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Abstract

The underlying goal of this Master’s thesis is of laying down, in so
far as possible, the foundations for later work in Geometric Stochastic
Mechanics. The first part is a presentation of symplectic reduction,
going through the momentum map and culminating with an explicit
construction of a symplectic form on orbits of the coadjoint action of a
Lie group. I have made an effort to be as explicit and precise as pos-
sible, reviewing many fundamental concepts so that this paper should
be readable by anyone who knows the fundamentals of Hamiltonian
mechanics as presented, for example, in chapters 5-7 of ”Introduction
to Mechanics and Symmetry” by Marsden and Ratiu. The second part
conveys an introduction to Brownian motion, presenting some of its fun-
damental properties, defining the Wiener measure and discussing the
weak and strong Markov properties.
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1 Lie Groups, Subgroups, Group Actions and Quo-
tients

1.1 Lie groups and subgroups

This section is meant as a review of Lie group theory, presenting some fun-
damental results that will be needed in this work. It is assumed the reader
knows what a Lie goup and its Lie algebra are. See [5], chapters 4, 9 and 20
or [6], chapter 4.1 for a detailed exposition of what follows.

Definition 1 Let G, H be Lie groups. A group homomorphism F : G→ H
that is also a smooth map is called Lie group homomorphism.

Theorem 2 Let G and H be Lie groups and let g and h be their Lie algebras.
Suppose F : G → H is a Lie group homomorphism. For every X ∈ g, there
is a unique vector field in h that is F -related to X. If we denote this vector
field by F∗X, the map F∗ : g→ h so defined is a Lie algebra homomorphism.

Definition 3 A Lie subgroup H of a Lie group G is a Lie group that can be
injectively immersed into G. We shall sometimes call the injection itself a
Lie subgroup.

Proposition 4 Let G be Lie group and suppose H ⊂ G is a subgroup that
is also an embedded submanifold. Then H is a closed Lie subgroup of G.

Definition 5 Let G be a Lie group. We define a one-parameter subgroup of
G to be a Lie group homomorphism F : R→ G.

Theorem 6 Let G be a Lie group. The one-parameter subgroups of G are
precisely the integral curves of left-invariant vector fields starting at the iden-
tity. We thus have the following bijection:

{one-parameter subgroups of G} ←→ TeG = g.

Proof. Let us be given a one-parameter subgroup F : R → G. If we define
X := F∗

d
dt as above and verify that F is an integral curve for X, we will have

proven our result by uniqueness of integral curves. However,

F ′(t0) = F∗
d

dt

∣∣∣∣
t=t0

= XF (t0).

4



Definition 7 Let G be a Lie group with Lie algebra g. We define exp : g→
G by exp(X) = F (1), where F is the one-parameter subgroup of G generated
by X.

Theorem 8 Some Properties of the Exponential Map
Let G be a Lie group and g its Lie algebra.
(a) The exponential map is smooth,
(b) for any X ∈ g, F (t) = exp(tX) is the one-parameter subgroup of G gen-
erated by X,
(c) for any X ∈ g, exp((s+ t)X) = exp(sX) exp(tX),
(d) the pushforward exp∗ : T0g→ TeG is the identity, under the usual canon-
ical identifications of both spaces with g,
(e) for any Lie group homomorphism F : G→ H, exp ◦F∗ = F ◦ exp .

Theorem 9 Closed Subgroup Theorem
Suppose G is a Lie group and H ⊂ G is a subgroup that is also a closed
subset of G. Then H is an embedded Lie subgroup.

A fundamental and very usefull property that can be evidenced in the
proof of the closed subgroup theorem, and that remains true for Lie subgroups
in general is the following Lemma.

Lemma 10 Let i : H → G be a Lie subgroup of G. Then, for ξ ∈ g, we have

ξ ∈ Im(Tei) = Tei(h) ⇐⇒ expG(tξ) ∈ i(H) ∀t ∈ R.

1.2 Lie group actions and quotient manifolds

Definition 11 A Lie group action or just action of a Lie group G on a
manifold M is a smooth map Ψ : G × M → M that satisfies the usual
conditions for a group action. We will denote Ψ(g, x) = g · x if we have a
left action, and Ψ(g, x) = x · g for a right action.

It is immediate that each Ψg : M → M defined by Ψg(x) = Ψ(g, x) is a
diffeomorphism with inverse Ψg−1 .

We remind that an action Ψ : G ×M → M is said to be transitive if it
has only one orbit and called free if the stabilisator (or isotropy subgroup)
Gx of any element x ∈M is trivial.

Definition 12 An action Ψ : G ×M → M is said to be proper if the map
Ψ̂ : G×M →M ×M : (g, x) 7→ (Ψ(g, x), x) is proper.
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Proposition 13 Suppose F : M 7→ N is a proper continuous map between
topological manifolds, then F is closed.

Proof. See [5], p.47.

We now come to one of the most fundamental theorem of smooth manifold
theory.

Theorem 14 Quotient Manifold Theorem
Suppose a Lie group G acts smoothly, freely, and properly on a smooth man-
ifold M . Then the orbit space M/G is a topological manifold of dimension
equal to dim(M)−dim(G), and has a unique smooth structure with the prop-
erty that the quotient map π : M 7→M/G is a smooth submersion.

Proof. A detailed proof can be found in [5], pp 218-223. The main point of
the proof is the existence of so-called adapted charts.
Let k = dim(G), and n = dim(M) − dim(G). We say that a smooth
chart (U,ϕ) on M, with coordinate function (x, y) = (x1, ..., xk, y1, ..., yn)
is adapted to the G-action if:
(i) ϕ(U) is a product open set U1 × U2 ⊂ Rk × Rn, and
(ii) each orbit intersects U either in the empty set or in a simple slice of the
form {y1 = c1, ..., yn = cn}.
It is then shown that every point p ∈M admits an adapted coordinate chart
centered at p. It is also proven that in this case, every orbit of the action is
an embedded submanifold of M .
The key to understanding what it means to be a tangent vector in the quo-
tient is that the G · p compenent of the chart is moded out, and thus we
get the following fundamental identification for the tangent space of M/G at
π(p) :

Tπ(p)(M/G) ≈ TpM/Tp(G · p).

We have noted the proof to this theorem uncovers the fact that all orbits
are embedded submanifolds. However, one isn’t always confronted to the
ideal setting of a free and proper action, and orbits needn’t be embedded.
However, they are always immersed.
If H is a closed subgroup of a Lie group G, it can be shown that the action
by left or right multiplication of H on G is free, proper and smooth. This
underlies the following disussion.
For a surjective submersion, local sections show us that a map f out of a
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quotient is smooth if and only if it’s composition with π, f ◦π, is smooth. For
a general action Φ : G×M 7→M, one can fix an x ∈M, and define Φx : G 7→
M :: g 7→ g ·x. Consider the right action of Gx on G. Gx is closed, acts freely,
properly and smoothly on G, and the map Φ̃x : G/Gx →M :: gGx 7→ g · x is
then a well defined injective smooth map that makes the following diagram
commute:

G
Φx //

π
��

M

G\Gx
Φ̃x

<<xxxxxxxx

Theorem 15 If Ψ : G × M 7→ M is an action and x ∈ M , then Ψ̃x :
G/Gx 7→ G · x ⊂M is an injective immersion. If Ψ is proper, the orbit G · x
is a closed submanifold of M and Ψ̃x is a diffeomorphism.

Proof. See also [4], p. 265.
We show that Φ̃x is an immersion. Recall from the quotient manifold theorem
that for g ∈ G,

Tπ(g)(G/Gx) = TgG/Tg(g ·Gx). (1)

We treat the case g = e, from which the general case follows immediately by
a left translation. We show that

TeGx = {ξ ∈ TeG : TeΦx · ξ = 0}.

Then, since Tπ(e)Φ̃x ◦ Teπ · ξ = TeΦx,

Tπ(e)Φ̃x · [ξ] = 0 ⇐⇒ TeΦx · ξ = 0

⇐⇒ ξ ∈ kerTeΦx

⇐⇒ [ξ] = 0,

because of (1).
The inclusion ⊂ is immediate, we prove the opposite one.
Suppose ξ ∈ TeG, with TeΦx · ξ = 0. The relation Φx ◦ Lg = Φg ◦ Φx for all
any g in G, x in M , yields by differentiation TΦx ◦ TLg · ξ = TΦg ◦ TΦx · ξ.
Identifying g = exp(tξ) in the following calculation, we get

d
dt

∣∣∣∣
t=0

Φx(exp(tξ)) = TeΦx(exp(tξ) ◦ T (Lexp(tξ)) · ξ

= TeΦexp(tξ)(x) ◦ TΦx · ξ
= 0.
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By uniqueness of flows, we thus have that Φx(exp(tξ)) = Φx(e) = x ∀ t ∈ R.
Thus exp(tξ) ∈ Gx ∀t, which is equivalent to ξ ∈ TeGx, the Lie algebra of
Gx.
The last part of the assertion is easily shown.

1.3 Infinitesimal generators of an action

Let us be given a smooth action Φ : G ×M → M. If ξ ∈ TeG, then it is
immediate to verify that

Φξ : R×M → M
(t, x) 7→ Φ(exp(tξ), x)

is an action. In other words, Φξ is a complete flow on M . The infinitesimal
generator corresponding to this action is denoted by ξM :

ξM (x) =
d

dt

∣∣∣∣
t=0

Φ(exp(tξ), x).

It is crucial to remark, as shown in the previous section and adapting to the
language of infinitesimal generators, that

Tx(G · x) = {ξM (x) : ξ ∈ g}.

1.3.1 The adjoint action

Definition 16 Let G be a Lie Group. The action

I : G×G → G
(g, h) 7→ ghg−1

is called action of G on itself by conjugation.

It is immediate to check that for all g ∈ G, Ig is a homomorphism of Lie
groups.

Definition 17 Let G be a Lie group. The adjoint action to an element g of
G is the Lie algebra homomorphism Adg = Te(Lg ◦Rg−1) induced by Ig. This
yields an action

Ad : G× g → G
(g, ξ) 7→ Te(Lg ◦Rg−1)ξ,

called the adjoint action of G on TeG = g.
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Definition 18 We denote by adξ the linear map adξ(η) = [ξ, η].

Proposition 19 For all ξ ∈ g,

ξg = adξ. (2)

Furthermore

Tg(Ad·η)ξg = [TgRg−1ξg, Adgη], ξg ∈ TgG, η ∈ g (3)

where the dot on the right designes the variable.

Proof. Let us denote by θt the flow of the left invariant vector field Xξ on
G generated by ξ. Then

adξ(η) = [ξ, η]
= [Xξ, Xη](e)
= (LXξXη)(e)

= d
dt

∣∣∣∣
t=0

θ∗t (Xη(θt(e))

= d
dt

∣∣∣∣
t=0

[Texp(tξ)Rexp(−tξ)] ·Xη(exp(tξ))

= d
dt

∣∣∣∣
t=0

Texp(tξ)Rexp(−tξ)TeLexp(tξ)η

= d
dt

∣∣∣∣
t=0

Te(Lexp(tξ) ◦Rexp(−tξ))η

= d
dt

∣∣∣∣
t=0

Adexp(tξ)η

= ξg(η).

We can reformulate this as

[ξ, η] = d
dt

∣∣∣∣
t=0

Adexp(tξ)η

= Tg(Ad·η)ξ.

Thus

Tg(Ad·η)TeRgξ = d
dt

∣∣∣∣
t=0

AdRg(exp(tξ))η

= d
dt

∣∣∣∣
t=0

Adexp(tξ)Adgη

= [ξ, Adgη].

Equivalently,
Tg(Ad·η)ξg = [TgRg−1ξg, Adgη].
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1.3.2 The coadjoint action

One can dualize the construction of the adjoint, this yields a left action on
the dual of the lie algebra, or g∗.

Ad∗ : G× g∗ → g∗

(g, α) 7→ Ad∗g−1α

Remark 20 One has (Ad∗)g = (Adg−1)∗. In the rest of this article, the
notation Ad∗g will mean (Adg)

∗. One doesn’t want to invent an new name for
an action that is just the dual of another one, but in order to make it left
invariant, the inverse should not be forgotten.

Proposition 21 For the Ad∗ action, the following holds

ξg∗ = −ad∗ξ (4)

where (ad∗ξα)η = α(adξ(η)) = α([ξ, η]), and for all ξg ∈ TgG,

Tg(Ad
∗
· µ)(ξg) = Ad∗g(ad

∗
TgRg−1 (ξg)µ). (5)

Proof. This is proven in the same way as in the adjoint case.

The next proposition relates the adjoint action with infinitesimal gener-
ators.

Proposition 22 Infinitesimal generators and the adjoint action
Let Φ : G ×M → M be a smooth action. For every g ∈ G and ξ, η ∈ TeG,
we have:
(i) (Adgξ)M = Φ∗g−1ξM ,

(ii) [ξM , ξM ] = −[ξ, η]M .

Proof. See [6] p 269.
Let x ∈M,

(Adgξ)M (x) = d
dt

∣∣∣∣
t=0

Φ(exp(tAdgξ, x)

= d
dt

∣∣∣∣
t=0

Φ(g exp(tξ)g−1, x)

= d
dt

∣∣∣∣
t=0

Φg ◦ Φ(exp(tξ),Φg−1(x))

= TΦg−1 (x)Φg
d
dt

∣∣∣∣
t=0

Φ(exp(tξ),Φg−1(x))

= TΦg−1 (x)ΦgξM (Φg−1(x))

= (Φ∗g−1ξM )(x).
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This prooves (i). For (ii), plug in g = exp(tξ), differentiate and use (2)

Let X̃ξ(g) = TeRgξ be the right invariant vector field on G generated
by ξ. It is straightforward to verify that X̃ξ = ξG, where the underlying
action is G acting on itself by left multiplication. Then part (ii) of our last

theorem tells us that
[
X̃ξ, X̃η

]
= −X̃[ξ,η]. We will need this remark in our

computation of the symplectic form on coadjoint orbits.
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2 The Momentum Map

2.1 Definitions and first properties

Definition 23 A Lie group action Φ : G×P → P on a symplectic manifold
P is called symplectic if Φ∗gω = ω ∀g ∈ G.

Definition 24 Let Φ : G × P → P be a symplectic action on a symplectic
manifold P. A momentum map for the action Φ is a smooth map

J : P → g∗

such that for each ξ ∈ g, the associated map

Ĵ(ξ) : P → R
x 7→ J(x) · ξ

satisfies
d(Ĵ(ξ)) = iξPω, (6)

where ξP is the infinitesimal generator of the action corresponding to the
vector ξ.
In other words, J is a momentum map provided for all ξ ∈ g,

XĴ(ξ) = ξP .

Remark 25 The pairing

〈., .〉 : g∗ × g → R
(α, ξ) 7→ α(ξ)

being smooth, each Ĵ(ξ) is a smooth function. The map Ĵ : g → C∞(P )
is linear, as is trivially shown. Conversely, having a linear map Ĵ : g →
C∞(P ) satisfying the condition of the definition defines a momentum map J
by setting J(x)(ξ) = Ĵ(ξ)(x). J is then smooth because any map into g∗ is
smooth if and only if its paring with any ξ ∈ g is, which is the case here by
definition.

If we are given a symplectic action such that each ξP is globally hamil-
tonian, then there exists a momentum map. Indeed, if ξ1, ...ξk is a basis for
the lie algebra g and J1, ..., Jk are the hamiltonians for (ξ1)P , ..., (ξk)P , we
can define Ĵ(ξi) = Ji and extend by linearity. Condition (6) will be satisfied
because both d and i are linear.
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If the action has two momentum maps J and J ′, and if P is connected,
0 = d(Ĵ(ξ) − Ĵ ′(ξ)) thus Ĵ(ξ) − Ĵ ′(ξ) is locally constant and thus constant
for all ξ ∈ g, which implies the existence of µ ∈ g∗ such that J(p)− J ′(p) =
µ ∀p ∈ P.

Theorem 26 [6] p.277 Conservation of Momentum
Let Φ be a symplectic action of G on a symplectic manifold (P,w) with mo-
mentum map J . Suppose H : P → R is invariant under the action of
Φ (i.e. H(x) = H(Φg(x)) ∀x ∈ P, g ∈ G), then J is an integral for XH

(i.e. if Ft is the flow of XH then J(Ft(x)) = J(x) for all x and t where Ft is
defined.

Proof. Since H is invariant, we have H(Φexp(tξ)x) = H(x) ∀ξ ∈g, ∀t ∈ R.
Differentiating at t = 0,

0 = dH(x) · ξP (x)
= LXĴ(ξ)H
= {H, Ĵ(ξ)},
= −XH Ĵ(ξ),

which is equivalent to our statement.

Let’s now explicitely construct momentum maps for certain categories of
symplectic manifolds.

Definition 27 A momentum map J is said to be Ad∗-equivariant if the ac-
tions are compatible with J , i.e. J(Φg(x)) = Ad∗g−1J(x) ∀x, ∀g. The diagram

P
φg //

J
��

P

J
��

g∗
Ad∗

g−1

// g∗

(7)

commutes.

Theorem 28 Let Φ be a symplectic action of a Lie group G on a symplectic
manfold (P, ω). Assume ω = −dθ and that the action leaves θ invariant, that
is, Φ∗gθ = θ for all g ∈ G. Then J : P → g∗ defined by

J(x) · ξ = (iξP θ)(x)

defines an Ad∗-equivariant momentum map for the action.
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Proof. Since the action leaves θ invariant, we have

0 =
d

dt

∣∣∣∣∣
t=0

Φ∗exp(tξ)θ = LξP θ.

Using Cartan’s magic formula, we get

d(iξP θ) + iξP dθ = 0, i.e d(iξP θ) = iξPω,

showing Ĵ(ξ) = iξP θ satisfies the condition for being a momentum map.
Now for Ad∗-equivariance, we must show that

J(Φg(x) · ξ = Ad∗g−1J(x) · ξ
⇐⇒ Ĵ(ξ)(Φg(x) = Ĵ(Adg−1ξ)(x)
⇐⇒ iξP θ(Φg(x)) = (i(Adg−1ξ)P θ)(x),

but the last equality is true because (Adg−1ξ)P = Φ∗gξP , so

(i(Adg−1ξ)P θ)(x)

= (iΦ∗
gξPΦ∗gθ)(x)

= (Φ∗g(iξP θ))(x)

= (iξP θ)(Φg(x)),

using invariance of θ in the second equality. This completes our proof.

A very convenient way of constructing symplectic actions is by pulling
back an action to its cotangent bundle. The key for specializing the previous
theorem to this case is the follwing theorem.

Theorem 29 Cotangent Lift Theorem
Given two manifolds S and Q, a diffeomorphism ϕ : T ∗S → T ∗Q preserves
the canonical one-forms θQ on T ∗Q and θS on T ∗S, respectively, if and only
if ϕ = T ∗f for some diffeomorphism f : Q→ S.

Proof. A proof can be found in [4], pp 170-172. Notice that since d commutes
with the pullback operation, ϕ is then a symplectic map for the canonical
symplectic structures on the cotangent bundles.

If we are given an action Φ : G × Q → Q, by fixing a g ∈ G, we can lift
the induced diffeomorphism Φg : x 7→ g · x, to Φ∗g : T ∗Q → T ∗Q, which is
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symplectic. If we do this for every g ∈ G, and patch them together, we get
a symplectic G-action on T ∗Q:

ΦT ∗
T ∗Q → T ∗Q
(g, α) 7→ Φ∗g−1α.

We now have all the tools to specialize Theorem 29.

Theorem 30 Let Φ be an action of G on Q and let ΦT ∗
be the corresponding

lifted action on P = T ∗Q. Then this action is symplectic and has an Ad∗-
equivariant momentum map J : P → g∗ defined by

Ĵ(ξ)(αq) = αq · ξQ(q).

Proof. The projection map on the basepoint, τ∗Q : T ∗Q→ Q, is equivariant
by construction, for all g ∈ G,

τ∗Q ◦ ΦT ∗
g = Φg ◦ τQ.

Replacing g by exp(tξ) and differentiating at t = 0, we get

Tτ∗Q ◦ ξP = ξP ◦ τ∗Q.

We now apply Theorem 28 and use the definition of the canonical one-form
to verify our formula:

J(αq)(ξ) = (iξP θ)(αq)

=
〈
αq, T τ

∗
Q ◦ ξP

〉
=
〈
αq, ξP ◦ τ∗Q(αq)

〉
=
〈
αq, ξQ(q)

〉
.

2.2 Momentum maps as a generalization of hamiltonian func-
tions

Let H ∈ C∞(T ∗Rn) = C∞(R2n), together with its canonical symplectic
form ω =

∑
dqi ∧ dpi. Associate to H it’s hamiltonian vector field XH

and corresponding symplectic flow F . Assume F is complete, it is then a
symplectic action F : R × Rn → Rn. Let’s denote the lie algebra of R by
R =T0R and identify it with R itself in the usual way. We denote elements
of R by 1̃, 2̃, 3̃, ...

15



The key to our discussion is that the infinitesimal generator of F corre-
sponding to 1̃ is XH . Indeed,

XH(p) =
d

dt

∣∣∣∣
t=0

F (t, p) =
d

dt

∣∣∣∣
t=0

F (exp(t1̃, p) = (1̃R2n)(p),

since under the usual identification of R with R, the exponential map is
just the identity. In order to have a momentum map J , we can define it’s
associated comement map by setting Ĵ(1̃) = H and extending by linearity:
Ĵ(k̃) = kH, so J(x) · k̃ = (kH)(x). Canonically identifying R with its dual
R∗, we have that J(x) = H(x).

Ad∗-invariance of J is immediate, because first R is a commutative Lie
group, and so the Ad and Ad∗ actions are trivial, and secondly H is invariant
under the flow of its associated hamiltonian vector field XH .

2.3 Linear and angular momentum as momentum maps

Linear momentum can be seen as the momentum map for the action of Rn
on itself by left translation. Indeed, let Ψ : Rn × Rn → Rn : (s, q) → s + q,
then ξRn(q) = ξ ∀q ∈ Rn. Theorem 30 tells us that J̃(ξ) · (p, q) = p · ξ on
T ∗Rn, and so J(q, p) = p, the usual linear momentum.

The discussion for angular momentum is more involved, because we need
to consider the tangent bundle of Rn, and adapt the theory to this case.

For this, we remember that for a Riemannian manifold Q, there is a
bundle isomorphism between its tangent and cotangent bundles, namely gb :
TQ → T ∗Q, gb(Xq)Yq = g(Xq, Yq); its inverse is denoted by g#. We define
the canonical one-form on TQ by Θ := (gb)∗θ0, where θ0 is the canonical
1-form on the cotangent bundle. It is straightforward to show that Ω :=
−dΘ = (gb)∗ω is a symplectic form on TQ.

Lemma 31 If f : Q1 → Q2 is an isometry of riemannian manifolds, then
Tf : TQ1 → TQ2 preserves Θ.

Proof. We shall prove that

Tf = g#
2 ◦ (T ∗f)−1 ◦ gb1.

Each of these maps preserves the canonical one-form, so their composition
does too, which completes the proof. Note that these maps are thus also
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symplectic.
For Yf(q) ∈ Tf(q)Q2, Xq ∈ TqQ1, we have that

(gb2 ◦ Tf)(Xq)(Yf(q)) = gb2(Tf ·Xq)(Yf(q))

=
〈
Tf ·Xq, Yf(q)

〉
2

=
〈
Tf ·Xq, Tf ◦ Tf−1 · Yf(q)

〉
2

=
〈
Xq, Tf

−1Yf(q)

〉
1

= gb1(Xq)(T (f−1) · Yf(q))

= (T ∗(f−1) ◦ gb1(Xq))(Yf(q)),

which was to be shown.
The adaptation of Theorem 28 to this case, which is proved in the same

way as Theorem 30, is as follows:

Proposition 32 Let G be a Lie group acting isometrically on a Riemannian
manifold Q. The tangent lift of this action, which is symplectic by Lemma
31, has an Ad∗-equivariant moment map given by

Ĵ(ξ)(vq) =
〈
vq, ξQ(q)

〉
.

We now examine the lie algebra so(3) of SO(3).
Consider the map

Ψ : GL(n,R) → S(n,R)
A 7→ ATA,

where S(n,R) denotes the n(n + 1)/2-linear subgroup of symmetric n × n
matrices of M(n,R). We have O(n) = Ψ−1(In). We take global coordinates
on Rn2

and show In is a regular value of Ψ.
GL(n,R) is open in M(n,R) and so TGL(n,R) = GL(n,R) ×M(n,R).

For A ∈ GL(n,R), B ∈M(n,R), taking γ(t) = A+ tB, we have

Ψ∗B = (Ψ ◦ γ)′(0)

= d
dt

∣∣∣∣
t=0

(A+ tB)T (A+ tB)

= BTA+ATB.

For C ∈ S(n,R), by chosing B = 1
2AC, we get Ψ∗B = C, so Ψ is a submersion

and Ψ−1(In) = O(n) is an embedded submanifold of dimension n2 − n(n +
1)/2 = n(n − 1)/2. So o(n) = ker(TIdΨ) = {A ∈ M(n,R) : TIdΨ · A =
AT +A = Id}, the space of n×n skew-symmetric matrices. It can be shown
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that O(n) has two connected compenents, SO(n) being the one containing
the identity. Thus so(n) = o(n).

One can identify so(n) (with its commutator bracket for matrices Lie al-
gebra) with R3 seen as a Lie algebra with Lie bracket [x, y] = x×y (remember
this is defined intrinsically!). Define

ˆ : R3 7→ so(n) : v = (v1, v2, v3) 7→ v̂ =

 0 −v3 v2

v3 0 −v1

−v2 v1 0

 .
We have v̂w = v × w. Thus

(ûv̂ − v̂û)w = û(v × w)− v̂(u× w)
= u× (v × w)− v × (u× w)
= (u× v)× w
= (û× v)w.

So ûv̂ − v̂û = û× v.
It can be shown reasonably easily, see for example [4], pp 290-291, that

exp(tŵ) is a rotation about w of angle t ‖w‖ , where w ∈ R3. Thus if we
consider the natural action of SO(3) on R3, it is straightforward that for
ξ ∈ R3 one gets ξ̂R3(x) = ξ × x (a direct calculation also shows that the
adjoint action SO(3) on its Lie algebra seen as R3 is just the natural action
of evaluation).

We now at last have all the tools necessary to realize the angular momen-
tum ξ × x as a momentum map.

Let Ξ : SO(3) × R3 → R3 : (A, x) 7→ Ax be the usual action, then its
lift TΞ is a symplectic action by Lemma 31. Hence, denoting the inverse of
w 7→ ŵ by B 7→ B̃, we get

Ĵ(B)(q, v) =
〈
B̃ × q, v

〉
= det(B̃, q, v)

= det(q, v, B̃)

=
〈
q × v, B̃

〉
.

If we identify so(3,R) with R3 on the one hand, and R3 with its dual on the
other, we get the angular momentum as a momentum map.
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3 The Marsden-Weinstein-Meyer Quotient theo-
rem

3.1 Symplectic reduction and reduction of dynamics

Theorem 33 [6] pp. 299-300 Marsden-Weinstein-Meyer Reduc-
tion Theorem
Let (P, ω) be a symplectic manifold on which the Lie group G acts symplec-
tically and let J : P → g∗ be an Ad∗-equivariant momentum map for this
action. Assume µ ∈ g∗ is a regular value of J and that the isotropy group
Gµ under the Ad∗ action on g∗ acts freely and properly on J−1(µ). Then
Pµ = J−1(µ)/Gµ has a unique symplectic form ωµ with the property

π∗µωµ = i∗µω

where πµ : J−1(µ) → Pµ is the canonical projection and iµ : J−1(µ) → P is
the inclusion.

For this we need the following.

Lemma 34 Let p ∈ J−1(µ), then
(i) Tp(Gµ · p) = Tp(G · p) ∩ Tp(J−1(µ)), and
(ii) Tp(J

−1(µ)) is the ω-orthogonal complement of Tp(G · p).

Proof. We recall that

Tp(G · p) = {ξP (p) : ξ ∈ g},
Tp(Gµ · p) = {ξP (p) : ξ ∈ gµ},

(8)

where gµ is the Lie algebra of Gµ. Thus our statement is equivalent to the
condition

ξP (p) ∈ Tp(J−1(µ) ⇐⇒ ξ ∈ gµ.

We know J is Ad∗-equivariant, thus TpJ(ξP (p)) = ξg∗(µ), so we have

ξP (p) ∈ Tp(J−1(µ) = ker(TpJ) ⇐⇒ ξg∗(µ) = 0.

The condition ξg∗(µ) = 0 is equivalent to the integral curve of the induced
left action (t, ν) 7→ Adexp(−tξ)ν on g∗ by ξ being constant, by uniqueness of
integral curves. Stated another way, this is equivalent to µ being a fixed
point of the induced action. However, exp(tξ) ∈ Gµ, ∀t ∈ R ⇐⇒ ξ ∈ gµ,
which completes part (i).
For part (ii), we use that

ω(ξP (p), vp) = d(Ĵ(ξ))p · vp = 〈TpJ · vp, ξ〉
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where vp ∈ TpP , ξ ∈ g.So

v ∈ Tp(J−1(µ) = ker(TpJ) ⇐⇒ TpJ · vp = 0
⇐⇒ (TpJ · vp)ξ = 0 ∀ξ ∈ g
⇐⇒ ω(ξP (p), vp) = 0 ∀ξ ∈ g
⇐⇒ vp ∈ (Tp(G · p))ω,

the last equality being true because of (8).

Proof. (Marsden-Weinstein Theorem)
We denote [vp] := Tπµ · vp, and recall that Tπ(p)Pµ ≈ Tp(J

−1(µ)/Tp(Gµ · p),
as quotient of a vector space by a subspace. We have

π∗µωµ = i∗µω ⇐⇒ ωµ([v] , [w]) = ω(v, w) ∀v, w ∈ Tp(J−1(µ)).

Well-definedness follows immediatly from part (ii) of Lemma (34). Since πµ
and Tπµ are surjective, our form ωµ is uniquely defined, should it satisfy
π∗µωµ = i∗µω.
For smoothness of ωµ, we recall that a surjective submersion admits a smooth
local section σ at any point of its image, and verify immediatly that locally,
ωµ = σ∗ω.
Closedness can be checked similarly with local sections, denoted by σ:

ωµ = σ∗ω ⇒ d(ωµ) = d(σ∗ω) = ωµ = σ∗(dω) = 0.

It remains only to be shown that ωµ is nondegenerate. This is true since

ωµ([v] , [w]) ∀w ∈ Tp(J−1(µ)) ⇒ ω(v, w) = 0 ∀w ∈ Tp(J−1(µ))
⇒ v ∈ Tp(Gµ · p)
⇒ [v] = 0.

Theorem 35 Reduction of Dynamics
Under the assumptions of the Marsden-Weinstein reduction Theorem, let
H : P → R be invariant under the action of G. Then we have:
(i) The flow F of XH leaves J−1(µ) invariant,
(ii) it commutes with the action of Gµ on J−1(µ), and thus induces canoni-
cally a flow Ht on Pµ satisfying πµ ◦ Ft = Ht ◦ πµ.
(iii) The flow Ht is a Hamiltonian flow on Pµ with Hamiltonian Hµ defined
by Hµ ◦ πµ = H ◦ iµ. We call it the reduced Hamiltonian.
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Proof. Let’s denote our action by Φ. First, remark that since this action is
symplectic, XH is Φg-related to itself: for all g in G,

Φ∗gXH = XH◦Φg = XH .

Thus, the flow F of XH commutes with the action of G on P (for more
details, see for example [5], Lemma 18.4).
By Theorem 26, we know that J is constant on the flow F of XH , thus we
can restrict F to J−1(µ). Let’s now fix a value t ∈ R, and take Ft : J−1(µ)→
J−1(µ) down to the quotient by defining

Ht ◦ πµ(x) := πµ ◦ Ft(x).

Ht is well-defined since Ft commutes with the action of G. It is smooth
because πµ ◦ Ft is. The following commutative diagram will be usefull to
keep in mind.

J−1(µ)
Ft //

πµ

��

J−1(µ)
iµ //

πµ

��

P
H // R

J−1(µ)/Gµ Ht
// J−1(µ)/Gµ

Hµ

66mmmmmmmmmmmmmmmm

(9)

We have
π∗µH

∗
t ωµ = F ∗t π

∗
µωµ = F ∗t i

∗
µω = i∗µω = π∗µωµ,

the third equality as a result of the flow F being symplectic. Taking local
sections, we conclude that H∗t ωµ = ωµ, so Ht is symplectic. Let us show that
the infinitesimal generator Y of Ht is globally Hamiltonian. For this, define
Hµ : Pµ → R by Hµ ◦πµ = H ◦ iµ. This is well defined by G-invariance of H.
Since Ht and Ft are πµ-related for all t, we have that Y (πµ(p)) = Tπµ ·XH(p).
Let [v] = Tπµ · v ∈ TPµ. Then

dHµ · v = dHµ(Tπµ · v)
= (Tπµ · v)Hµ

= v(Hµ ◦ πµ)
= v(H ◦ iµ)
= (Tiµ · v)H
= dH(Tiµ · v)
= (i∗µdH) · v
= (i∗µω)(XH , v).

= (π∗µωµ)(XH , v)

= ωµ(Y, [v]).

We have shown that Y has a global hamiltonian function Hµ, which was
what we wanted.
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3.2 Coadjoint orbits as symplectic manifolds

We use the Marsden-Weinstein-Meyer reduction procedure to build a sym-
plectic structure on the coadjoint orbits of the Ad∗-action induced by any
Lie group G. This procedure and the explicit symplectic form in terms of
infinitesimal generators that we will devise is called the Kirillov-Kostant-
Souriau theorem.

We are given a Lie group G, together with its left action Λ : G×G→ G :
(g, h)→ Lgh. We lift this action to the cotangent bundle T ∗G and obtain a
symplectic action

ΛT
∗

: G× T ∗G → T ∗G
(g, αg) 7→ T ∗Lg−1αg.

The momentum map J : T ∗G→ g∗ is then given by Theorem 30, for ξ ∈ g:

J(αg) · ξ = αg(ξG(g)) = αg · TeRg(ξ).

Indeed

ξG(g) =
d

dt

∣∣∣∣
t=0

exp(tξ) · h =
d

dt

∣∣∣∣
t=0

Rh exp(tξ) = TRh(ξ)

since T0g exp ∼= Idg.
Thus

J(αg) = T ∗eRg · αg = αg ◦ TeRg.

Let’s show that every value µ ∈ g∗ is a regular value for J . For this consider
the diffeomorphism Φ : T ∗G → G × g∗ : (g, αg) 7→ (g, T ∗eRg · αg). Then the
following diagram commutes, that is, Φ◦π2 = J , where π2 is projection onto
the second factor, from which our assertion follows immediately.

T ∗G
J //

Φ
��

g∗

G× g∗
π2

;;xxxxxxxxx

Now J−1(µ) = {(g, αg) ∈ T ∗G : µ = T ∗eRg · αg}. So

(g, αg) ∈ J−1(µ) ⇐⇒ αg ◦ TeRg = µ
⇐⇒ T ∗eRg · αg = µ
⇐⇒ αg = T ∗gRg−1 · µ.
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This is nothing else than the image of the right-invariant covector field αµ
induced by the value µ at the identity:

αµ : G → T ∗G
g 7→ (g, αg = T ∗gRg−1 · µ).

Let us see who Gµ is.

g ∈ Gµ ⇐⇒ Ad∗µµ = µ

⇐⇒ T ∗e (Lg ◦Rg−1)µ = µ
⇐⇒ T ∗e (Rg−1 ◦ Lg)µ = µ
⇐⇒ αµ(g) = T ∗gLg−1µ = T ∗gLg−1αµ(e)

⇐⇒ L∗g−1αµ = αµ
⇐⇒ L∗gαµ = αµ,

so Gµ is the set of all elements that leave the form αµ invariant by left
translation.

Although this is not correlated to the explicit identification of Gµ we
have just made, the action ΛT

∗
acts on points in T ∗G by shifting the base

point to the left. So, by projecting J−1(µ) to G, we can view the action of
Gµ on J−1(µ) as simply the left action of Gµ on G! This action is free and
proper, so we can form the quotient manifold G/Gµ and use the machinery
we developped in the first chapter to get the following diffeomorphisms

J−1(µ)/Gµ ∼= G/LGµ ∼= G/RGµ ∼= G · µ ⊆ g∗

πµ(g, αµ(g)) 7→ [g] 7→ [g−1] 7→ Ad∗gµ,

where /L and /R denote the quotients by the left and right action of Gµ on
G, respectively.

Using the Marsden-Weinstein-Meyer quotient theorem and pushing for-
ward the symplectic form to G · µ, we have shown that the coadjoint orbit
at a point µ is a symplectic manifold.

We now move to the task of explicitly computing the symplectic form ωµ
on the coadjoint orbit of µ. Let us define

ζ : J−1(µ) → G · µ
(g, αµ(g)) 7→ Ad∗gµ,

so that by the Marsden-Weinstein-Meyer theorem and our construction, ζ∗ωµ =
i∗µω, where ω is the canonical two form on T ∗G.

We follow [6], p. 303. This will be done in several steps.
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• J−1(µ) is the image of G by the right-invariant one-form αµ. Thus
Tαµ(g)J

−1(µ) = Tαµ(TgG) = TαµTRg(g).

• We do the following computation:

i∗µω(TαµTRgξ, TαµTRgη)

= α∗µω(TRgξ, TRgη)

= −dαµ(TRgξ, TRgη)

= −dαµ(X̃ξ, X̃η)(g)

= −{X̃ξ(αµ(X̃η))− X̃η(αµ(X̃ξ)− αµ([X̃ξ, X̃η])}(g)

= αµ([X̃ξ, X̃η])(g)
= −µ([ξ, η]),

where X̃η denotes the right-invariant vector field extending η. The
fourth equality holds because

αµ(X̃η) = (T ∗Rg−1µ)(TRgη) = µ(η)

is constant. The last equality follows from [X̃ξ, X̃η] = −X̃[ξ,η].

• We have

(ζ∗ωµ)(TαµTRgξ, TαµTRgη)
= ωµ(Ad∗µ)(Tαµ(g)ζ · Tgαµ · TeRgξ, Tαµ(g)ζ · Tgαµ · TeRgη)

= ωµ(Tg(Ad
∗
· µ) · TeRgξ, Tg(Ad∗· µ) · TeRgη),

since ζ(αµ(g)) = Ad∗gµ.

• Now comes the more subttle part, where one has to be careful how to
view our objects. One has

Tg(Ad
∗
· µ) · TeRgξ = Ad∗g(ad

∗
TgRg−1TeRgξ

µ)

= Ad∗g(ad
∗
ξµ)

= −Ad∗g(ξg∗(µ))
∼= −(TµAd

∗
g)(ξg∗(µ))

= −((Ad∗g−1)∗ξg∗)(Ad∗gµ)

= −((Ad∗)g)
∗ξg∗)(Ad∗gµ)

= −(Adg−1ξ)g∗(Ad∗gµ)

The first equality follows from (5), the second is just taking care of the
subscripts, the third by (5). The last follows from (22).
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Putting these four steps together, we get

ωµ(Ad∗gµ)((Adg−1ξ)g∗(Ad∗gµ), Adg−1η)g∗(Ad∗gµ)) = −µ · [ξ, η].

Making the change of variables

Adg−1ξ′ = ξ
Adg−1η′ = η
ν = Ad∗gµ,

and remembering that for a fixed g, Adg is a Lie algebra homomorphism, we
finally get the elegant formula

ωµ(v)(ξg∗(v), ηg∗(v)) = −v · [ξ, η].

It is straightforward to verify (by direct calculation or by using the left action
of G on T ∗G) that under the action of Ad∗g−1 on G · µ, the symplectic form
ωµ is preserved. Thus our orbit is a homogeneous Hamiltonian G-space.

3.3 The complex projective spaces as real symplectic mani-
folds

The complex projective space CPn−1 is by definition the topological quotient
of Cn\{0} by C∗ by the action

M : C∗ × Cn\{0} → Cn\{0}
(λ, (a1, ..., an)) 7→ (λa1, ..., λan).

For an element A = (a1, ..., an) such that ‖A‖ = 1, every λ = exp(iθ) will
satisfy ‖λA‖ = 1. We can thus get CPn−1 through the action

m : S1 × S2n−1 → S2n−1

(λ, (a1, ..., an)) 7→ (λa1, ..., λan).

To put a symplectic form on CPn−1 = S2n−1/S1, the idea is to identify S2n−1

as the integral curve (or orbit) of a complete periodic hamiltonian vector field
(whose flow is then symplectic).

This can be done with the so called ”harmonic oscillator hamiltonian”
H ∈ C∞(T ∗Rn) : H(qi, pi) = 1

2

∑
i((q

i)2 + (pi)
2), with the canonical sym-

plectic form ω = −dθ =
∑

i dq
i ∧ dpi. See also [4], p302. We get

XH(qi, pi) =
n∑
i=1

(pi
∂

∂qi
− qi ∂

∂pi
)
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which integrates to the complete symplectic action

F : R× T ∗Rn → T ∗Rn
(t, (q,p)) 7→ (q cos t+ p sin t,p cos t− q sin t).

Each orbit is 2π-periodic and so we can see this action as a symplectic action
of S1 on T ∗Rn. S2n−1 appears as H−1(1

2), and is evidently a regular value!
S1 is compact, so the action is proper. It is also free. The quotient theorem
allows us to conclude.
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4 An Introduction to Brownian Motion

This section is based primarily on [1] and [2], and should provide a quick
but nevertheless rigourous introduction to brownian motion. Most proofs
are taken from these sources, reorganized and completed.

4.1 First things first

4.1.1 Reminder of measure theory

We go through this chapter in an informal manner. Omitted proofs can be
found in any introductory text in probability.

Definition 36 Let f be a measurable function between a probability space
(Ω,F , P ) and a measurable space (Ω∗,F∗). We define the image measure of
P by f , or pushforward of P by f , or law of f , the probability measure f∗P
on (Ω∗,F∗) defined by f∗P (F ) = P (f−1(F )) for all F in F∗.

Proposition 37 With the same notations as in definition (36). Let g be a
measurable function from (Ω∗,F∗) to (R,B(R)), then the following holds

g ∈ L1(Ω∗,F∗, f∗P ) ⇐⇒ g ◦ f ∈ L1(Ω,F , P ),

in which case we have ∫
Ω∗

g d(f∗P ) =

∫
Ω

(g ◦ f) dP.

Proposition 38 Dynkin’s Lemma
Let E be a set and Π be a π − system in E (subset of P(E) that is stable
by finite intersection) such that E ∈ Π. Let Λ be a λ − system (subset of
P(E) that is stable by complement and countable disjoint union) containing
Π. Then σ(Π) ⊆ Λ (the smallest sigma algebra containing Π is contained in
Λ, or the intersection of all sigma algebras containing Π is contained in Λ).

This proposition is a jack in the box in probability theory because it pops
up absolutely everywhere. It allows us to focus on a special type of generating
sets for a sigma algebra instead of the whole sigma algebra. Let us illustrate
this by proving two key lemmas.

Lemma 39 Let µ, ν be two finite measures on a measurable space (Ω,F)
that agree on a π − system Π that generates F and contains F as a subset.
Then µ(A) = ν(A) for all A in F .
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Proof. Just verify that the set of all sets in F on which µ and ν agree is a
λ− system, which is immediate.

An application of this Lemma is uniqueness of the measure giving the
volume of hypercubes on (Rd,B(Rd)), or Lebesgue measure on borelians.

This Lemma will also give us uniqueness of the Wiener measure, as we
shall see later on.

Lemma 40 Let Π1, ...,Πn be π − systems on a probability space (Ω,F , P ),
with F ∈Πi, ∀ i ∈ {1, ..., n}. Suppose

P (F1 ∩ ... ∩ Fn) =
n
Π
i=1
P (Fi) ∀ F1 ∈ Π1, ..., Fn ∈ Πn, (10)

then σ(Π1), ...σ(Πn) are independant sigma algebras.

Proof. Fix F2 ∈ Π2, ..., Fn ∈ Πn, and verify that the set of all sets F1

in F such that (10) is true is a λ − system containing Π1. Once this is
done for every F2 ∈ Π2, ..., Fn ∈ Πn, move on to the second factor, with
F1 ∈ σ(Π1), F3 ∈ Π3, ..., Fn ∈ Πn and apply the same procedure until the
last factor is reached.

4.1.2 Characteristic functions

Definition 41 Let X be an Rd-valued random variable on a probability space
(Ω,F , P ). The characteristic function of X, or Fourier transform of the
measure X∗P , is defined by

Φ(ξ) = E[exp(i 〈ξ,X〉)] =

∫
Rd

exp(i 〈ξ, x〉)d(X∗P ), ∀ξ ∈ Rd.

Notice the integrand is bounded by 1, thus the integral is always defined,
since we are on a probability space. This function is uniformly continuous,
Cn differentiable if n ≤ bpc , with X ∈ Lp.

The admirable property of Fourier transforms of measures on Rd is stated
in the following theorem.

Theorem 42 The characteristic function of an Rd-valued random variable
X characterizes the law of this random variable. In other words, the Fourier
transform, as defined on the set of all measures on Rd, is injective.
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4.1.3 Gaussian Vectors

Definition 43 A random variable X : (Ω,F , P ) −→ R is called gaussian of
mean m and standard value σ if

X∗P =
1√
2πσ

exp(−1

2
(
x−m
σ

)2)dx,

where dx is the Lebesgue measure on R. Equivalently, in terms of char-
acteristic functions, ΦX(ξ) = exp(−1

2ξ
2σ2 + imξ), ξ ∈ R. We then write

X  N (m,σ2).

A key observation is noticing that a sum of independant gaussian random
variables is still a gaussian random variable. This can be shown by means of
the Fourier transform. If X1  N (m1, σ

2
1), X2  N (m2, σ

2
2), then

E[exp(i(X1 +X2)ξ]
= E[exp(iX1ξ] · E[exp(i(X2)ξ]
= exp(−1

2ξ
2(σ2

1 + σ2
2) + i(m1 +m2)ξ)

and so X1 +X2  N (m1 +m2, σ
2
1 + σ2

2).

Definition 44 Let C be a symmetric semi-positive d × d matrix with real
coefficients. A random variable X = (X1, ..., Xd) : (Ω,F , P ) −→ Rd is called
centred gaussian vector of covariance matrix C if

ΦX(ξ) = exp(−1

2
ξTCξ), ξ ∈ Rd.

We then write X  N (0, C).

Theorem 45 Gaussian Random Vectors
Let C be a symmetric semi-positive d × d matrix with real coefficients, then
there exists a centred gaussian vector X of covariance matrix C. The compe-
nents of X are then gaussian variables and their covariance matrix is given
by C, thus its name. Conversely, if X = (X1, ..., Xd) is composed by d gaus-
sian variables with covariance matrix C, then X is gaussian of covariance
matrix C.

In other terms, using injectivity of the Fourier transform, the covariance
matrix of Gaussian random variables completely determines their joint prob-
ability law. In particuliar, gaussian random variables are independant if and
only if their covariance matrix is diagonal. A key to proving this theorem
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is the principle axis theorem: there exists an orthogonal change of basis A
such that X = (X1, ..., Xd) = A · Y, with Y a gaussian vector made of in-
dependant gaussian variables (i.e. the covariance matrix is diagonal). In
particuliar a vector valued random variable is gaussian if and only if any
linear combination of its components is gaussian.

Here is the last key ingredient in our discussion of gaussian vectors.

Theorem 46 Vectorial central limit theorem
Let (Xn)n≥1 be a sequence of identically distributed independant square in-
tegrable Rd-valued random variables. Let K be the covariance matrix of the
components of one of these variables. Then

1√
n

(X1 + ...+Xn)
(law)−→
n→∞

N (0,K).

4.2 Brownian motion as a limit of a scaled random walk

Definition 47 One calls brownian motion (starting at 0, in dimension d) a
family of Rd-valued random variables (Bt)t∈R+ such that:
(P1) one has B0 = 0 a.s. Furthermore, for any choice of integer p ≥ 1
and real numbers 0 = t0 < t1 < ... < tp, the random variables Bt1 , Bt2 −
Bt1 , ..., Btp − Btp−1 are independant, and for any j ∈ {1, ..., p}, Btj − Btj−1

is a centered gaussian vector of covariance matrix (tj − tj−1)Id.
(P2) For every ω ∈ Ω, the function t 7→ Bt(ω) is continuous.

Remark 48 To show that a brownian motion actually exists is all but evi-
dent. A proof can be found in [1], pp 222-225; a second proof can be found in
[2], chapters 1 and 2, along with a detailed study of gaussian variables and
measures. It should be noted that both proofs involve an isometric embbed-
ing of some hilbert space into a gaussian space (or closed subspace of some
L2(Ω,A, P ) that is made up of centred gaussian variables). The key here is
that for Gaussian random variables, zero covariance (or zero scalar product
in this L2 space) is equivalent to (and not only implied by!) independance.
The proof for d = 1 immediatly extends to any d ∈ N by taking d independant
copies of a brownian motion in one dimension.

We now show how to obtain a brownian motion as a limit of a scaled
random walk. For this, let’s consider a random walk (Sn)n∈N on Zd starting
at zero, i.e. we are given independant identically distributed random variables
(Yi)i∈N∗ , and set S0 = 0, Sn =

∑n
i=1 Yi, for n ≥ 1. Some hypotheses will be

necessary. First, we would like to use the power of the central limit theorem,
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and so will assume that Yi ∈ L2 (Ω,F , P ) , i.e.
∑

k∈Zd ‖k‖
2 d(Yi∗P ) < ∞.

We will assume our variables are centered: E(Yi) = (0, ..., 0). Finally, we
want our random walk to reflect isotropy, i.e. the same behavior in any
direction of space. This is translated mathematically by saying that the
covariance function of any two components of Yi is given by: Cov(Y α

i , Y
β
i ) =

σ2δαβ, α, β ∈ {1, ..., d}, respectively
∑

k∈Zd kαkβd(Yi∗P ) = σ2δαβ.

Proposition 49 For any p ≥ 1, and any choice of real numbers 0 = t0 <
t1 < ... < tp, one has

(S
(n)
t1
, S

(n)
t2
, ..., S

(n)
tp )

(law)−→
n→∞

(U1, U2, ..., Un),

where

S
(n)
t :=

1√
n
Sbntc

is a a change of scale of the function k 7−→ Sk, and the limit law is charac-
terized by:
(i) the random variables U1, U2 − U1, ..., Up − Up−1 are independant;
(ii) for any j ∈ {1, ..., p}, Uj − Uj−1 is a centered gaussian vector of covari-
ance matrix σ2(tj − tj−1)Id, where by convention U0 = 0.

Proof. We only need to show that for any ξ1, ..., ξp ∈ Rd,

E[exp(i

p∑
j=1

ξj · S
(n)
tj

)] −→
n→∞

E[exp(i

p∑
j=1

ξj · Uj)],

since convergence in law is equivalent to convergence of the Fourier transform
(a result of Lévy, c.f. [1], pp 133-134). This is equivalent to

E[exp(i
p∑
j=1

ηj · (S
(n)
tj
− S(n)

tj−1
)]

−→
n→∞

E[exp(i
p∑
j=1

ηj · (Uj − Uj−1)] ∀η1, ..., ηp ∈ Rd.

However, using independance and the Fourier transform of Gaussian vari-
ables,

E[exp(i
p∑
j=1

ηj · (Uj − Uj−1)]

=
p

Π
j=1

[exp(iηj · (Uj − Uj−1)]

= exp(−
p∑
j=1

σ2|ηj|2(tj−tj−1)

2 ).
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On the one hand, we have

S
(n)
tj
− S(n)

tj−1
=

1√
n

bntjc∑
k=bntj+1c

Yk,

which tells us that the random variables S
(n)
tj
− S

(n)
tj−1

are independant for
1 ≤ j ≤ p. On the other hand, for a fixed value of j,

S
(n)
tj
− S(n)

tj−1

(law)
= 1√

n
Sbntjc−bntj+1c

=

√
bntjc−bntj+1c√

n
1√

bntjc−bntj+1c
Sbntjc−bntj+1c.

Using the condition of isotropy and the central limit theorem for vector valued
random variables, we conclude that this variable converges in law to a normal
centered variable N of covariance matrix σ · Id.
As a consequence, for every fixed j,

E[exp(iηj · (S
(n)
tj
− S(n)

tj−1
)]

−→
n→∞

E[exp(i
√
tj − tj−1ηj · N ]

= exp(−σ2|ηj|2(tj−tj−1)

2 ).

Independance of the random variables S
(n)
tj
− S(n)

tj−1
, 1 ≤ j ≤ p now allows us

to conclude.

4.3 The Wiener measure

We would like to change our point of view, and see an element ω of our
probability space (Ω, (Ft)t∈R+ , P ) as a path on its own right. At the same
time, we would like to have a way to identify all brownian motions. The
solution to this problem can be given by putting an adequate sigma algebra
on C(R+,Rd), the space of continuous functions from R to Rd, and endowing
it with a pushforward measure, or Wiener measure. Furthermore, this space
is very convenient for time-shifting of paths, such as we will explain in the
setting of the weak and strong Markov properties.

Definition 50 Let C be the smallest sigma algebra on C(R+,Rd) that makes
all coordinate projection functions πt, t ∈ R+ measurable.
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Remark 51 It is trivial to verify that a function f from a measurable space
into (C(R+,Rd), C) is measurable if and only if πi ◦f is measurable for every
i in R+.

Remark 52 It can be shown, for example in [1], page 226, that C coincides
with the borel sigma algebra (or sigma algebra generated by a topology) of the
topology of uniform convergence on every compact for C(R+,Rd).

Definition 53 Let (Bt)t∈R+ be a d-dimensional brownian motion starting at
zero, defined on a space (Ω,F , P ). The Wiener measure in dimension d is
then defined to be the pushforward measure P0 = Φ∗P of the map

Φ : Ω −→ C(R+,Rn)
ω 7−→ (Bt(ω))t∈R+ .

A few remarks should immediatly be made.
First, Φ is measurable, because it’s component functions πt ◦Φ, t ≥ 0 are

precisely the measurable functions Bt, t ≥ 0.
Secondly, the following calculation guarantees us that P0 is uniquely de-

fined, whatever the choice of brownian motion we are starting with. For this,
let A0,A1, ..., Ap be borel sets of Rd, then

P0({ω ∈ C(R+,Rn) : w(t0) ∈ A0, w(t1) ∈ A1, ..., w(tp) ∈ Ap})
= P (Bt0 ∈ A0, Bt1 ∈ A1, ..., Btp ∈ Ap)
= 1A0(0)

∫
A1×...×Ap dy1...dyppt1(y1)pt2−t1(y2 − y1)...ptp−tp−1(yp − yp−1),

where pσ denotes the density of a gaussian variable X  N (0, σ · Id).
We conclude once again with Dynkin’s Lemma, all sets of the form {ω ∈

C(R+,Rn) : w(t0) ∈ A0, w(t1) ∈ A1, ..., w(tp) ∈ Ap} forming a π − system
generating C.

The interpretation of this construction should be the following: the Wiener
measure is a probability on the set of continuous paths C(R+,Rn) such that
under this measure the projection functions constitute a brownian motion.
We call this the canonical brownian motion.

It should be mentioned that the exact same construction can be made for
a brownian motion starting at another point x than the identity, in which
case we call the corresponding Wiener measure Px.

4.4 The weak Markov Property and Blumenthal’s zero-one
law

We consider a brownian motion B in Rd. We shall note, for every s ≥ 0, Fs =
σ(Br, 0 ≤ r ≤ s), F∞ = σ(Br, r ≤ ∞).
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Proposition 54 Some properties of brownian motion
(i) if ϕ is a vectorial isometry of Rd, then (ϕ(Bt))t∈R+is also a brownian
motion
(ii) for each γ > 0, the process Bγ

t = 1
γBγ2t is also a brownian motion (scale

invariance);

(iii) for each s > 0, the process B
(s)
t := Bs+t − Bs is a brownian motion

independant of Fs (weak Markov property)

Proof. For both (i) and (ii), we shall use injectivity of the fourier transform
of measures on Rn
Let’s prove (i): denote by ϕ(x) = Ax an orthogonal transformation on Rn,
i.e. ATA = I. If X is a Gaussian vector, then so is AX. We trivially have
ϕ(B0) = 0 a.s. and the new paths are continuous Now let 0 < t1 < t2 < ... <
tp. Since Bt1 , Bt2 − Bt1 , ..., Btp − Btp−1 are gaussian and independant, the
same is true for ϕ(Bt1), ϕ(Bt2−Bt1), ..., ϕ(Btp−Btp−1). Now we compute for
s < t,

E[exp(i 〈ξ, ϕ(Bt −Bs)〉]
= E[exp(i

〈
AT ξ,Bt −Bs

〉
]

= exp(−1
2ξ
TA(t− s)IAT ξ)

= exp(−1
2ξ
T (t− s)Iξ),

which proves that ϕ(Bt −Bs) has law N (0, (ti − ti−1)I).
For (ii), s < t, the same computations lead us to

E[exp(i 〈ξ,Bγ
t −B

γ
s 〉]

= E[exp(i
〈
ξ, 1

γBγ2t −Bγ2s
〉

]

= exp(−1
2( ξγ )T (γ2t− γ2s)I ξγ )

= exp(−1
2ξ
T (t− s)Iξ),

which is what we wanted. The last property is an easy application of Dynkin’s
lemma.

Another elegant way of stating the weak Markov property is to define a
shift operator

θt : C(R+,Rn) −→ C(R+,Rn)
w 7−→ w(t+ ·),

to verify this map is measurable and the pushforward satisifies θ∗tP0 = P0.
As we shall see later on, the exact same procedure goes through when we
replace a deterministic time t with a stopping time T. This is then called the
strong Markov Property, and contains the weak Markov property as a special
case for a constant stopping time.
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Theorem 55 Blumenthal’s Zero-One Law
Let

F0+ =
⋂
t>0

Ft,

then F0+is trivial in the sense that A ∈ F0+ =⇒ P (A) = 0 or P (A) = 1.

Proof. Let A ∈ F0+ and let t1, ..., tp > 0, p ∈ N∗. For ε > 0 small enough,
Markov’s weak property implies that (Bt1 −Bε, ..., Btp −Bε) is independant
of Fε, and thus of F0+. As a consequence, for every continuous bounded
function f on (Rd)p,

E[1Af(Bt1 −Bε, ..., Btp −Bε)] = P (A)E[f(Bt1 −Bε, ..., Btp −Bε)].

By letting ε go to zero, we get by dominated convergence

E[1Af(Bt1 , ..., Btp)] = P (A)E[f(Bt1 , ..., Btp)],

and thus (Bt1 , ..., Btp) is independant of F0+. As a consequence of Dynkin’s
Lemma,

⋃
{σ(Bt1 , ..., Btp), t1, ..., tp > 0, p ∈ N∗} ∪ F0 being a π-system

generating F∞, we find that F∞ is indepedant of F0+. In particular, F0+ is
independant of itself. But this can only happen if F0+ is trivial.

Remark 56 It should be pointed out that when we applied Dynkin’s Lemma,
we implicitly used the fact that F0 is trivial, and thus independant of any
sigma algebra, in particular of F0+.

Corollary 57 Assume d = 1, then almost surely, for every ε > 0

sup
0≤s≤ε

Bs > 0; inf
0≤s≤ε

Bs < 0. (11)

(Carefully look at the order of logical quantifiers here, it is NOT the other
way round, we have a better assertion here). Define, for every a > 0, Ta =
inf{t ≥ 0 : Bt = a}. One sets inf ∅ =∞. Then

a.s. ∀a ∈ R, Ta <∞.

As a consequence, almost surely,

lim sup
t−→∞

Bt = +∞; lim inf
t−→∞

Bt = −∞.

Remark 58 The supremum in the first inequalities of the corollary are taken
over an uncountable set. However, one can restrict ourselves to the values of
s in [0, ε] ∩Q, the paths being continuous.
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Proof. The first assertion is a direct consequence of Blumenthal’s zero-one
law. The second is a consequence of the first assertion using the property of
invariance of scale. The last property follows from the second by remarking
the following: any continuous function f : R+ −→ R is surjective if and only
if lim sup

t−→∞
ft = +∞ & lim inf

t−→∞
ft = −∞, by a trivial compactness argument.

Let’s prove Theorem 11. Let (εp) be a sequence of strictly positive reals
decreasing to 0. Let

A :=
⋂
p

{ sup
0≤s≤ε

Bs > 0}

We prove that P (A) = 1. It is clear that A is F0+-measurable and that

P (A) = lim
p→∞

↓ P ( sup
0≤s≤ε

Bs > 0).

But

P ( sup
0≤s≤ε

Bs > 0) ≥ P (Bεp > 0) =
1

2
,

since Bεp has a gaussian N (0, εp) distribution. Blumenthal’s zero-one law
concludes the proof. The assertion for the infimum is obtained by replacing
B by −B.
For the second assertion, we write

1 = P ( sup
0≤s≤1

Bs > 0) = lim
δ↓0
↑ P ( sup

0≤s≤1
Bs > δ),

and use the property of invariance of scale of brownian motion

P ( sup
0≤s≤1

Bs > δ) = P ( sup
0≤s≤ 1

δ2

Bδ
s > 1) = P ( sup

0≤s≤ 1
δ2

Bs > 1),

the last equality by uniqueness of the law of brownian motion again. Letting
δ go to zero, we find that

P (sup
s≥0

Bs > 1) = 1.

Let A > 0, we use uniqueness of the law of brownian motion and a change of
scale to find that

1 = P (sup
s≥0

BA
s > 1) = P (sup

t≥0
Bt > A),

since {sup
s≥0

B
A2s
A > 1} = {sup

t≥0
Bt > A)}. The assertion for the infimum is once

again obtained by replacing B by −B.
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4.5 The strong Markov property and the reflexion principle

We would like to extend the weak Markov property from deterministic stop-
ping times to random stopping times. We keep the same notations as in the
previous section.

Definition 59 A random variable T taking values in [0,∞] is called a stop-
ping time if ∀t ≥ 0, {T ≤ t} ∈ Ft.

Definition 60 Let T be a stopping time. The sigma algebra of events ante-
rior to T , is

FT := {A ∈ F∞ : ∀t ≥ 0, A ∩ {T ≤ t} ∈ Ft}.

Lemma 61 T and 1{T<∞}BT are FT −measurable.

Proof. The assertion for T is trivial. The second assertion uses continuity
of trajectories of a brownian motion: notice that

1{T<∞}BT = lim
n−→∞

∞∑
i=0

1{i2−n≤T<(i+1)2−n}Bi2−n , (12)

so that we will be able to conclude if we can show that ∀s ≥ 0, 1{s≤T}Bs is
FT −measurable. Indeed, since

∀i : 1{i2−n≤T<(i+1)2−n}Bi2−n = 1{i2−n≤T<(i+1)2−n}1{i2−n≤T}Bi2−n ,

we just use the fact that a product of measurable functions is measurable
and conclude by stability of measurable functions under lim inf or lim sup
operations.
Now let A ∈ B(R), 0 /∈ A. We know that for any function f : (Ω,F) −→
Ω∗, the set of sets {B ⊂ Ω : f−1(B) ∈ F} is a sigma algebra, as can readily
be checked. However σ{A ∈ B(R), 0 /∈ A} = B(R), so we are done if we can
prove that (1{s≤T}Bs)

−1(A) ∩ {T ≤ t} ∈ Ft ∀A, 0 /∈ A,∀t ≥ 0. For s ≤ t,
this is clear because then 1{s≤T}Bs is Ft −measurable. For s > t, we notice
that (1{s≤T}Bs)

−1(A) ∩ {T ≤ t} = B−1
s (A) ∩ {s ≤ T} ∩ {T ≤ t} = ∅ ∈ Ft.

Theorem 62 Markov’s Strong Property
Let T be a stopping time such that P (T > 0) > 0. Then conditionnally to
{T > 0} (i.e. the probability measure is rescaled to this set), the stochastic
process B(T ) defined by

B
(T )
t = BT+t −BT

is a brownian motion independant of FT , where one has to define B(T ) on

the set {ω : T =∞}, for example by setting B
(T )
t (w) = 0 ∀t on that set.
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Proof. The proof can be found in [1], on page 230; although quite technical,
it requires little more than the previous Lemma and Dynkin’s Lemma again.

We now come to a fundamental property of brownian motion in one di-
mension.

Theorem 63 The Reflexion Principle
One supposes d = 1. For every t > 0, denote St = sups≤tBs. Then, if
a ≥ 0, and b ≤ a, one has

P (St ≥ a,Bt ≤ b) = P (Bt ≥ 2a− b).

In Particuliar, St has the same law as |Bt| .

Remark 64 One should have in mind the image of a path that reaches height
”a” on the y-axis at some time s ∈ [0, t], the reflexion principle then tells us
it has the same probability of travelling ”a − b” distance in one direction or
the other in the remaining time. Although intuitively evident, we need most
of the technology built so far to prove this fact rigorously.

Proof. We apply Markov’s strong property to the stopping time

Ta = inf{t ≥ 0, Bt = a}.

We already know by Corollary 57 that Ta <∞ almost surely. Now

P (St ≥ a,Bt ≤ b)
= P (Ta ≤ t, Bt ≤ b)
= P (Ta ≤ t, B(Ta)

t−Ta ≤ b− a),

since B
(Ta)
t−Ta = Bt −BTa = Bt − a. We note B′ := B(Ta), so that by Theorem

62, B′ is a brownian motion that is independant of FTa , thus of Ta. Since B′

has the same law as −B′, the couple (Ta, B
′) has the same law as (Ta,−B′).

Denote

H = {(s, w) ∈ R+ × C(R+,R) : s ≤ t and w(t− s) ≤ b− a}.

Then our previous probability is

P ((Ta, B
′) ∈ H)

= P ((Ta,−B′) ∈ H)

= P (Ta ≤ t,−B(Ta)
t−Ta ≤ b− a)

= P (Ta ≤ t, Bt ≥ 2a− b)
= P (Bt ≥ 2a− b)
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where the last equality come from the fact that 2a − b ≥ a, thus {Bt ≥
2a− b} ⊆ {Ta ≤ t}.
For the second part of the assertion, note that

P (St ≥ a)
= P (St ≥ a,Bt ≥ a) + P (St ≥ a,Bt ≤ a)
= 2P (Bt ≥ a)
= P (|Bt| ≥ a)

where the second equality follows from the reflexion principle for the second
term and from the fact that {St ≥ a,Bt ≥ a} = {Bt ≥ a} for the first.

Remark 65 One still should have to prove the set H is measurable. This
is quite technical, if someone knows of a more easy proof, he or she should
please tell me about it!
First, as proven in [1] on page 226, the sigma algebra C on C(R+,Rn) is the
borelian sigma algebra of the topology of uniform convergence on any compact
on C(R+,Rn). Two things should be said: first, on C(R+,Rn), the uniform
convergence on any compact topology coincides with the compact open topol-
ogy, and secondly, it is metrizable and separable. Once again, see [1], page
226. Now we know that in the event of seperable metrizable spaces E and
F , B(E ⊗ F ) = B(E)⊗B(F ), which means that the sigma algebra generated
by the product topology is the product sigma algebra of the sigma algebras
generated by the seperate topologies. We now conclude by remembering that
the evaluation map et : R+ × C(R+,Rn) −→ R+ :: (s, w) −→ w(t − s) is
continuous with the compact open topology on C(R+,Rn) and remark that
H = e−1

t (R+).

4.6 Levy’s characterization of Brownian motion

For those who are familiar with stochastic integration, here is a characteri-
zation theorem for brownian motion, the proof can be found in [2], pp 75-76.

Theorem 66 Lévy’s characterization of brownian motion
Let X = (X1, ..., Xd) be a continuous, (Ft)-adapted processes starting at zero.
Equivalent are:
(i)X is an (Ft)-brownian motion
(ii)The processes X1, ..., Xd are (Ft)-continuous local martingales and fur-
thermore

〈
Xi, Xj

〉
= δijt

In particuliar, an (Ft)-continuous local martingale M starting at zero is an
(Ft)-brownian motion if and only if 〈M,M〉t = t ∀t ≥ 0.
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