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1 Introduction

Reduction of a classical system with symmetries was known even at the times
of Euler and Jacobi. However, it had not been formalized before the works
of Meyer [12], Marsden and Weinstein [10]. In [10], Marsden and Weinstein
considered a symplectic manifold (M,ω) with a Hamiltonian action of G and
moment map µ : M → g. If 0 is a regular value of µ, then µ−1(0) is a
manifold and furthermore if the action of the group is free and proper on
µ−1(0), then µ−1(0)/G naturally becomes a symplectic manifold. However,
two bad things may happen:

First, µ−1(0) may be a manifold but the action may not be proper or free.
Then, one may possibly obtain orbifolds but this is not our topic here.

Second, 0 may not be a regular value. Then, even the set µ−1(0) can
be quite bad. Unfortunately, this is not a pathological case and it comes in
examples in physics. Indeed, most interesting cases happen when preimage
of 0 or more generally ξ ∈ g∗ is singular as there are more symmetries. Many
examples coming from physics like classical field theories, homogenous Yang-
Mills equations have singular solution spaces. For more examples see [1], [3],
[4].

Therefore, it is important to describe the structure of singularities and
singular reduced spaces. The aim of this survey is to describe some results
in that direction. We will first give an overview of some approaches, then
give Sjamaar‘s description of singular reduction by stratifications. Then we
will mention some results on the geometry of them. In the last section, we
mention quantization of singular reduction.
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2 First Attempts

One of the first examinations of the singularities of moment map occurred in
[3] and [4]. In these papers, it is shown that for a point in zero level being
singular is equivalent to having infinitesimal symmetries. To be more precise:

Let (M,ω) be a symplectic manifold, G be a group with an Hamiltonian
action on M and with moment map µ : M → g∗. Let x0 ∈ µ−1(0) and gx0

be the Lie algebra of the stabilizer of x0. Then the elements of gx0\{0} are
called infinitesimal symmetries of x0. It is easy to see that x0 ∈ µ−1(0) is a
singular point of µ if and only if gx0\{0} is non-empty, where g is the Lie
algebra of stabilizer of x0.

In general the local structure around a singularity of a smooth map can be
bad. However, provided that some conditions are satisfied, the singularities
of µ−1(0) are conical.

To show this for the case µ is quadratic at x0 ∈ µ−1(0) when M is linear,
Arms, Marsden and Moncrief, work as follows:
They first found a local diffeomorphism mapping µ−1(0)∩Sx0 to a cone Cx0 ,
where Sx0 is a slice around x0 for the action of G on M . Then, this was used
to show µ−1(0) is locally diffeomorphic to Cx0 ×G/G.x0. With some further
work the same thing can be shown without quadraticity assumption on µ.

Some conditions should be satisfied to have the above situation, but there
are many important cases where the above hold for example, when M and
G are finite dimensional and G is compact. Also, when M = T ∗R3 and
G = SO3(R), where the action is the one coming from standard G action on
R3. A moment map T ∗R3 ∼= R6 → so3(R) ∼= R3 is given by (q, p) 7→ q × p.
Then µ−1(0) = {(q, p) : q × p = 0} is a cone over a three manifold.

In their paper [3], they give infinite dimensional examples as well. For
instance, they show that the set of solutions for the Yang-Mills equations
over a Lorentzian manifold has conical singularities. Similarly, in [4], they
show that the space of solutions of Einstein Vacuum Equations at certain
spacetimes has conical singularities.

Also, one example of singular reduction is given in [3]. Let x0 ∈ µ−1(0)
be a singular point. Then there is a neighborhood V of x0 such that for
all x ∈ V the identity component of the stabilizer Gx is contained in a
conjugate of Gx0 . Denote the points of V with the same orbit type as x0
by Nx0 . Let Nx0 = Nx0 ∩ Sx0 . Intersecting with a slice is roughly same as
taking the quotient. Then it could be shown that µ−1(0)∩Nx0 is a symplectic
submanifold of M around x0. µ

−1(0)∩Nx0 actually corresponds to the main
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stratum for the orbit type stratifications, which we will discuss later.
As mentioned in the previous paragraph, in the next section, we will

describe a nice geometric structure on symplectic quotients, called stratifi-
cations, in which case the quotient will become a union of symplectic mani-
folds. But, the examples of stratifications had already started to come. For
instance, the space of geometrically equivalent solutions for Einstein vacuum
equations, and Einstein-Yang-Mills equations can be shown to be stratified
spaces. See [4] for details.

To have a nice reduction, one asks for a geometric object and an extra
structure on it, possibly a “Poisson structure”. However, in case we do not
look for the geometric object, we may still have an “algebraic reduction”, as
defined by Weinstein and Śniatycki in [18]. It can be described as follows:

Let G,M, µ be as before. µX ∈ C∞(M) is defined by µX(x) = 〈µ(x), X〉
for X ∈ g and let I be the ideal of C∞(M) generated by µX , for X ∈ g.
Then, it can be shown that I is a G-invariant, Poisson ideal, and we have a
Poisson algebra A = (C∞(M)/I)G. In case 0 is a regular value of µ we have
A = C∞(µ−1(0)/G). Otherwise, we just take A above to be our “reduced
algebra”. This is called the algebraic reduction. By above, this definition
extends Marsden-Weinstein reduction in the regular case.

However,in this definition we lack a geometrical object, and it is in general
hard to deal with algebraic reduction of a manifold. Hence, it is natural to
look for more geometric ways of reduction. We will describe two ways to
associate a geometric object to our algebraic reduction following [2]. The
first one is the Dirac reduction:

Let Z ⊂ M be closed. For reduction we will take Z = µ−1(0). Let
I(Z) be the set of smooth functions vanishing on Z and F (Z) be the set of
of first class ones, namely F (Z) = {f ∈ I(Z) : {f, I(Z)} ⊂ I(Z)}. Then
define the set of observables, OB(Z) = {f ∈ C∞(M) : {f, F (Z)} ⊂ I(Z)}.
Note that OB(Z) = {f ∈ C∞(M) : {f, µX} = 0 on Z for all X ∈ g}
when Z = µ−1(0) and G is compact and connected. We will identify points
that are indistinguishable under observables,i.e. for x, y ∈ Z say x ∼ y if
f(x) = f(y) for all f ∈ OB(Z) and define Ẑ = Z/ ∼.

We also need to put an appropriate function algebra on Ẑ. Put Ŵ∞(Ẑ) to
be functions induced from the ones inOB(Z). Then Ŵ∞(Ẑ) ∼= OB(Z)/I(Z).
And, we want a Poisson structure on Ŵ∞(Ẑ). The first natural idea is
inducing a Poisson structure from C∞(M), namely given f, g ∈ Ŵ∞(Ẑ),
take f̄, ḡ ∈ OB(Z) inducing f and g. Then define {f, g} to be function
induced by {f̄, ḡ}.
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However, this does not always work. First, {f̄, ḡ} may not be in OB(Z).
Also, even when OB(Z) is a Poisson subalgebra, I(Z) may not be a Poisson
ideal, in which case we do not get a well defined bracket. Indeed, assuming
that OB(Z) is a Poisson subalgebra, it is proven in [2] that above definition
gives a well defined Poisson structure if and only if Z is “first order” i.e.
I(Z) = F (Z). When this happens, we have the Dirac reduction.

Other approach described in [2] is geometric reduction. For this, let Z
and M be as in the previous paragraph. Recall that the tangent cone CqZ at
q to Z is the set of velocity vectors of paths in Z passing through q. Define
TqZ to be span(CqZ). Then, at each q ∈ Z, ω restricts to an alternating form
on TqZ and it has a nullspace there, denote by ker(ω), and we have “conical
kernel”, with the terms of [2] , which is defined to be cer(ω) = ker(ω)∩CqZ.

Now, for p, q ∈ Z say p ' q if p and q can be connected by a path in Z

whose velocity vector always lie in cer(ω). Then define
ˆ̂
Z = Z/ '. We are

considering the leaf space, in some sense.

Define the function algebra on it,
ˆ̂
W∞(

ˆ̂
Z), to be the set of functions that

are induced by a Whitney smooth function on Z that has derivative 0 in
the direction of vectors in cer(ω). Then, again the most natural attempt to

define {f, g}, for f, g ∈ ˆ̂
W∞(

ˆ̂
Z) , is taking functions f̄, ḡ inducing f and g

respectively and looking the function induced by {f̄, ḡ}. However, in [2], the
authors define the bracket by using “Hamiltonian vector fields” on Z, which
are defined in different way than the mere restrictions of Hamiltonian fields
on M . Then, provided that some conditions are satisfied it is shown this
defines a bracket, which could be obtained as above. Luckily, in case when
Z = µ−1(0) and G are compact and connected and Dirac reduction exists,
this turns out to happen.

We will take Z = µ−1(0) in the above constructions and assume G is
compact and connected. Then, one can show the two equivalence relations
above are the same, so geometric and Dirac reductions give the same topo-
logical spaces. Moreover,the Poisson bracket for geometric reduction always
exists and in case µ−1(0) is first class, i.e. when bracket for the Dirac re-
duction exist, the Poisson algebras of the two reductions are the same, and
this is the same as Marsden-Weinstein reduction, if 0 is a regular value of
µ. Also, in this case this Poisson algebra is the same as in the algebraic
reduction, providing a geometric model for it, provided that the G-invariant
elements of the ideal generated by µX , for X ∈ g and those in the vanishing
ideal of µ−1(0) coincide. In particular, when µ−1(0) is first class, then this
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happens,and Poisson structure becomes non-degenerate.
Another very natural way to define singular reduction came in [1]. Their

simple observation was that M/G is a Poisson variety and induces a Poisson
structure on Whitney smooth functions on µ−1(0)/G ↪→M/G. For this, the
construction actually works for any group and any action. However, when the
action is not proper there might be non-trivial Casimirs in W∞(µ−1(0)/G),
i.e. an f 6= 0 such that {f, g} = 0 for all g ∈ W∞(µ−1(0)/G). This does
not happen when the action is proper, which is shown in the same paper.
To show this they use the fact that C∞(M)G seperates orbits, which follows
from properness of the action, and the local connectedness of µ−1(0). The
latter follows from the conical structure of the singularities, proven in [3].
Note that Arms, Cushman and Gotay argue for general level sets and not
only µ−1(0).

Also, they show that in the regular case this reduction procedure agrees
with Marsden-Weinstein reduction for µ−1(0), provided that the action is
proper. Besides it agrees with geometric and Dirac reductions mentioned
above in case the group is compact.

There is also a more recent approach to reduction from derived algebraic
geometry, which takes care of the singularities or bad group actions. For
details see [14].

3 Symplectic Stratifications on µ−1(0)

To have a “nice” symplectic quotient we both need a geometrical object and
a function algebra on it. For nice enough Hamiltonian actions we have both
an algebra and a topological space µ−1(0)/G. However, we still do not know
much about µ−1(0)/G, which is a quotient of a possibly non-manifold, and
which could be quite bad. We already mentioned it is a union of symplectic
manifolds. In this section, we will see that those manifolds “patch together in
a nice way”, i.e. they form symplectic stratified spaces. We will also mention
some results on their geometry, dynamics and cohomology.

3.1 Stratified Spaces

As we pointed earlier, the “singular reduction” tend to be a union of mani-
folds, patched in a nice way. In this section, we will make sense of “patched
nicely”, following [9] and [16].
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Definition 3.1 A paracompact, Hausdorff space X is called decomposed if
X =

⊔
j

Sj for a locally finite family of manifolds {Sj} satisfying

Si ∩ Sj 6= ∅ implies Si ⊂ Sj

Then Sj are called the pieces of X.

Definition 3.2 Let X =
⊔
j

Sj be a decomposed space. Then it is called

stratified if given x ∈ Sj there is a neighborhood U of x in X and a ball B
around x in Sj and “a stratified space L of lower depth” such that U and

B × C̊L are homeomorphic via a decomposition preserving map, where C̊L
is the cone over L. Observe that this definition is inductive.

Example 3.1 The simplest non trivial example of a decomposed space and
a stratified space is a cone over a manifold, namely

C̊M = (M × I)/(M × {0})

It is the union of M × (0, 1] and a point. Instead of M we can take any
stratified space.

Example 3.2 Let M be a manifold, G be a compact Lie group acting on M .
For a closed subgroup H let M(H) denote the union of orbits of elements with
stabilizer H, or equivalently the set of elements with stabilizer conjugate to
H. Here (H) denotes the set of conjugates of H. Then, the family {M(H)}
gives a stratification of M . Note that we may need to refine or take some
unions before finding actual Sj as before.

Example 3.3 Assume X ⊂ Rn is a decomposed space, where pieces are
smooth submanifolds of Rn. Assume the following is satisfied:

(Whitney condition B) Given Si ⊂ Sj, {xk}, {yk} are sequences in Si

and Sj resp. converging to x, if the sequence of lines through xk and
yk converges to l in Pn−1 and if TykSj converges to T ∈ GrdimSj

(Rn),
then we have l ⊂ T .

Then it can be shown that this decomposition is indeed a stratification. See
[6] or [16].
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Definition 3.3 Let X =
⊔
j

Sj be a stratified space. X is called symplectic

if it is “smooth”, the pieces are symplectic manifolds, C∞(X) has a Poisson
structure and Sj ↪→ X is a Poisson embedding for each j. Note that in this
case the “dynamics” on X determines the pieces uniquely. (If we assume the
pieces are connected)
A map φ : X → Y between two symplectic stratified spaces is a morphism if
it pulls C∞(Y ) back to C∞(X) and φ∗ : C∞(Y )→ C∞(X) is Poisson. Note
in this case φ necessarily sends pieces into pieces.

Assume G is compact and connected, and M and µ are as before. Then
one can prove that µ−1(0) ∩M(H) is a submanifold. Furthermore, when we
divide it by the action of G we again obtain a manifold, which we denote by
(M0)(H).
µ−1(0) ∩M(H) is Poisson, and the quotient becomes a symplectic manifold.
Besides, clearly, M0 = µ−1(0)/G =

⊔
(H)

(M0)(H) and we obtain a decomposi-

tion. That it is locally finite can be shown using a local normal form theorem
for µ. It can also be shown that among µ−1(0)∩M(H) for all H, one is open
and dense which we denote by Zprin. Accordingly, one of the pieces of M0 is
open and dense denoted by (M0)prin.

Moreover, we can find a G-equivariant, proper embedding of M into a
finite dimensional real representation V of G. Hence, we have an embedding
M/G ↪→ V/G and we can embed the latter into some Rn using the G-
invariant polynomials. Thus, we have an embedding of M/G into Rn and by
restriction we obtain a proper embedding of M0 into Rn.

It can be shown that the image of above embedding satisfies Whitney
Condition B. Hence, it is a stratified space. Moreover, the map preserves
pieces therefore, M0 is stratified. That the pieces are symplectic, C∞(M0) is
Poisson and embeddings are Poisson embeddings are easy to show; thus, we
now know that M0 is a symplectic stratified space.

In the above argument we assumed compactness of the group, as in [16].
However, this assumption can be replaced by the properness of the action, as
in [5]. Then, one can still prove that µ−1(0)/G is a stratified space, basically
using similar tecniques to those in [16]. Actually, there they consider an
arbitrary coadjoint orbit O ⊂ g∗ and reduction at that orbit. However, in
this case we at least need local closedness of O. See [5] for more details. For
more general treatment of this subject, where there is no assumption on O
as well, see [13].
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3.2 Dynamics and Geometry on Singular Reduced Spaces

In this section we briefly mention the dynamics and the geometry of singular
quotients. Let M,G, µ as before.Assume G is compact. Let M0 = µ−1(0)/G,
which is a stratified symplectic space.

First, Hamiltonian dynamics makes sense on symplectic stratified spaces.
Recall that for each smooth function H on a symplectic manifold (M,ω),
one can define XH to be the unique vector field satisfying iXH

ω = dH. This
vector field generates a flow, say {φt} on M . Unfortunately, differential
equations does not make sense on stratified spaces. However, observe that
{φt} is uniquely determined by the property:

d(f ◦ φt)

dt
= {f,H} for all smooth f (1)

The equation (1) makes sense on stratified spaces as well. In our case any
H comes from a G-invariant function H̃ on M . H̃ generates a flow, which is
G-equivariant, preserving µ−1(0). Thus, its restriction induces to a flow on
M0. Besides, the equation (1) is satisfied on M and thus on M0. However,
this is actually a way to define Poisson bracket on M0. Still, the dynamics
makes sense on singular reduced space.

It is easy to show that the flow satisfying (1) on M0 is unique. However,
enough smooth functions to seperate points, for instance if we drop Hausdorff
assumption, this may not always hold on “symplectic stratified spaces”. See
[5].

Besides, it is easy to show that the Hamiltonian flow preserves leaves,
and the action of all smooth functions is transitive. Hence, the dynamics,
or the Poisson structure, determines the pieces of the stratification, as we
mentioned earlier.

Above, we have commuting actions of G and the one parameter group
generated by XH̃ . Instead, if we had commuting Hamiltonian actions of G1

and G2, both are taken to be compact, with moment maps µ1 and µ2 then we
would have an “Hamiltonian action” of G2 on M0 = µ−1(0)/G1 with moment
map µ̄2 induced by µ2. Then, we can reduce it again,i.e. take µ̄2

−1(0)/G2,
and we get a new symplectic stratified space. Indeed, we can first reduce
with respect to G2 and then G1 or with respect to G1 × G2 and get the
same symplectic stratified space. This is the analogue of reduction in stages
in singular case. There is a further generalization to arbitrary extensions
rather then just products. For details see [16].
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Note also that for a given Hamiltonian action of G on M , as before, and
K on M0, with comoment maps g → C∞(M) and k → C∞(M0), where g
and k are Lie algebras of G and K respectively, finding a compact extension
G̃ of G by K and a comoment map g̃→ C∞(M), which extends the one on
g and induces k→ C∞(M0), the one above, would let us apply the theorem
mentioned at the end of previous paragraph. Hence, by our main theorem,
when we apply reduction to M0, we would get a stratified space, which could
be obtained by reduction for G̃ action.

At the beginning we started by making sense of “smooth” functions, i.e.
0-forms, on M0. However, as we did not define a tangent space, what a dif-
ferential form means is not clear. We can define a form by adapting the way
we defined C∞(M0), namely:

Definition 3.4 Ωj(M0) is the set of j-forms on (M0)prin that pulls back to
restriction of a G-invariant form on M to Zprin.

Example 3.4 We make the pieces symplectic just as in the regular reduction;
hence, by definition ωprin, on (M0)prin, pulls back to ω |Zprin

so it gives a 2-
form in the above sense.

Then, 0-forms just become the smooth functions in the sense we defined
before. Note also that in the regular reduction the above definition gives the
usual smooth forms on M0.
{Ωj(M0)}, a subcomplex of {Ωj((M0)prin)}, is closed under differentials

and wedge product. Thus, we can speak about their cohomology. Then,
“de Rham Theorem” holds, i.e. this cohomology is equivalent to the singu-
lar cohomology with real coefficients. To show this, one obtains sheaves of
differentials on M0, namely for each open subset U we take the set of differ-
entials on U ∩ (M0)prin pulling back to restrictions of a G-invariant forms on
π−1(U),where π is the quotient map. We denote these sheaves by Ωj(M0),
as well. Then, they turn out to be acyclic and

R→ Ω0(M0)→ Ω1(M0)→ ...

becomes an acyclic resolution of constant sheaf on M0. This is shown by
proving a Poincaré Lemma on our stratified space. Thus, we get the equiva-
lence of our new de Rham and singular cohomologies. For more details about
this cohomology see [15].
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4 Quantization

Quantization of a classical system roughly means replacing observables by
operators on a certain Hilbert space. In more mathematical language, we
start with a symplectic manifold (M,ω) that has an integral symplectic form.
Then, we have a line bundle with a connection (L,∇) over M that has
curvature with cohomology class equal to (a non-zero multiple of) [ω]. Then
we consider (pre)-Hilbert space of sections, where the function algebra acts
by

∇Xf
+ 2πif

where Xf is the Hamiltonian vector field associated to f . Using polarizations
(i.e. integrable Lagrangian distributions), we reduce the dimension of the
representation and get a geometric quantization of our manifold. Note also
that if we have an Hamiltonian action of a (simply connected) group G, then
we get a representation of it when we quantize.

In the regular reduction, we can quantize before and then consider the
G-invariant sections, or we can first apply reduction then quantize. In [7], it
is shown that they give the same vector space, when G and M are compact
and the polarization is Kähler. In particular, one concludes that trivial
representation occurs in the representation corresponding to M if and only
if 0 is in the image of the moment map. Thus, this result, that “quantization
commutes with reduction”, can be stated in terms of multiplicities.

So far we have not made sense of quantization for singular spaces. It is
clear that we need to associate representations to our Poisson algebras. Also,
what is desirable is to have “quantization commutes with reduction”.

Recall that in algebraic reduction we had a Poisson algebra A = (C∞(M)/I)G,
where G, µ are as before and I is generated by µX , X ∈ g. We do not have a
geometric object here but we actually do not need it to quantize as long as
we can make sense of above things. Indeed, there are ways to quantize the
Poisson algebras but this is not our topic here.

In [18], there is an example for quantization of algebraic reduction, using
algebraic versions of the concepts for geometric quantization. The authors
consider R4 with standard symplectic structure and with a Hamiltonian R
action on it. Then, instead of sections of a line bundle, which would be trivial
if existed, they consider S = C⊗A , and instead of a connection they consider
a map DerA ×S → S, which is A -bilinear in the first variable and satisfies
Leibniz rule in the second. They define polarizations in an algebraic way, as

10



the maximal commuting subalgebras of A and take a specific one. Then,
they quantize as usual and show quantization commutes with reduction for
this example.

In [17], Śniatycki gives a general way to quantize algebraic reduction, In
the regular case, one can quantize the reduction by first getting a prequantum
line bundle (L,∇) on M , restricting to µ−1(0) and pushing forward to M0 by
considering G-invariant sections. In his paper, Śniatycki applies the algebraic
analogue of this to algebraic reduction. More precisely: Let S be the space of
sections of a prequantization line bundle on M . Then S is a C∞(M) module.
Consider S/IS, where I is as above, which would correspond to restricting L
to µ−1(0) in regular case. Then consider (S/IS)G, which would correspond
to pushing forward to M0. Then (S/IS)G is a natural A = (C∞(M)/I)G

module.
Let P be a G-invariant polarization on M and consider C∞P (M), the set

of P -invariant functions, whose Hamiltonian vector fields preserve P , and
consider the set of P -invariant sections of L (with respect to ∇), denoted
by SP . SP is a C∞P (M) module, and G naturally acts on SP . Then, the
image of SP in S/IS, denote by S0

P is a C∞P (M)/I module and (S0
P )G is a

AP := (C∞P (M)/I)G module. This is our quantization. Note that in the same
paper Śniatycki shows how to quantize the reduction on orbits other than
µ−1(0) as well. Furthermore, when the polarization is “Kähler” and some
other conditions are satisfied, they prove the space of G-invariant sections of
the quantization of M is isomorphic to quantization of algebraic reduction,
i.e.

(SP )G ∼= (S0
P )G

Thus, quantization commutes with reduction.
There are also ways to make sense of quantization for singular symplectic

quotients, one of which was described by Sjamaar and Meinrenken in [11].
There they defined quantization in a different way, as the G-equivariant index
of a certain operator on a prequantum bundle L. This -denoted byRR(M,L)-
“Riemann-Roch number” lies in the character ring of G. Then they define
Riemann-Roch numbers for the singular quotients as well. They show that
the G-invariant part of above character is equal to RR(µ−1(0)/G,L0), where
L0 is an “orbibundle” on µ−1(0)/G obtained from L by restricting to µ−1(0)
and then taking the quotient by the action, similar to [7]. Hence, quantization
commutes with reduction.

Above, we only mentioned geometric quantization. For different ap-
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proaches to quantization of singular reduction, in particular for deformation
quantization see [8].

References

[1] Judith M. Arms, Richard H. Cushman, and Mark J. Gotay, A univer-
sal reduction procedure for Hamiltonian group actions, The geometry of
Hamiltonian systems (Berkeley, CA, 1989), Math. Sci. Res. Inst. Publ.,
vol. 22, Springer, New York, 1991, pp. 33–51. MR 1123275 (92h:58059)

[2] Judith M. Arms, Mark J. Gotay, and George Jennings, Geometric and
algebraic reduction for singular momentum maps, Adv. Math. 79 (1990),
no. 1, 43–103. MR 1031826 (91a:58051)

[3] Judith M. Arms, Jerrold E. Marsden, and Vincent Moncrief, Symme-
try and bifurcations of momentum mappings, Comm. Math. Phys. 78
(1980/81), no. 4, 455–478. MR 606458 (82m:58028)

[4] , The structure of the space of solutions of Einstein’s equations.
II. Several Killing fields and the Einstein-Yang-Mills equations, Ann.
Physics 144 (1982), no. 1, 81–106. MR 685617 (85h:58033)

[5] L. Bates and E. Lerman, Proper group actions and symplectic strati-
fied spaces, Pacific J. Math. 181 (1997), no. 2, 201–229. MR 1486529
(98i:58085)

[6] Mark Goresky and Robert MacPherson, Stratified Morse theory, Ergeb-
nisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathemat-
ics and Related Areas (3)], vol. 14, Springer-Verlag, Berlin, 1988. MR
932724 (90d:57039)

[7] V. Guillemin and S. Sternberg, Geometric quantization and multiplici-
ties of group representations, Invent. Math. 67 (1982), no. 3, 515–538.
MR 664118 (83m:58040)

[8] N. P. Landsman, M. Pflaum, and M. Schlichenmaier (eds.), Quantiza-
tion of singular symplectic quotients, Progress in Mathematics, vol. 198,
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