.
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1.1. Erdős’ Book. The mathematician Paul Erdős frequently mentions “The

Book”, a supernatural reference document that contains all mathematical truths

in their most revealing forms. To expedite the remainder of this demonstration,

we allow the participants and ourselves to peek into The Book. Figure 1 expresses
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Figure 1. Book starting values.

(albeit in perhaps unfamiliar symbols) the Book values for the two starting posi-

tions. The values also contain more information than we need to play optimally

according to the Economist’s Rules. In addition to a single good move for each

player at the current tax rate, for each position we need only its fair market

value, µ, and one of its fair tax rates, t (also called the “temperature”). These

values are shown on the bottom line of Figure 1.

The remainder of our demonstration will illustrate how players able to peek

into The Book can play optimally by following a few very simple common-sense

rules, based on two important facts:

• The value of playing Left in any region is µ.

• Although the “size of a move” in any region is not necessarily unique, it may

always safely be taken as the temperature of that region.

The Book Strategy is as follows:

0. Initially, bid µ for the privilege of playing Left.

1. At every stage of play, define the global temperature of the game as the

maximum of the temperatures of its regions. If it is your turn, proceed as

follows:

(a) If opponent’s prior move has created a region whose temperature exceeds

the current tax rate, respond by playing in the same region as the opponent’s

prior move.

(b) Otherwise, if the temperature of the game is at least as large as the current

tax rate, play in a region of maximum temperature.

(c) If the tax rate exceeds the maximum regional temperature, pass. If you

have any canonical move(s), bid the maximum regional temperature.
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The strategy is designed to answer directly this fundamental question:

Should I respond locally to my opponent’s prior move?

Restated in Go jargon, that same question becomes

Does my opponent’s prior move have sente?

Since the Book Strategy focuses on this question, it is also called Sentestrat.

After the demonstration, we will discuss how Sentestrat compares with two other

strategies, Hotstrat and Thermostrat.

Once Yonghoan Kim and David Wolfe obtain access to The Book, each of

them elects to follow the Book Strategy.

1

µ = 9
16 t = 1 1

16 µ = 3
4 t = 1 1

8

2

µ = 9
16 t = 1 1

16 µ = 1 7
8 t = 1 1

8

Figure 2. The demonstration game: moves 1 and 2 played according to The Book.

DW begins playing a White Go stone in the center of the bottom row. This

is shown as move 1 in Figure 2. The cost of this move was $1.50, as determined

by the initial auction. According to The Book, that bid was a slight error; the

true Book value of the initial temperature was 1 15
32 . However, White’s move 1

has lowered the temperature of the Go region to 1 1
16 . The Domineering region

has temperature 1 1
8 , which is larger. So, now that they are able to reference The

Book, after move 1, both players decline to play at a tax rate of $1.50. Instead,

they both bid $1.125.

Since the bids are tied, the play alternates, and YK is selected to play move 2

at a cost of $1.125. Since this is less than the $1.50 worth of chips he has on

the table, YK pockets $0.375 of these chips, and moves the rest of the chips

back to DW in payment of the tax on move 2. YK plays move 2 as the Vertical

domino shown. According to The Book, this $1.125 move has increased µ for

the Domineering region from 3
4 to 1 7

8 , but it has not changed the temperature,
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3

µ = 9
16 t = 1 1

16 µ = 11
16 t = 1 3

16

4

µ = 9
16 t = 1 1

16 µ = 1 7
8 t = 1 1

8

5

µ = 9
16 t = 1 1

16 µ = 3
4 t = 1

Figure 3. Book play, moves 3–5.

which remains 1 1
8 . So DW is willing to play at the current tax rate of $1.125,

even though that requires him to give all of the chips on the table back to YK.

DW plays move 3 as the Horizontal domino shown in Figure 3. According to

The Book, this move has changed µ for the Domineering region from 1 7
8 to 11

16 ,

a net decrease of 1 3
16 = $1.1875. As this exceeds the $1.125 that Right paid for

the move, Right may appear to have gained $0.0625 at move 3. However, this

apparent gain is ephemeral, because the move also increased the temperature

to 1 3
16 , which exceeds the current tax rate of 1 1

8 . Therefore, following move 3,

YK is eager to play move 4, because it is now possible for him to play so as to

gain 1 3
16 at a cost of only 1 1

8 . The tax on move 4 returns all of the chips on

the table to DW, changes µ to 1 7
8 , and lowers the temperature back to 1 1

8 . DW

then returns all of the chips on the table back to YK, and plays move 5. This

lowers µ back to 3
4 .

The careful observer will notice that the four-move sequence 2–5 had no net

effect on µ. And, although $1.125 worth of chips moved back and forth across

the table several times, after move 5 they all ended up back where they were

after move 1.

After move 5, The Book reveals that the Domineering temperature is 1, which

is now less than the Go temperature of 1 1
16 . So both players then elect to pass
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6

µ = 1 5
8 t = 7

8 µ = 3
4 t = 1

7

µ = 1 5
8 t = 7

8 µ = − 1
4 t = 1

8

µ = 1 5
8 t = 7

8 µ = 7
8 t = 1 1

8

Figure 4. Book play, moves 6–8.

at the tax rate of 1 1
8 . The referee holds a new auction to determine who will

move next, and both players bid 1 1
16 . Because his opponent made the last move

at the old tax rate, YK pockets chips worth 1
16 , leaving chips worth 1 1

16 on his

side of the table. Since the auction was tied, the referee adopts the alternating

move convention and assigns the next move to YK, who pays the new tax rate by

moving all of the $1.0625 worth of chips on the table to DW as he plays move 6

on the Go position, as shown in Figure 4. According to The Book, move 6

increases the local µ to 9
16 + 1 1

16 = 1 5
8 , and decreases the Go temperature to

7
8 . The Domineering region is now the hottest game, with temperature t = 1.

As the old tax rate was 1 1
16 , both players elect to pass and bid t = 1. DW

pockets chips worth 1
16 , because his opponent made the last move at the old

tax rate. The value of the chips on the table is then $1, on DW’s side. The

referee assigns the next move to DW, who pays the chips back to YK and plays

move 7, followed by YK’s move 8 and DW’s move 9 (in Figure 5). The net

effect of the three-move sequence 7–9 was a payment of $1 of chips from DW

to YK, in return for a $1 change in the value of the Domineering µ in DW’s

favor.

After move 9, both players pass and bid 7
8 . The tax rate decreases by 1

8 , which

YK pockets, leaving $0.875 worth of chips on the table. These remaining chips
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9

µ = 1 5
8 t = 7

8 µ = − 1
4 t = 3

4

10

µ = 2 1
2 t = 1

2 µ = − 1
4 t = 3

4

11

µ = 2 1
2 t = 1

2 µ = −1 t = − 1
2

12

µ = 3 t = 0 µ = −1 t = − 1
2

Figure 5. Book play, moves 9–12.

are transferred to DW as YK plays move 10. This move increases the Go value

of µ by the same amount as the tax paid, 2 1
2 − 1 5

8 = 7
8 .

After move 10, both players pass and bid 3
4 . The tax rate decreases by 1

8 ,

which DW pockets, leaving $0.75 worth of chips on the table. These remaining

chips are transferred to YK as DW plays move 11 on the Domineering board.

This move decreases the Domineering value of µ by the same amount as the tax

paid, −1− (− 1
4 ) = − 3

4 .

After move 11, both players pass and bid 1
2 . The tax rate decreases by 1

4 ,

which YK pockets, leaving $0.50 worth of chips on the table. These remaining

chips are transferred to DW as YK plays move 12 on the Go board. This move

has the effect of increasing the Go value of µ by the same amount as the tax

paid, 3− 2 1
2 = 1

2 .
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13

µ = 3 t = 0 µ = −1 t = − 1
2

14

µ = 3 t = −1 µ = −1 t = − 1
2

15

µ = 3 t = −1 µ = − 1
2 t = − 1

2

16

µ = 3 t = −1 µ = −1 t = −1

Figure 6. Book play, moves 13–16.

According to The Book, after move 12, the temperature of the Go region is

0 and the temperature of the Domineering region is − 1
2 . So both players pass

at the tax rate of 1
2 , and submit bids of 0 for the new tax rate. DW pockets all

$0.50 worth of chips on the table. The new tax rate is now 0, which equals the

value of the chips on the table.

DW plays move 13 in Figure 6, which is the first move at the tax rate of 0.

YK responds with move 14, at the same tax rate of 0.

After move 14, The Book reveals that both the Go position and the Domi-

neering position have negative temperatures. So both players would prefer not

to play. In fact, neither will play unless his opponent pays him to move! So

each player bids −$0.50. This means that neither player will move unless his

opponent pays him $0.50. The new tax rate is negative! So DW collects $0.50
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17

µ = 3 t = −1 µ = 0 t = −1

18

µ = 3 t = −1 µ = −1 t = −1

19

µ = 3 t = −1 µ = 0 t = −1

20

µ = 3 t = −1 µ = −1 t = −1

Figure 7. Book play on more integers, moves 17–20.

in cash from YK as he plays move 15. But YK responds with move 16, in return

for which he gets his $0.50 back.

After move 16, The Book reveals that both positions have temperature equal

to negative one. Both players pass at the tax rate of − 1
2 , and submit bids of −1

to set the new tax rate.

DW collects $1 cash from YK for move 17 in Figure 7, but YK collects it back

for move 18. The players continue to “cash in” their positions, at the rate of

$1/move, on moves 19 and 20 in Figure 7, then 21, 22, and 23 in Figure 8.

According to Japanese-style Go rules, the play ceases after move 23. The Go

position is scored as +3 points for Black, and White is required to play Black

$3 to settle this score.

According to the mathematized (Universalist) Go rules, the game continues

after move 23. White submits no bid. Black submits the minimum bid that the
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21

µ = 3 t = −1 µ = 0 t = −1

22

µ = 3 t = −1 µ = −1 t = −1

23

µ = 3 t = −1 µ = 0

Figure 8. Book play on more integers, moves 21–23.

rules allow, which is −1. So Black wins the right to play at a tax rate of −1. In

Figure 9, he plays move 24 as a Black Go stone in the middle of the three empty

spaces, and collects $1. (According to Universalist Go rules, the Black Go stones

are now “immortal”, and cannot be captured even if Black fills in both of the

visible eyes.)

Again, White passes and submits no bid. So Black again submits the minimum

allowable bid of −1, and plays move 25 as another Black Go stone, for which

he again collects $1 from White. Again White has no option but to pass and

submit no bid. Black again submits the minimum allowable bid of −1, wins the

auction, and plays move 26 as another Black Go stone, for which he collects his

final $1 from White.

24 25

26

µ = 2 t = −1 µ = 1 t = −1 µ = 0

Figure 9. Book play on integers remaining after move 23.
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After move 26, both players pass. Neither player has any remaining legal

move, so neither can bid. The game finally ends, and our demonstration is

concluded.

1.2. Theorem: Book Play Ensures No Monetary Loss. After the initial

auction has determined who plays Left and who plays Right, then either player

may elect to use the Book Strategy to select his subsequent tax rate bids and

plays. The following theorem asserts that this strategy is optimal for games

played according to the Economist’s Rules:

Theorem. If Left plays Book Strategy , she ensures a total net gain of at least

µ dollars . If Right plays Book Strategy , he ensures that Left’s total net gain will

be at most µ dollars .

2. Thermography

Thermography may be viewed as a methodology for deriving the Book values

of µ and t. Classical thermography for loopfree games is presented in [Conway

1976] and Winning Ways. In this paper, we present an extended version of this

methodology, which also handles loopy Go positions called kos. To this end, we

must first extend the Economist’s Rules to deal with kos.

2.1. The Economist’s Ko Rules. The game of Go includes some loopy posi-

tions. By far the most common such positions are 2-cycle loops. Locally, White

captures a stone, Black captures it back, then White again captures Black’s

stone, etc. These positions are called kos. All popular dialects of Go rules pro-

hibit such loopiness, by banning the immediate recapture of a single stone if it

would return the board to the same position it reached after mover’s prior turn.

The extension of thermography to cover kos is facilitated by the following

extensions of the Economist’s Rules:

For each region of the game, a specified player is designated as the local

Komaster. In principle, the privilege of being Komaster might be determined by

local auctions, held before the play begins. If the global game contains several

regions with potential kos, then it is quite possible for Left to be Komaster of

some regions, and Right to be Komaster of others. (These rules do not attempt to

model positions such as the classical triple ko, in which multiple interdependent

kos appear within a single region.)

According to the Economist’s Rules, kos are resolved by overruling the pref-

erence for alternating moves. Any move that repeats an overall game position

is allowed. If the mover is not the Komaster of the region wherein the move is

made, there are no further restrictions. However, if the local Komaster makes a

move that repeats the global board position (and, necessarily, the local regional

position), I call this local ko position critical. The Komaster, who just moved to

the critical ko position, is compelled to make another local move immediately.
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This rule for resolving ko overrides the referee’s normal preference for alternating

moves. Instead, the Komaster makes two moves consecutively, to and from the

critical ko position, and the Komaster pays two taxes (at the same tax rate),

one tax for each move.

2.2. Bottom-Up Thermography. As mentioned earlier, thermography may

be viewed as a methodology for calculating the book values, µ and t. The version

we now present handles kos. It also gives the classical results in the special case

of loopfree games.

Trajectories. We call the basic data structure of thermography a trajectory.

A trajectory is a piecewise linear real function of a real variable. Its input ar-

gument, t, is called the temperature, or the tax rate, and can range from 0 to

+∞ (or from −1 to +∞, according to the extension made in Section 4.2.) The

trajectory’s output value is a real number, called v or µ. Within each linear

piece of the trajectory, the value of the derivative dv/dt is constant and equal

to an integer. In elementary calculus, it is conventional to plot the independent

variable on the horizontal axis and the dependent variable on the vertical axis.

However, in thermography it is conventional to rotate the conventional calcu-

lus plots counterclockwise by 90◦, in conformity with a long-standing tradition

introduced by Conway. The temperature, t, is plotted along the vertical axis,

with increasing values of t corresponding to higher positions along the axis. The

value, v, is plotted along the horizontal axis, with the convention that increasing

positive values are plotted to the Left; large negative values, to the Right. This

facilitates a more direct correspondence with the formal expressions for most hot

games, in which Left moves toward more positive values and Right moves toward

more negative values.

A thermograph is a pair of trajectories, called stops or scores or walls. In

this exposition, we use the term “wall”. The Left wall, LW, is always at least as

great as the Right wall, RW.

Scaffolds, Hills, and Caves. The final stages of the construction of a ther-

mograph begin with another pair of trajectories LS and RS, called scaffolds

(Figure 10, left). In the most general case, the Left and Right scaffolds might

cross several times. A temperature interval in which the Left scaffold exceeds

the Right scaffold is a hill, or solid region. A temperature interval in which the

Right scaffold exceeds the Left scaffold is a cave, or gaseous region. Within a

hill, the Left wall equals the Left scaffold and the Right wall equals the Right

scaffold. However, within a cave, the Left and Right walls coincide in a local

trajectory called the mast.

The lowest region of a nondegenerate Thermograph is necessarily a hill. The

interval along the v-axis, or “ground”, between the walls of this hill is the base

of the hill. The point at which the two scaffolds cross at the top of the hill is

both the summit of the hill and the drain of the cave above it. If the scaffolds
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hill

cave

hill

(degenerate)
cave

LS

LS

RS

R
S

LW
RW

LW
RW

Figure 10. Scaffolds (left), and the thermograph constructed therefrom (right).

cross again at the top of the cave, that point is called the chimney of the cave,

and the fulcrum of the hill above it.

Normal Masts. Within any cave, the normal mast can be easily constructed

by following the path of an ideal balloon from the drain to the chimney. When

free to do so, the balloon rises vertically. If it hits a scaffold, the balloon follows

that roof scaffold upward until it is either again free to rise vertically or until

it reaches the chimney, at which point the mast ends and the Left and Right

walls again become different, starting at the fulcrum of the adjacent hill. This is

shown on the right in Figure 10. Moving upward from t = 0, this thermograph

has a hill, a cave, another hill, and then an infinite gaseous region (a degenerate

cave) through which the mast rises vertically to infinity. All hot games have

thermographs with a hill at t = 0 and a vertical mast as t approaches infinity.

The walls give the values of the economic game with a current tax rate of t.

If the thermograph is a hill region at temperature t, then each player desires

to move first. By doing so, he can ensure a value given by the corresponding wall.

If the thermograph is a cave region at temperature t, then at least one player

prefers to pass until the tax rate becomes lower. If the mast is vertical, then both

players prefer to pass, and neither will play until the tax rate is lowered. If the

mast coincides with a roof of the cave which is a Left scaffold, then Left prefers

to play and Right prefers to pass. If it is Right’s turn, he will pass and propose

a tax cut, but Left will then reject Right’s proposal. Left will instead exercise

his right to move at the old, higher tax rate. In a subsequent subsection we will

see a specific example of this surprising phenomenon, where it is to a player’s

advantage to insist on playing at a higher tax rate rather than at a lower one.
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Definitions. We define the initial temperature of a game G, as the temperature

of the base of the highest mast of its thermograph. A game G is said to be active

at temperature t unless its thermograph at t is a vertical mast. In that case, we

say that G is dormant at t. If G is dormant at t, then the temperature of the

base of this mast is called the activation temperature of G at t.

Pass-Banned Masts. The constructions of thermographs must reflect the Eco-

nomic Rules that resolve kofights. As described in Section 2.1, these rules do not

allow the Komaster to pass from a critical position. Under such circumstances,

the masts within each cave degenerate into the maximum (Right) scaffold if Right

is not allowed to pass, or the minimum (Left) scaffold if Left is not allowed to

pass.

Recursion for Thermographs of Games with No Immediate Ko. Let G be a

game represented in canonical form, G = {GL | GR}. where GL and GR are sets

of games whose thermographs are already known. We first consider the case in

which G itself is not part of any loop, even though some of the positions in GL

and GR may contain kos.

Under these circumstances, the scaffolds of G are defined as

Left scaffold of Gt = −t + max
GL

(

Right wall of GL
t

)

,

Right scaffold of Gt = t + min
GR

(

Left wall of GR
t

)

Thermographs of Kos. Figure 11 shows a simple 33-point ko and the graph of

its legal moves.

= B

24 −9

A B

Figure 11. Simple 33-point Ko.

Let G and H be a pair of games that represent the two states of a ko. G is a

Left follower of H, and H is a Right follower of G. In the general case, G and H

may also have other followers; thus we may have

G = {V |W, H}, H = {G, X |Y}.

For such a ko, we construct two pairs of thermographs. Ĝ and Ĥ assume that Left

is the regional Komaster; Ǧ and Ȟ assume that Right is the regional Komaster.

From Ĥ, Left may play to a close relative of G, which we call G.
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The relevant pair of thermographs are computed by working through the

following three equations, from the bottom up:

Ĝ= {V |W, Ĥ},

Ĥ= {G, X |Y},

G= {V |W}, with proviso that Left cannot pass immediately.

The motivation behind these equations is as follows: Since Left, as komaster,

can win the ko, she may effectively prevent Right’s move from G back to Ĥ.

However, the price of this prevention is the constraint that if Right elects to pass

because of the koban, Left is forbidden the privilege of passing immediately from

G. Such a pass would permit Right to recapture the ko at a lower tax than Left

paid to get there, and to return to the same board position as Ĥ. However, this

new position would be accompanied by a ko state less favorable to Left than Ĥ.

So if Left is competent, we should never see the sequence of play in which Left

moves from Ĥ to G, and later passes when position G is still available. If Left

intends to do that, she could do at least as well by passing immediately from Ĥ.

Similarly, to find the thermographs of Ǧ and Ȟ, we may use the next three

equations, again from the bottom up:

Ȟ= {Ǧ, X |Y},

Ǧ= {V |W, H},

H= {X |Y}, with proviso that Right cannot pass immediately.

A similar methodology enables us to compute thermographs for iterated kos.

For example, suppose thermographs A and E are known, and that

B= A |C, C= B |D, D= C |E.

Then, if we are interested in the games in which Left wins these kos, we may

compute thermographs of B, C, D̂, Ĉ, and B̂, in that order.

Here are the thermographs derived by this methodology for the positions of

Figure 11, when White is komaster. (Naturally, Ǎ = A, with Right as komaster;

B̌ = B, with Right as komaster; B = B̌ with Right not allowed to pass.)

24 13 0 −9

AL

Ǎ

BR

LS
(Ǎ

)

RS(Ǎ)

B

AL is a vertical mast at v = 24. BR is a vertical mast at v = −9. The pass-

banned B is a mast of slope +1 starting from t = 0, v = −9. The Left scaffold



THE ECONOMIST’S VIEW OF COMBINATORIAL GAMES 381

of Ǎ is obtained by subtracting t from AL. It is a ray with slope −1, from

t = 0, v = 24. The Right scaffold of Ǎ is obtained by adding t to ǍR = B.

It is a ray with slope +2 from t = 0, v = −9. The two scaffolds intersect at

t = 11, v = 13. For t ≤ 11, LW(Ǎ) = LS(Ǎ) and RW(Ǎ) = RS(Ǎ). For t ≥ 11,

LW(Ǎ) = RW(Ǎ) = 13.

The thermograph for B̌ of Figure 11 is constructed as follows:

24 13 2 −9

t = 11

Ǎ = B̌
L

B̌ BR

RS(B̌)LS(B̌)

RS(B̌) is a ray of slope −1 from t = 0, v = −9. LS(B̌) is obtained by subtracting

t from RW(B̌L) = RW(Ǎ). For t ≥ 11, LS(B̌) = RS(B̌), but LS(B̌) changes

direction at t = 11. Above t ≥ 11, LS(B̌) and RS(B̌) form a cave, in which

LW(B̌) = RW(B̌) = 2. For 0 ≤ t ≤ 11, LW(B̌) = RW(B̌) = −9 + t.

The derivation of thermographs for Â and B̂ is directly analogous. Here are

the results:

24 13 2 −9

t = 11

Â B̂

Figure 12, left, shows a Go position called a seki. This position is terminal

because competent players will pass. Mathematically, its value is

24 |−10 ||26 |−8 = 0.

Its thermograph is a vertical mast at v = 0.

Figure 12, middle, shows G, a famous position from traditional Go literature

called the “thousand-year Ko”. Its game graph is shown on the right in the same

figure. From G, White can play either to the seki of value 0 just mentioned, or

to B, the ko of Figure 11. Left has two similar options, whose thermographs are

superimposed in Figure 13. From Ǧ, if t < 5, Left prefers to play to the seki;

but if t > 5, Left prefers to start the ko. Figure 14, left, shows the result of
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G

0 0

C D A B

23 −10 24 −9

Figure 12. The seki of value 0 (left) is one option for White in the “thousand-year

Ko” (middle), whose game graph is shown on the right.

23 12 0 −10

t = 11

t = 5
C

Figure 13. Thermographs of black’s options from Ǧ.

translating the maximal Right wall of ǦL into the Left scaffold of Ǧ. Figure 14,

right, shows RS(Ǧ).

The thermograph of Ǧ, shown in Figure 15, left, illustrates some features of

the thousand-year ko that most intermediate Go players find counterintuitive.

If the global temperature exceeds 11, both players will prefer to play elsewhere

rather than on Ǧ. The activation temperature of Ǧ is 11. At temperatures

between 11 and 7, White prefers to play elsewhere, but Black is eager to start

the ko from Ǧ. White will win this ko, but doing so costs him two moves and

it costs Black only one move to start the ko. Thus, at temperatures between 11

and 7, the higher the global temperature at which Black can start the kofight,

the happier she is.

01 −5

t = 5

t = 11

st
ar
t
ko

LS(Ǧ
)

start
ko

pl
ay

se
ki

9 0 −9

t = 9

start ko

R
S(Ǧ

)

play
seki

Figure 14. Left and Right scaffolds of Ǧ.
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1 0 −3 −9

t = 3

t = 7

t = 11

Ǧ

07 2

3
23

t = 7 2

3

Ĝ

Figure 15. Left: Thermograph of Ǧ. Right: Thermograph of Ĝ.

At global temperatures between 3 and 7, Ǧ is again inactive. Both players

prefer to play elsewhere.

At global temperatures below 3, both players are eager to play on Ǧ. White

would like to start and win the ko, and Black is eager to avoid this loss by playing

to the seki.

The thousand-year ko has two activation temperatures, and a region wherein

one player prefers to pay a higher tax rate rather than a lower one. These

features are unusual, and dependent on the assumption that White is Komaster.

The thermograph of Ĝ, shown on the right in Figure 15, is much more common-

looking. At high temperatures, the value of being Komaster on G is 7 2
3 − 1 =

6 2
3 points. This contrasts sharply with the common ko of Figure 11, where being

komaster has zero value at high temperatures.

2.3. Overview of Thermography.

Combinations and Sums. Thermographs support combinations. The thermo-

graph of A contains just enough information so that, when combined with the

thermograph of B or C, one can obtain the thermographs of A |B and of C |A.

Thermographs do not support addition, as is evident from the following ex-

ample. Let A = 1 |−1, B = {1, 1 + A | −1}, C = {1, 1 + A | −1,−1−A}.

Then A, B, −B, and C each has the thermograph shown on the left in Fig-

ure 16, which we call X. Yet A + B has thermograph Y; A− B has Z; A + C has

X; and A + A has 0.

1 0 −1

t = 1

t = 0

X

1 0

Y

0 −1

Z

0

Figure 16. Thermographs don’t behave well under addition.

For a general loopfree game, the shape of the thermograph at the base of its

mast depends on the sign of the infinitesimal by which the game differs from
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a number at its freezing point, and the information contained in the values of

these infinitesimals is not present in the thermographs. We will return to this

topic in Section 2.5.

However, at sufficiently high temperatures, all thermographs become masts,

and their mast values do add. Therefore, knowing the thermographs of all of the

summands is sufficient to determine the thermograph of the sum at sufficiently

high temperatures.

Means and Temperatures. The µ-value of the initial, infinite, vertical mast,

which we call µ(G), is the “count”, or the “mean value” of G.

The temperature at the base of this mast, which we call t(G), is the “size of

the move”, or the “temperature” of G.

Placid Kos and Hyperactive Kos. A game G is said to be “hyperactive” if

µ(Ĝ) > µ(Ǧ). Such a game G necessarily contains a position K that is a ko. It

is not the size of K itself that makes G hyperactive, but special circumstances

which include the fact that K is a follower of some position of G that is cooler

than K.

A game G is said to be “placid” if µ(Ĝ) = µ(Ǧ). If G is placid, then when

played according to Economic Rules, µ(G) does not depend on kothreats. Many

kos, even many rather big kos, turn out to be placid.

Stable and Unstable Positions. Thermographs with more than a single hill

and a single (degenerate) cave are relatively rare. In the common case, stable

and unstable positions can be defined relatively simply, as follows:

Definitions. A position H of a game G is stable in G if all ancestors of H in

G have temperatures greater than H’s. H is unstable or transient in G if it has

an ancestor of lower temperature. If H is not unstable, but has one or more

ancestors of temperature equal to its own, it is called semistable.

In the more general case, in which some positions may have thermographs with

multiple hills and caves, a single position may have multiple activation temper-

atures, and so a more refined definition is required:

Refined Definitions. G is stable in G, and its activation temperature is the

base of its infinite mast. H is stable in G if its thermograph is a vertical mast at

the activation temperature of its nearest stable ancestor.

Semi-stable positions can be treated as stable or as unstable. Treating them as

stable yields the simplest and most convenient economic analyses. Treating them

as unstable leads to more refined, more complicated algorithms that exploit the

calculus of infinitesimal games to get the last move at each t, whenever possible.

Sentestrat players will choose to play “in another region” “elsewhere” only

when the region just played in has reached a stable position.
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Sente and Gote. From the perspective of Sentestrat, an opponent’s move that

increases the temperature has sente; it requires our immediate response. How-

ever, this move and its response might begin a longer sequence of moves through

several transient positions before the game reaches the next stable position. The

question of whether the overall sequence had sente or gote depends on whether

the length of this alternating sequence of moves was odd or even, and that ques-

tion can usually be answered by examining the thermograph of the originating

stable state. Generally speaking, if, just below the base of its relevant mast, both

walls branch outward, then the initial move by either player is gote. If Left’s wall

drops vertically but Right’s branches outward, then Left’s initial move is sente

but Right’s is reverse sente. If Right’s wall drops vertically but Left’s branches

outward, then Right’s initial move is sente and Left’s move is reverse sente.

These correspondences between the Go player’s view of sente and gote and the

thermograph are correct whenever the relevant positions have significantly differ-

ent temperatures. However, when there are intermediate semi-stable positions,

the distinction between sente and gote may become blurred.

Mainlines and Sidelines. Let n be a large integer, and suppose that two gurus

play the sum of n copies of a game G. For each H that is a position of G, let

#(H) be the number of copies of G that pass through the position H. If #(H)

approaches infinity as n approaches infinity, then H is a “mainline” position of

G. But if #(H) remains bounded as n approaches infinity, then H is a “sideline”

position of G.

If G is a traditional gote position, then #(GL) = #(GR) = n/2, and both

GL and GR are mainline positions. However, if G is a position in which Left’s

move is sente and Right’s move is reverse sente, then, depending on who plays

first from n.G, #(GR) = 0 or 1, and #(GL) = n or n− 1. In either case, GR is

a sideline position of G.

Thermographs of sideline positions have no effect on the means of any of their

ancestors, although they often do affect the temperature(s) of some of their near

ancestors.

We illustrate these notions with an example.

Let A be the starting position on the right, be-

fore any of the numbered stones have been played.

Then moves 1, 2, 3, and 4 show a main line of

play, through positions we’ll call B, C, D, and E.

Position E is the terminal position after all four

1

4

2

3

numbered stones have been played. F is the position if White rather than Black

had played the first stone at 1. The means and temperatures of all dominant

positions are shown in Table 1.

The only stable mainline positions are A, C, and E, each having mean 1. The

mean of A is unaffected by any small change in the mean or temperature of any

other position. Hence, to verify that the mean of A is 1, it is unnecessary to
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Position µ t Stable? Mainline?

A 1 3 yes yes

B =AL 8 7 no yes

BL 15 −1 yes no

C =BR 1 1 yes yes

CL 2 −1 yes no

D =CR − 1
2 1 1

2 no yes

DR −2 0 yes no

E =DL 1 −1 yes yes

F =AR −2 1 yes no

FL −1 −1 yes no

FR −31
2 1 1

2 no no

FRR −5 0 yes no

FRL −2 −1 yes no

Table 1. Means and temperatures of dominant positions.

know the values of other means and temperatures precisely; appropriate bounds

are sufficient.

In general, a stable mainline gote position will have both a mainline Black

follower and a mainline White follower. On the other hand, stable mainline sente

positions have only one mainline follower. In this example, the line of play shown

is the unique main line. Notice that the mainline moves do not alternate colors;

White plays both moves 2 and 3.

If we played a sum of n copies of A concurrently on n different Go boards,

then the local line of play would follow the main line shown above on all but

one or two boards. If White gets the first move overall, he plays one exceptional

board from A to a sideline position, F. But Black then plays another board from

A to B, and White responds by continuing to C. That happens on all n − 1

boards, successively. Black then might play a second exceptional board from C

to CL. But White then plays another C to D, and White responds by continuing

to E. That sequence, from C to D to E, then happens on all boards, successively,

until all positions are terminal.

The sum of n copies of A is only one example of a rich environment, which

we shall explore further in Section 4.3. If a single copy of A is played in any

sufficiently rich environment, the play within A will follow the main line shown

above. Heuristically, the reason that Black rather than White will make the first

move from A is that Black can move there at any tax rate between 7 and 3;

White cannot afford to play A until the tax rate is 3. After A has been played

to B and C, both players make several moves elsewhere if possible. Eventually,

any time after the tax rate drops below 1.5, White can play at C. Since Black

cannot afford to play there until the tax rate is 1, White will get in his move
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first, unless the background is so impoverished that there are no suitable moves

“elsewhere”.

Smaller Thermographic Databases of G. Given a game, G, and its purported

thermograph, how much information about the positions of G is needed to verify

that the purported thermograph of G is correct? Evidently, considerably less

than the thermographs of all of the positions of G. Many positions of G are

transient. Often the only information needed about many of the followers of

transient positions is that they are “sufficiently hot”, and this bound can easily be

quantified. Precise thermographs of many sideline positions are also unnecessary;

it is required only that portions of such thermographs fall between specified

bounds.

How much information is needed to verify the purported mean of G? Evidently,

even less than is needed to verify G’s thermograph.

2.4. Top-Down Thermography. “Top-down” thermography promises to be

much more efficient than “bottom-up” thermography. The latter computes the

details of many walls of positions that the former could ignore.

A proposed top-down approach to finding the thermograph of a position G

starts by considering a reasonably large set of lines of play from G, such as

GLRL1LRLRRLR. Most relevant lines do not follow alternating play. Indeed, em-

pirical evidence indicates that Go positions, such as the thousand-year ko of

Figure 12, which have different dominant Left options depending on the temper-

ature, are fairly rare. So the main reason that there are typically many relevant

lines of play from G is that there may be many relevant sequences of Left and

Right plays, rather than choices between HL1 and HL2 .

The proposed approach to computing the “top-down” thermograph of G as-

sumes that the given set of lines of play contains the “complete” set of G’s stable

positions. This assumption allows a program to infer that missing positions are

sufficiently hot.

One is often interested in only the high-temperature portions of thermo-

graphs. For this reason, it would eventually be desirable to have programs that

do all thermographic computations from a top-down perspective. Each trajec-

tory might be stored as a list of slopes and breakpoints, listed in top-down order.

A better programming strategy is to view each trajectory as a function whose

outputs are a list of slopes and breakpoints, generated in the top-down order.

This function is able to call other functions and itself, recursively, as needed, in

order to pursue the top-down computation of thermographs. The programming

goal is to get the next output as quickly as possible, by looking no further than

necessary.

Thermography Justifies Some Go Maxims. Many of the standard Go maxims

are equivalent to some of the common special cases that a top-down thermogra-

phy program will encounter. For example, if we let τ = 1
2 (µ(GL)− µ(GR)), and
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1 0 −1

t = 0

t = −1

X

fuzzy

1 0

Y

positive

0 −1

Z

negative

0

Figure 17. Thermographs of loop-free infinitesimals.

1 0

1

2

1 0

1

4

1 0

1

8

1 0

3

8

Figure 18. Thermographs of numbers.

if t(GL) ≤ τ and t(GR) ≤ τ , then G might be said to be “gote”, and we have

µ(G) = 1
2 (µ(GL) + µ(GR)), and t(G) = τ . This condition is very common.

One type of situation in which thermography yields much more precision than

traditional Go folklore is the “double sente” position, in which t(GL) and t(GR)

are both substantially larger than LW(GL)−RW(GR). Traditional Go maxims

indicate only that a move from such a position G is very desirable, presumably

relative to the naive approximation of movesize as LW(GL)−RW(GR). This is

true if the overall temperature is low and the position has just arisen.

2.5. Subzero Thermography. Although thermographs are conventionally

plotted for temperatures ranging from 0 to infinity, they can also be plotted

for negative temperatures. Temperatures infinitesimally less than zero appeared

inWinningWays, page 151, as “Foundations of Thermographs”. Since the Econ-

omist’s Rules allow temperatures as low as −1, thermographs can be extended

into that same region. The four possible thermographs for an infinitesimal game

are shown in Figure 17.

The astute reader will notice the correspondence between Figures 16 and 17.

At negative temperatures, the thermographs of noninteger numbers also be-

come active, as illustrated in Figure 18.

The half-ish thermographs are shown in Figure 19.

If v is a number, at positive temperature, the thermograph of any v-ish game

is a vertical line emating upward from the value v, which can be any rational

number whose denominator is a power of 2. These values form a dense set on

the line t = 0. However, the possible values of thermographs become sparse at

negative temperatures. Figure 20 shows the superposition of the thermographs
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1 0

1

2
∗

1 0

1

2
↑

1 0

1

2
↓

1 0

1

2

Figure 19. Thermographs of games infinitesimally close to 1

2
.

1 0 −1

Figure 20. The foundations of number-ish thermographs.

of all number-ish loopfree games, in the temperature range between 0 and −1.

Figure 21 illustrates where the thermographs of two particular numbers appear

in Figure 20.

If one views an arbitrary conventional thermograph from a positive temper-

ature perspective, it may appear to be resting on “solid ground”, consisting of

the v-axis at t = 0. However, if one probes deeper as in Figure 20, one finds that

at t = −1 all thermographs rest on a discrete set of pilings located at the integer

values. At t = − 1
2 , there are twice as many pilings located at half-integers, etc.

An earlier, less universal, version of Figure 20, based on overheating rather

than on the Economist’s Rules allowing negative temperature, appeared on page

172 ofWinning Ways.

1 0 −1

t = 0
t = − 1

8

t = − 1

4

t = − 1

2

t = −1

1

2
− 3

8

Figure 21. Underground thermographs of 1

2
and − 3

8
.
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3. Theorems and Strategies

Thermography always gives the unique value for the count, µ(G), and a usable

value for the size of the move, t(G). We now look at some of the theorems that

these quantities satisfy.

3.1. Theorem: Thermography Determines Fair-Market Values for

Games Played by Economic Rules. We assert that thermography deter-

mines fair economic values for µ and for the initial tax rate t. These values are

“safe” to bid. For a single game (no sum), the proof follows recursively from the

“Economist’s Rules” and the way the thermograph was constructed.

3.2. Theorem: µ-Values Add; Temperatures Maximize. The mast-value,

µ, is analogous to the mean in probability. The temperature, t, is analogous to

the standard deviation. As in probability, the mean value of a sum of things is

the sum of their mean values. But the dispersion about this mean is much more

constrained in combinatorial game theory than it is in probability. In probability,

the standard deviation of the sum of n objects typically grows as the square root

of n. In combinatorial games played by the Economist’s Rules, the dispersion is

zero. In combinatorial games played according to the normal rule of alternating

play, the dispersion of the sum about its mean is constrained by an upper bound

independent of n. For sums containing no positions with hyperactive kos, this

bound is proportional to t, and the constant of proportionality depends on the

maximal iterative depth of any of the placid kos.

When multiple hyperactive kos are present, we need to define “independence”

of regions. This can be done by constructing each local position on a different

board, and then playing all boards concurrently. At each turn, a player selects

any board and makes one move on that board. When the game ends, each player

receives a single score, equal to the total score on all of the boards. Each ko that

Left can win is placed on a board with a plentiful supply of Left kothreats; each

ko that Right can win is placed on a board with a plentiful supply of Right

kothreats. We further define the ko rule to prohibit any recapture of ko unless

there is a change of position on the same board, so that no move on another

board constitutes a kothreat and different boards are really independent of each

other.

3.3. Sentestrat, Thermostrat, and Hotstrat. “Hotstrat” is an intuitively

obvious strategy for playing a sum of games. It says “always move on a hottest

summand”. Unfortunately, we shall see that in some (uncommon) cases, this

strategy turns out to yield losing results. This defective behavior of Hotstrat

is evaded by either of two slightly refined strategies, called “Thermostrat” and

“Sentestrat”. If the current tax rate is t, and there are several current positions

whose thermographs are hills (or summits) at temperature t, then these three

strategies choose among those options in slightly different ways:
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• Hotstrat: Move in a region whose temperature is maximal.

• Thermostrat: Move in a region whose hill is widest at temperature t.

• Sentestrat: If your opponent has just played in one of these hill regions, re-

spond directly by playing in the same region in which he just moved.

All three strategies essentially agree under other circumstances. If all thermo-

graphs are caves at temperature t, then pick one of them whose mast touches

your own scaffold at temperature t, if any such exist. When you are about to play

a move of this type, you should decline any tax cut proposal that may be pend-

ing. If the only hill move at the current temperature is banned by ko, then pass

but do not lower the bid tax rate. If there are no moves of any of the previously

mentioned types, then you should pass and propose a lower tax rate. Sentes-

trat proposes the tax rate equal to the next lowest value at which you would

be willing to move, namely, the drain of a cave or the point at which a vertical

mast touches your (necessarily jagged) scaffold inside the cave. Thermostrat

calculates other trajectories in hopes of getting a stronger result. Thermostrat

computes the sum of all of your opponent’s walls from Sentestrat’s proposed

tax rate on downwards, and to this sum it adds the width of the widest cave

at each temperature. It then picks the temperature at which this trajectory is

most favorable. Often, that is the same temperature as Sentestrat’s, but on some

examples (including one shown inWinningWays), Thermostrat takes advantage

of an opponent’s recent mistake to outperform Sentestrat, even though both do

equally well against a good opponent.

Hotstrat’s Failure. Although it usually recommends the same moves as Sen-

testrat and Thermostrat, Hotstrat plays poorly in some situations. An example

is the following sum A + B, as played by Left, going second:

A = 1 ||||10 ||0 |−20 |||−21, B = 1 |||0 ||−18.

Both A and B are loopfree and have temperature 1. Right plays A to AR.

All three strategies play AR to ARL = C = 10 ||0 |−20. Right then plays B to

BR = D = 0| − 18.

Left now faces the crucial decision, whether to play on C or on D. Sentestrat

and Thermostrat both play D, after which Right plays C to CR and Left to CRL,

giving a total score of 0. Hotstrat, on the other hand, computes the temperatures:

t(C) = 10, and t(D) = 9. Ignoring the fact that both of these temperatures are

far above the current tax rate (which has been 1 since the beginning of this

example), Hotstrat plays C to 10, after which Right plays D to −18, giving a

total score of −8. This failure of Hotstrat occurs under either the Economist’s

Rules, or under the Conventional Rules requiring alternating play without taxes.
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4. An Economic Guru Kibitzes a Conventional Game

Sentestrat and Thermostrat both ensure perfect play according to economic

rules. Either strategy can also be used in conventional games, in which there

are no taxes and alternating play is required. In loopfree games, these strategies

ensure that the first player will attain a stopping position at least as good as the

mean.

When there are many summands and the temperature is t, a good player

can often improve that score by about 1
2 t. To gain more understanding of this

situation, it is helpful to view a conventional game through the eyes of a kibitzing

economic guru.

4.1. Hard and Soft Currencies. It is convenient to refine the Economist’s

Rules by introducing dual currencies, cash and chips. The rules that specify

which currency must be used for which types of debts are as follows:

Debt Required Form of Payment

Privilege of playing Left Cash

Privilege of playing First, at
beginning of game

Chips, half of which must be bought
from the opponent for cash

Tax on mover during game, while
tax rate is positive

Chips

Payment to mover while tax rate is
negative

Cash

Thanks to the footnote on page 367, all payments made during our demonstration

followed these rules.

Except for kos, conventional play may be viewed as economic play with a

preference for alternating moves, and with the proviso that chips are worthless.

In a typical economic game, the pile of chips on the table moves back and

forth between the two players frequently. Only when the tax rate is lowered is

a player able to move some of these chips off of the table and into his pocket.

Economically, this is an apparent gain for the first player to move at the new

and lower temperature. The player who made the last move at the old, higher

temperature sees an immediate loss of chips. However, if she is is following

Sentestrat, which ensures no net overall economic loss, then she will eventually

receive a compensating payment later. If this occurs after the tax rate has

become negative, then that payment will be in cash.

So the conventional player who gets the last move at some temperature would

appear to receive a benefit equal to the change of temperature.

There is an alternative, heuristic view that leads to similar conclusions without

assuming that the chips are worthless. In this view, the big pile of chips on the

table at early stages of the economic game is very likely to be pocketed in many
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small decrements. These decrements are likely to be divided sufficiently evenly

between the two players that, to a good approximation, the chips can be ignored.

4.2. The Economist’s Forecast. In his role as a kibitzer of a conventional

game, our economic guru computes its thermograph. He can also keep track

of the temperature at each stage of the game. Before the game begins, the

economist presumes the prehistoric (big bang?) temperature, t = +∞. Then,

at each stage of the game, the kibitzer determines whether the game is active

or dormant at the temperature he has determined. If dormant, he lowers his

temperature as little as needed to make the game active.

Our economic kibitzer also computes an economic forecast based on these

observations and computations. If it is Left’s turn to play from G and the

current global temperature is t, then

Forecast = LW(G) + 1
2 t.

But if it is Right’s turn to play from G and the current global temperature is t,

then

Forecast = RW(G)− 1
2 t.

We note that if the players both follow Sentestrat, then the forecast does not

change during any interval of ko-free play at which the temperature remains con-

stant. But, when Left moves from G, of temperature told, to GL, of temperature

tnew, the forecast changes from

LW(G) + 1
2 told to RW(GL)− 1

2 tnew.

If Left followed Sentestrat, then RW(GL) = LW(G) + told, and the effect of

Left’s move was not only to lower the temperature from told to tnew, but also to

increase the forecast by

∆Forecast = 1
2 |∆t|.

In general, whenever the temperature drops by ∆t, the forecast may be revised by

up to 1
2 |∆t| in favor of the player who made the last move at the old temperature.

Since either player may choose not to follow Sentestrat, other moves may

occur that cause the economist to revise his forecast. However, it is not hard to

see that all such forecast revisions are adverse to the player who moves. Hence,

moves that cause forecast revisions adverse to the mover are called sacrificial.

From this viewpoint, all moves can be partitioned into three sets:

1. Temperature-lowering moves improve the forecast by up to 1
2 |∆t|.

2. Sacrificial moves degrade the forecast.

3. All other moves leave the forecast unchanged.

Sacrificial moves may be either voluntary or compulsory, depending on whether

or not any alternative option was available. An examination of Sentestrat reveals

the only condition under which a sacrifice can be compulsory:
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4. A sacrifice is voluntary unless the only move at the current temperature is

banned by the ko rule.

So far, we have assumed that our economic kibitzer is able to compute a single

thermograph for the entire game. In practice, this assumption may entail too

much computation to be practical. In particular, if the game is a sum of many

components, then it may be feasible to compute the thermograph of each com-

ponent even though it may not be feasible to compute the thermograph of the

sum. Under such circumstances, our economic kibitzer may be forced to define

temperature and make forecasts based only on the component thermographs.

And the resulting temperature may be higher. In particular, if two components

sum to zero, then their thermographs will have the same temperature, t, and this

will be the temperature used by the kibitzer who sees only the thermographs of

the individual component games. However, the better-informed kibitzer who

also knows the thermograph of the combined game will see it to be a vertical

mast of minimum temperature.

Nevertheless, we assert that our economic guru can still classify each move

that changes the forecast as temperature-lowering or sacrificial, even though

forecasters using different databases may take somewhat differing views of the

same game.

And it is easy to see that as the game approaches its conclusion, the forecast

converges to the final score.

Evidently, the forecast is a plausible prediction of the final score. Thermostrat

is a greedy algorithm, which optimizes this forecast on a one-move time horizon.

In order to be a viable investment, our sacrificial move must prepare for some

later payoff, and this payoff must eventually show up either as a temperature

at which we get the last big move before a sizable drop in temperature, or as

a ko that we can win while the opponent has only smaller (i.e., cooler) moves

available.

If there are no foreseeable kos, then all changes in forecasts result from a

sequence of plays in which the player who benefits from the forecast revision

“gets the last big move”. Since each such event lowers the temperature, it is

clear that the forecast’s absolute margin of error can be no worse than t/2. In

very simple situations, the forecasting error is often precisely that. However,

in a complicated game that is the sum of many components, it is reasonable to

expect that the temperature will decline adiabatically in many small decrements,

and that each side will be able to get about half of the total absolute value of

these decrements. Under such conditions, the net of forecasting improvements

and degradations will be about zero. We now concoct some models in which this

result is precise and provable.

4.3. Enriched Environments. Let 2δ be the greatest common divisor of

all temperatures of all positions of all summands of G. For example, if these

temperatures are 1
4 , 1

3 , and 5
8 , then 2δ = 1

24 . Suppose the maximum initial
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temperature of all summands of G is T . Then we define the minimally enriched

environment MEE for G as the sum of the elementary switches of temperatures

δ, 2.δ, 3.δ, 4.δ, . . . , n.δ, where n = T/δ. Let h be an upper bound on the total

number of moves, in all positions of all summands of G, which might serve as

a kothreat for any ko in G. (Any move that raises the temperature might serve

as a kothreat). We then define SEE, the standard enriched environment for G,

as (2h + 1) copies of MEE. SEE is the sum of (2h + 1).n distinct switches. An

over-enriched environment is defined in the same way as the standard enriched

environment, except that δ is taken to be some proper divisor of the greatest

common divisor of all temperatures of all positions of all summands of G; the

maximum temperature of OEE may be larger than the temperature of G, and

the number of switches at each multiple of δ may be any odd number greater

than (2h− 1).

Theorem on Enriched Environments. Let G be a position that contains no

hyperactive kos. Then:

Theorem. The economic forecasts for G + MEE and G + SEE are the same as

the economic forecast for G . If G+SEE is played by two gurus using Conventional

Rules , the economic forecast of the final score will be precisely correct .

If our economist provides us with all of the relevant means and temperatures,

we can play G + SEE against an opposing guru. Even in the conventional game,

we can elect to play Sentestrat, subject to the proviso that whenever any move

permitted by Sentestrat involves a ko, we will prefer the ko move, and if there are

several permitted ko moves, we will play the same one (if any) that we previously

played most recently.

It is not hard to see that this policy ensures that the overall result is at least

as favorable as the forecast. If a placid ko has temperature t, then the standard

enriched environment also contains a bountiful supply of switches at the same

temperature. Our policy ensures that the ko will be resolved before all of these

switches are played. So, whenever we are faced with a koban, we have another

(switch) move at the same temperature that serves us just as well.

A Sequence of Universal Environments. Notice that it is possible to construct

a sequence of over-enriched environments that are universal. We’ll construct a

specific sequence, U1, U2, U3, . . . , with the property that if G is any game that

contains no hyperactive kos, then for all sufficiently large n,

• the Economist’s forecast for G + Un is the same as the forecast for G, and

• the forecast of G + Un is precisely accurate.

To this end, it is sufficient to let

δn =
1

lcm{1, 2, 3, ..., n}
.
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Let Un consist of (2n + 1)n/δn switches, (2n +1) copies each of temperatures δ,

2δ, . . . , n.

It is easy to see that this construction has the specified property; it is a

sequence of “Universal Enriched Environments”. Any reasonable game G (one

without hyperactive kos), when played in such an environment, behaves precisely

according to the economist’s forecast.

Universal environments, and other enriched environments, are artificial the-

oretical constructions intended to show why, when there are sufficiently many

independent regions in the game, the economic forecast is a very plausible pre-

diction of the outcome.

In fact, there are serious difficulties in realizing our theoretical enriched en-

vironments within the practical constraints of a game like Go, even if we allow

it to be played as the sum of arbitrarily many boards, some of which may have

arbitrarily large sizes. The first problem is that all final scores in Go are integers,

and this Diophantine constraint prevents the direct construction of even simple

switches, such as { 1
2 |−

1
2}. This difficulty can be at least partially alleviated by

working with “chilled Go”, as described in [Berlekamp and Wolfe 1994]. But

even in chilled Go, there is no switch of value such as { 1
3 |−

1
3}; the denominators

of all temperatures of switches must be powers of 2.

So, even though the enriched environments we have constructed are all sums

of extremely simple (two-stop) abstract games, some of these games might not

be realizable within the natural constraints of the class of games (e.g., Go) to

which we want to apply our economic forecasts.

In more realistic environments, our economic forecasts are typically not pre-

cise. But they are still often quite close. Yonghoan [Kim 1995; Berlekamp and

Kim 1996] has analyzed placid kos in several kinds of realistic environments, in

which there are no other regions having exactly the same temperature as the

ko. In such situations, kothreats have value, but the typical value of a kothreat

is only a small multiple of δ, where (as in our constructions), δ is the typical

difference between temperatures of other regions.

So, the total value of any fixed number of kothreats still approaches zero as

the background becomes sufficiently rich. The rich environment must have many

independent regions, whose temperatures are relatively dense in the vicinity

of the temperature of the placid ko. Other details about the games in the

background environment don’t seem to matter much; they need not be switches.

Even though the details of the background can affect the accuracy of the forecast

by up to t/2, nearly all of these forecasting inaccuracies are due to inherent

difficulties in predicting who can get the last move at each tax rate. Only a

small part of the forecasting inaccuracies are due to placid kos, even though

thermographs ignore kothreats entirely.

Hyperactive Kos. Even in a very rich environment, kothreats can have a big

effect on the final score if the game contains a position that is a hyperactive ko.
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Max

Amt Book Max $ Loss Chip Loss

Buyer Item Bid Value DW YK DW YK

YK Black in −Go 2 1
4 2 1

32
7
32

DW Black in −Go 1 3
4 2 1

32
9
32

YK Domin. Left 1 1
2

3
4

3
4

DW Domin. Left 1
2

3
4

1
4

DW First move 1 3
4 1 15

32
9
32

9
64

YK First move 1 1
4 1 15

32
7
32

7
64

Total mistakes 43
64

69
64

9
64

7
64

Net gains due to bidding + 13
64 −13

64 − 1
64 + 1

64

Table 2. Accountant’s error ledger for the demonstration game of Figures 2–6.

From the economist’s perspective, the µ-value of such a ko depends on who is its

master, and this, in turn, depends on a global tally of kothreats. And, en route

to elegance and simplicity, combinatorial game theory suppresses much kothreat

information from the canonical form. Then even more kothreat information

is suppressed when the information in the canonical form is condensed into a

thermograph. So, if there is a hyperactive ko, a precise analysis requires more

data than the mathematics has retained. Of course, µ(Ĝ) and µ(Ǧ) still provide

firm bounds; but for some positions these bounds may be quite far apart.

4.4. Dollar Accounting. Economic Rules facilitate some very detailed ac-

counting, which identifies the moves at which mistakes were made and the cost

of each mistake. Table 2 shows an example.

In these auctions, every Book bid was intermediate between the bids submit-

ted by the two players, and all maximum bidding losses were realized.

Altogether, in these auctions, the average of the two players made 1 point

worth of bidding errors, 7
8 in dollars, and 1

8 in chips. DW was better than this

average; YK was worse. The absolute difference of each from the average was
13
64 dollars minus 1

64 chips.

After all play was concluded, the final result (after converting chips back to

cash) was that DW ended with $5.1875; YK, with $4.8125. Since both players

played all moves according to perfect Book strategies, YK’s net loss of $ 3
16

resulted entirely from the fact that his bidding errors cost more than DW’s.

The economist’s accounting can be readily extended to itemize any errors that

occur in play.
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Total chips

still on Temper-

DW YK the table ature

−2G− 4Y −2G− 4Y At start 4G + 8Y 1 1
2 (bid)

1G + 2Y (after move 1) 3G + 6Y 1 1
8

1Y (after move 5) 3G + 5Y 1 1
16

1Y (after move 6) 3G + 4Y 1

2Y (after move 9) 3G + 2Y 7
8

2Y (after move 10) 3G 3
4

1G (after move 11) 2G 1
2

2G (after move 12) 0 0

+ Y − Y

= + 1
16 − 1

16 Net total chips gained from playing

(both players used perfect Book play)

Table 3. Pocketed chip ledger for the demonstration game of Figures 2–6.

4.5. Chip Accounting. The accuracy of economic forecasts is limited by a

crucial approximation that states that, in the course of a sufficiently long and

intricate well-played game, each player will eventually pocket about half of the

chips that are placed on the table at the conclusion of the initial auctions.

It is instructive to see how the forecasts evolved during the (unenriched)

demonstration game. At the start of the game, each player put chips of value 3
4

onto the table (Y = 1
4G = 1

16 ). This total sum of 1 1
2 units (4G + 8Y) was then

pocketed as shown in Table 3.

4.6. Forecasting Records. Economists studying history like the Big Picture,

which, for the demonstration game, is shown in Figure 22. As usual, µ is plotted

along the reversed horizontal axis; t, on the vertical. Each point plotted in this

figure shows the global [µ, t] values of the full game after the numbered move.

Figure 22 records the values of the total µ and the maximum t after moves

0–12 of the demonstration game. The sequence terminates when the temperature

reaches 0. The values of µ oscillate back and forth around the forecast, and each

decrease in the tax rate is accompanied by a revision in the forecast, as illustrated

in Table 4.

The magnitude of the revision is one half the decrease in the tax rate, and

the sign of the revision favors the player who made the last move before the tax

rate decrease.
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0

8

6

10

12

2,4

11

9

7
5
1

3

13

23
4

21
2

21
4

2 13
4

11
2

11
4

23
4

21
2

21
4

2 13
4

11
2

11
4

11
2

11
4

1

3
4

1
2

1
4

→
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m
p
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a
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← total µ ←

Figure 22. The Big Picture of the demonstration game.

Tax Rate µ Forecast Move Change

1 15
32 2 25

32 2 3
64 1 − 11

64

1 1
8 1 5

16 1 7
8 2–5 − 1

32

1 1
16 1 5

16 1 27
32 6 + 1

32

1 2 3
8 1 7

8 7–9 − 1
16

7
8 1 3

8 1 13
16 10 + 1

16

3
4 2 1

4 1 7
8 11 − 1

8

1
2 1 1

2 1 3
4 12 + 1

4

0 2 2 13 . . .

Table 4. Forecasting record.

4.7. The Komi in Go. Professional Go games begin with an empty board.

By symmetry, µ = 0. The player who makes the first move is required to give

his opponent some number of points in return. This number of points is called

the komi. To prevent ties, the komi is traditionally chosen as a half-integer. The

komi is specified by the tournament directors. Values of the komi in modern

tournaments have ranged from 5.5 to 8.5 points.
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Our economist’s viewpoint suggests that the komi could be determined by a

competitive auction between the two players rather than by executive decree.

Our economist conjectures that the optimal value of the komi, like his forecast,

should be half the temperature of the empty board.

If the temperature of the empty board is t, then an expert player will find the

first move on the empty board to be equally attractive to playing on an additive

switch of value +t |−t. In Go jargon, such a switch is called a 2t-point gote move.

So, from the viewpoint of our economist, the n-point gote move that is just as

tempting as the first move on an empty board is attained when n is four times

the value of the fair komi. That’s because n should be twice the temperature,

and the fair komi should be half of the temperature. In view of the accepted

range of the komi, n is presumably twenty-something.

5. Incentives

In loopfree combinatorial games without taxes, the best moves are those

for which the mover has a maximum incentive. If the position is G, Left’s

incentive is ∆L(G) = GL − G; Right’s incentive is ∆R(G) = G − GR. If

G = A + B + C + · · ·+ F, then ∆L(G) and ∆R(G) are the sets

∆L(G) = {∆L(A), ∆L(B), ∆L(C), . . . , ∆L(F)}

∆R(G) = {∆R(A), ∆R(B), ∆R(C), . . . , ∆R(F)}

It is helpful to consider the union of both sets:

∆ =
{

∆L, ∆R
}

.

When temperatures are negative, both incentives equal the temperature, and

values are numbers that are equal to the means. However, when temperatures

are nonnegative, both values and incentives are necessarily games that are more

complicated than numbers. To manipulate these games, familiarity with classical

combinatorial game theory is required [Berlekamp et al. 1982; Conway 1976].

The partial ordering of the incentives plays an important role in the mathe-

matical analysis of various lines of play [Berlekamp and Kim 1996]. If ∆L(A) >

∆L(B), Left will prefer to play on A rather than on B. If ∆R(A) > ∆L(B), then

Left’s move on B is reversed through Right’s response on A. Reversibility is a

technical criterion well known in combinatorial game theory.

Every incentive is a game that has 0 as a right follower. Conversely, any game

in which 0 is a right follower is one of its own right incentives. So no incentive

can be 0 or positive.

Many pairs of incentives are incomparable. On the other hand, temperatures

of incentives, being numbers, can be totally ordered (although ties will occur in

cases of equal temperatures). Thus, a wise prelude to an investigation of the

partial ordering of the incentives is to compute each incentive’s temperature,

and then sort them accordingly. If temp(∆L(A)) > temp(∆L(B)), this does
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not imply that ∆L(A) > ∆L(B), but it certainly precludes the possibility that

∆L(B) ≥ ∆L(A).

In general, temp(A− B) ≤ max{temp(A), temp(B)}. However, in the special

case of incentives, we can assert that for any G, there is at least one left incentive

such that

temp ∆L(G) = max
{

temp(G), temp(GL)
}

.

This is true because if the temperature of the incentive were less, then we could

pick a value of t between the temperature of the incentive and the temperature

of G and GL. Cooling the incentive-defining equation by t would yield

∆L(Gt) = GL
t −Gt,

where neither term on the right side is a number, but their difference is. But this

contradicts another theorem of combinatorial game theory, which states that if

H = Gt is not a number, then it has at least one left incentive that exceeds all

negative numbers.

The same arguments can be repeated for right incentives.

In earlier sections of this paper, we showed that for economic rules, when

players bid to set a new tax rate, either player can safely select the temperature

of the full board position as his bid, except in the case when he has no legal

move. This leads directly to the important conclusion that initial tax rate bids

may be submitted independently of the bids to play Left’s side of the game.

When the tax rate is fair and both players are competent, it makes no economic

difference who moves first.

However, it is in many ways more natural to view the temperature as a func-

tion of the move rather than as a function of the initial position. In that sense,

temperature is a natural function of the incentive. Sentestrat still works.

5.1. “Cooling” via Honorific Tie-Breaking and Prescribed Initial Tem-

peratures. The winner of an economic game is the player who realizes a net

profit. His opponent necessarily incurs a net loss. If two gurus bid and play

perfectly, then the net score should be zero and the economic outcome is a tie.

We can break such ties by awarding an honorific victory to the player whose

opponent made the first pass at the original temperature at which the game

started.

We can also decree that the economic game begin with a prescribed finite tax

rate, t, and with a prescribed player assigned to play first.

We temporarily assume that the sum is loopfree. If t is sufficiently large, this

game is identical to the rules of our ideal economist, augmented only by the

honorific tie-breaking convention. However, if t is 0, then this game is identical

to a classical combinatorial game with the last mover winning. This is because

at subzero temperatures, the economic rules and the conventional rules yield

identical outcomes.
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At intermediate values of the starting temperature, this game turns out to

be identical to Gt, called “G cooled by t”. Cooling is a well-known mapping of

combinatorial games onto combinatorial games.

5.2. Implications for Computer Go and Similar Games We focus on

those endgames that are sums of numerous regional positions. Such problems

best display the unique power of mathematics to cope with complexities that

lie beyond the reach of alternative methods based only on heuristics and/or the

judgment of human experts.

Combinatorial game theory provides the machinery to obtain precise analyses

of sums of loopfree games played according to conventional rules. The recom-

mended approach is to compute the incentives of all summands, then order the

incentives as much as possible, and then search among all lines of play that are

locally canonical. As exemplified by the $1000 Ko problem [Berlekamp and Kim

1996], this approach often yields a rigorous analysis relatively quickly, even for

problems that are well beyond the scope of less sophisticated methods. However,

it is known that, in general, even sums of simple games can be NP hard. The

first such results were due to Lockwood Morris. Later, Laura Yedwab [1985] and

David Moews [1993] showed that a precise determination of the outcome of even

a sum of elementary three-stop games is NP-hard. So, for some problems in to-

day’s technology, the preferred methodology of combinatorial game theory (like

any other method that finds only rigorously correct answers) must necessarily

bog down in a combinatorial explosion of calculations that will not terminate

until long after everyone has run out of patience.

On the other hand, thermography offers fast, polynomial-time algorithms that

solve the same problems according to slightly different (economic) rules. The dis-

crepancy between the ideal results of sums of games played according to economic

rules and conventional rules is relatively small and easily bounded. Economic

forecasting offers further small adjustments that usually yield further decreases

in this discrepancy, driving it towards zero as the background environment in-

cluded in the sum becomes sufficiently rich. However, in the most difficult prob-

lems, the background may still be “impoverished” despite the presence of many

summands.

We have given an economic interpretation of the combinatorial game theory

technique of cooling. This interpretation suggests a strategy by which computer

Go buffs might achieve appropriate tradeoffs that would combine most of the

precision of incentives with most of the speed of thermography. This approach

begins by computing thermographs of positions and their incentives, top-down.

This provides a solution of the frozen image of the original game. Then one

refines these conclusions to obtain a solution to the original game cooled by a

temperature that is not quite large enough to freeze it. This can then be further

refined by further iterations, each of which yields a solution of a less-cooled

version of the original.
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5.3. Thermal Disassociation. Thermal disassociation [Berlekamp et al. 1982],

first proposed by Simon Norton in the early 1970s, represents an arbitrary

loopfree game as the sum of its mean and appropriate infinitesimals, each heated

by a successively smaller temperature. Excellent approximations to the game,

at various temperatures, can be obtained by ignoring the cooler terms in this

expansion.

A ko can also be represented as the sum of its mean and a heated “infinitesimal

ko”. The study of infinitesimal kos is still in its infancy.

As a loopfree instructive example, we consider the incentives of the general

3-stop game, G = x |y ||0. G’s stops are 0 and the numbers x and y, where

x ≥ y ≥ 0. G’s right incentive is ∆R(G) = G−GR = G. Its left incentive is

∆L(G) = GL −G

= {x |y}+ {0 ||−y |−x}

= {x ||x−y |0, x |y |||0}

= {x−y, x |y ||0}

= H.

As shown in Figure 23, the thermographs of H can have any of three different

forms, depending on how x compares with 2y and 3y.

Corresponding to Figure 23, we have these expressions for the thermal disso-

ciations of G and H, where � v = {v |0 ||0} and
�

v = {0 ||0 |−v}:

Cases 1 and 2: G =
x + y

4
+

∫ 1

4
(x+y)

∗ +

∫ 1

2
(x−y)

ε1,

where ε1 =
{

∗| 12 (x−3y)
}

+
{

1
2 (3y−x) |0

}

is fuzzy with 0

Case 3: G = y +

∫ y

� x−3y

Case 1: H = G

Case 2: H = G +

∫ x−2y

ε2,

where ε2 =
{

0, 3y−x |0 ||x−3y
}

−
{

3y−x |0 ||x−3y
}

> 0

Case 3: H =
x− y

2
+

∫ 1

2
(x−y)

∗ +

∫ y
�

x−3y

(Note: We have H > G, since v |0 > � v � v.)

It is interesting to note that the Yedwab–Moews construction of NP-complete-

ness requires no games of Case 2, and only their coolest game is of Case 3. All

but one of their summands are of Case 1, in which left and right incentives are

equal.
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G = {x |y ||0} = ∆R(G)

H = {x−y, x |y ||0} = ∆L(G)

Case 1: y ≤ x < 2y

0 < x

0x+y

4
yx+y

2

H
x−y

2

x+y

4

0x+y

4
y

G

Case 2: 2y ≤ x < 3y

0x+y

4
yx − y

H

x−y

2

x − 2y

x+y

4

0x+y

4
y

G

x−y

2

Case 3: 3y ≤ x

0yx−y

2
x − y

H

x−y

2

0y

G

y

Figure 23. Thermographs of incentives of three-stops.
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