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Beyond Poisson structures .

The object of thls paper 1s to present a unified approach to the geometry of

hamiltonian vector ﬁelds and the underlying closed 2-forms or Poisson brackets. '

The approach is based on concepts mtroduced in [3] for symmetnc brlmear forms, Do
apphed here to skew forms ’

“The idea of a Poisson bracket on a subalgebra of C°°(X) (X a smooth' '

mamfold) goes back to Dlrac [2]; see also Hermann [4] and Smatyckr [10]. Dirac
showed how a bracket on functrons ona mamfold induces a bracket on a subalgebra L

of functions on any submamfold this is'the constrained or Dirac bracket.

Another approach to brackets on subalgebras of functions i is to look at the.
algebra of hamiltonian vector fields for a degenerate closed 2- form; this has been
done by Pnevmaukos 7,891, chhnerowrcz [5], and others.. Functions constant on
the charactensnc fohauon of the 2-form generate hamiltonian vector fields, and |

" hence have Poisson brackets defined in the usual way. The class of such functions

may be smaller than expected, since the characteristic distribution may increase

' dimension on a closed set of measure zero. Smgulannes of closed 2 forms have also '

been studied by Martinet [6]
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. In this paper we define tensorial objects which correspond to brackets on .-
subalgebras of functions, generahzmg the. way in which bi-vector. ﬁelds correspond ,

" to Poisson brackets defined on all functlons These obJects are subbundles

LCTX®T"X, and in the cases of Poisson structures and 2-forms are the graphs of' | .
the maps B:T"X =+TX and Q: TX->T* X respectrvely In each of these two cases, :

mtegrablhty is defined as. the vamshmg ofa 3—tensor, namely [B.B](the Schouten
bracket ©of B with itself) or dQ. In general we get a bt-vector on the quotlent
TX/LOTX, Wthh gives us a bracket on the algebra of functions "constant along
LNTX." Our integrability condition i is then the vanishing of a 3-tensor- onL which
. implies that thls is actually a Porsson bracket; the condttlon also 1mplles the
mtegrabllrty of LNTX.

" .The flrp side of this ptcture is provrded by the distribution p(L) CTX, ( p is
the pro_tectton of TXeT X onto TX) on ‘which we define a 2-form Q: p(L) -+ p(L)
this form has charactensttc subbundle LnTX C p(L) The vamshmg ‘of the

‘ mtegrabrlrty 3-tensor on L 1mpltes that p(L) is mtegrable and that Qs a closed . o
2-form. Thus, we get an algebra of hamtltoman vector fields generated by funcuons, e L
 constant on LnTX which in turn nges a Porsson bracket on. these functrons, thrs is -

the same as the bracket drscussed above.”

The subsets p(L) and LATX are not dlstnbuuons in the usual sense since ,‘ | ,
-their dtmensmns do not have to be everywhere constant, p(L) is maxlmal onan open' o
'dense set, and LnTX is mmrmal onan open dense set (not necessanly the same open h
© - set). At best they may be mtegrable m the sense of. Sussman [1] [11] there is a .
s maxlmal mtegra.l mamfold through every pomt (rf the dlmensrons are constant, the : n
§ .dtstnbutrons are called regular) However ‘as with closed 2—forms thrs does not'” :
. .always have to be the case kerQ ‘may not satrsfy thrs maxlrnal mtegral mamfold'-‘ o

: property . . A _
CItis mterestmg o note that regular foltanons are specral cas

Dirac structures; orne simply : requrres that Q. be everywhere zero. Th1
'dlmensron of the drstnbutlon p(L) to be constant. L
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Vector Spaces :

Let V be a vector space and let LCVeaV bea maxrmally isotropic subspace

. under the pamng <vev*.W$w*> <v".w> <w“ v>; then L has the drmensron-'
A of V. We call such arila Dirac structure on V. We will show that each Dirac

,

' '.fstructure corresponds toa subspace of V wrth a skew symmetnc bilinear form onit

* Let p and p* be the projections from V@&V*" onto'V and V" respectrvely

'_Thenkerp||_ =LV" and ker p* || =LAV, sothat

p(L)*=LAV™ and p*(L) (Lav)e .
(note that LnV mdy be thought ofasa subspace of either VOV™ or V; as suits the

'c1rcumstance similarly for LOV™),

Now consider the subspace E=p(L)C V Define: Q(p(x)) =-p *(x) | g3

. this gives a map Q:E -»E which is skew symmet:nc since

(p"(X) P(Y +<p*(y),p(x)> = 0 forall x,yeL: To see thatQ is well. deﬁned

suppose we have X,x’e L -such that p(x) p(x’); we will show that

P (x) |g = p*(x) | . In fact, since p(x) = p(x') , x-x ‘ekerp||,s0 x-x'e LAV";

“therefore p*(x-x")e p(L)° E°, which says exactly thiat p*(x) IE p*(x") IE )
_ Nouce that LNV CE is the kernel of Q.

Along the same:lines we also geta subspace p"(L) cv¥, and a skew

i symmetnc map TT:p*(L) -+ p*(L)" whose kernel is LﬂV We have:

PHLY = v/p*(L)° = V/an or p*(L)=(v/LnV)"

- * so this grves us T: (V/LAV)" -+ V/LAV . Thus if we consider Q to be a two-form
-.on E Misa bl-vector on the quottent V/LAV =V/kerQ.

Choosmg a basis for L is the same as giving maps a: RNV and b: R"-»V .

so that the basis becomes: (ae, bey); . - + (aeqbeg); nouce that for these to

| span ann-drmensronal space we musthave kerankerb {0}
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Now the Isotropy of L tells us that a
‘is skew symmetric. Notice that ifa is mvemble we may 1dent1fy V wil

o that b becomes ‘amap b: V-»V thus Lis the graph of b, Sxmllarl
. mvertrble Tis the graph of 3:V -0V ‘

For now let us suppose that V= v™

ith, R" 50
Y ifbis

, say viaa chorce of metnc so that L is
glven by a pair of maps a, b: RP -V such that a
We will see that a-b and a+b are invertible. Suppose Xe ker a-b then ax = bx.
Now (a*bx,x)»+ <b*ax X>=0, so- <a*ax,x) + <b"bx x) 0.
But this says that y axn?
Therefore

«Ubxn2 = =0, 50 ax 0 and bx = 0.

Xekerankerb, so x=0, and a- b 1s mvertl

Now let U= (a+b)(a-b)-1; thenUU equals
(a+b)(a b) I(a"-b") (a*+b*) = (a+b)f(a*

ble sumlarly for a'b

-b*)(a- b)l"(a" +b*)
~(a+b)[(a"a a*b- b*a+b*b)l"(a*+b*)
. -(a+b)[(a*a+b*a+a"b+b*b)]"(a* b*)
U (a*b)[(a*+b“)(a+b)l"(a“+b*)
. -l T .
is orthogonal the mapa b-oU wrllbecalled the

‘generalized Cayley transform Kais mvembl :
e, it becomes the Ca le
ba- ‘~(l+ba")(l ba-1)-1, e

1, since ba-! 1s skew symmetnc,
holds ifbis mvertlble

"I-'herefore Ur(a+'b)(a-b) 1

" . The action ofGL(n) on{a, b) given by (a. b) x
change of basls in our "reference space"
- Dirac structure L. - Notice ‘that the > map (:
'Iherefore the space of Dirac structures onV is in one-to-one correspondence w1th
the group O(n) Thete.is also an action of GL(V) grven by (a D)xs= (8 ’a s b)
'whose orbits aré the 1somorph1sm classes of Drrac structur

¥= (aa’ ba’) amounts toa
and so (a%,b %) strll reptesents the same
a b) »U is mvanant under this action,
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"b+b*a =0, 1e l:hemap a*b: R"-oRn*.

*b 1s skewand _kerankerb={o},

asxmxlar_argument. . -

" Dirac Bundles

We now extend the pre‘vious notion of Dirac structures to tangent bundles. A
Dlrac structure on TX is a maximally isotropic subbundle of the Whrtney sum

bundle TX ®T"X under the pairing < , >, , justas in the linear case.

p(L) is now a ','d1stnbut1on" in TX, Q:p(L)-p(L)"isa 2-form on this

e .disu'ibuti'on, and LNTX C p(L) is.the kernel of this 2-form. Our in'tegr‘abilitj'
condition will tell us that p(L) and LNTX are Frobenius integrable, and that aQ '

‘(‘the extcri_or derivative ,in‘the leaves) is zero. Thus an integrable Dirac structure on’
TX (which we will call a Dirac structure on the manifold X) gives a singular

"foliation" of X (since dimensions of leaves can jump) with a closed 2-form on each ’

T

"leaf":
. Two 1mportant examples of Dlrac structures -on a manifold X are_
pre~symplect1c structures and Poisson structures, whrch are the graphs of maps-
TX »T"X -and "X =+TX respecuvely, the skew symmetry of the maps makes therr
graphs 1sotrop1c and their further structure (closedness or Vamshmg of the
Schouten bracket) is the condition of mtegrabxlrty We wish to determine a general
integrability condition for Dirac structurés which contams both of these as speclal> '

cases.

may think of as a bllmear form on L; it 1s skew symmetnc because L is 1so|roplc

- under <, >,, and it is Just the pullback of the natural symplectlc form on

TLOT L. Recall that the 2-form Q:p(L) -~ p(L) is given by <QUX).Y) = o)(Y)
thus we clearly have the relation PL *Q=H, where L= pot L

For the momentlet us assume that p(L) is mtegrable and of constant rank
this will allow us to define and hence compute 'dQ on each integral ‘manifold. l._zet ‘

" (X3,01),(X2.02), and (X3,03) be local sections of L, and define

- Hij'EH(Xi.COi)((Xj.(Dj))‘=lﬁ>j(xi). 'and Qij'—'(x)j(xi) .
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“‘We deﬁneamapl-l LaL" by H(X.)((Y. )= Vp(xt)- o(Y), Which we -




: 3
Thenwehave:  * ‘da(x;, X2.X3) =X Qa3 X3 Q15 *Xg-Qp
R , *Q(X1 [Xz-Xsl) Q(X,, X1 %30 + Q(X3.0X,, le)
' . 'X1 st’xz Hst-xs H1z
| ~co,[x2 Xsl mz[Xs. 11 - c;);,[x1 Xal .
‘Notice that the last expressxon is deﬁned on all sectlons of TX (BT X and not Just of
L. Now usmg the formula } _ : .
0001 (X X3) £ X301 (X5) - Xy ©1(X) = 0y [Xp. X5)
o . # X H3i - X5 Hyy- ‘91[x2- 1 wefind that

dQ(Xth X3) = dw (X2.X5)+ dwy(X5.X 1)+d®a(x1 X2) - Xq-Haz- X: Hn Xa- H31 -

Thus we get a totally skew-symmetric expresswn on sectlons ofL:
T((x, m,)@(xz wz)e:(x;.ms)) :
= 401(X.X3) - dwp(X; . X3) +dw5(X, X) - -Xy H23+X2 H13-x3 Hig
) Th1s is the restncuon to L of _ :
2 ((¢9 m)@(Y ne(z, V)= dm(Y 2)+ de(Z X) . dv(X Y) , :
‘ 1/z(x LY (20> +Y- <z, v) (X, co)) .2 <(x m) (Y.p)> )
where ¢, >_ xs the skew symmetnc pamng on all secuons of TXeBT X glven by
{(X,0), (Y.p))- co(Y) - u(x). - S
We will now see that T i isa tensor onL. . ‘
TUXufoeteew)

] -d(f(l)1)(X2 X;) d&)z(fx1 X;)" d(Da(fX~| X2) fX1 H23+ Xz fH13 X3 fH12 :

-(dr,\m, )(X2,X3)+ 1 (dwy(Xg.X3) - amztx,.xs)« dw3(X1,X,))
 +(Xg DHyg- (X DH12- 1.0X1-Hy5 - Xy Hy 5o X Hia).
= (Xz 1)w;(X3)- (X3 Nwy(Xg)+ + (X, - T)Hy3- (X; LIPS
o - .fT((x,.m,)e(xz m2)®(x3,m3)) L e
“Thus T((tX, fm,)@(xz coz)@(xs.m;)) tT((X, m,)@(xz w2)®(xs,m3))
= (Xz f)(co,(x;)w);(xm (X; f)(&h(Xg)f mz(x1))

b

If we let €; = (X;,;) thén the last expression may be rewritten

T(fe,@ez®e3) fT(e,®e,®e3) P(ez) f<e1 e;;) P(es) f<e1 .92>

* which is clearly Zero when restricted to any subbundle isotropic under the pamng

<. >, . Therefore T is a 3-tensoron L.
Note that there are two expressmns for T onlL:
T((Xq,0, )®(X2,wz)®(X3 cos)) -
=dw,(X,, X3)+dm3(x1.X2)+dm2(X3 X1) = Xq1-Haz- X3 H12- Xa-Hzs

and T((X1.0)1)®(X2 0.)2)@()(3 O);;))

= Xy-Hag* Xg-Hyg + XpeHgp-04([X2.X5D) - 0)3([)(1 X2]) mz([xz Xi])
Since T isa 3-tensor on L, we may think of i itas glvmg us two maps: .

Ty: L®L-»L and. Ty:L-L"eL"; nothethat Ty= Tz . Of course, thevamstuhg-

of T implies. the vanishing of both of tlrese maps We will now examine the
consequences of this fact. . _ , .

~ LetC=LNTX; the assﬁmbtiori of constant rank of C implies that it has local .
sections. Consider T | cuc : Let (Z.)._be a local section of L ‘and let (X,0) and

(Y.0) be local sections of .C.

Then <Tz((X 0)&(Y,0)), (2, v)> -v([X Y])
by the second expression for T.

Now since v may take each value in p"(L) (LnTX)° v([X Y1) =0 for all v if, and 2
“only 1f x. Yle LNTX. Therefore T, lc,c- 0= Cis mtegrable

“ Now consider T, ILnT“X <T1(07). (X, w)e(Y, p)) -V([X YD ;

" once agam this vanishes for all VE LNT™X exactly when X, Y]e p(L). So-

T, | LAT*x=0 < p(L) is mtegrable (agam modulo a condmon of constant rank).

Thus T=0 1mp11es that p(L.) and LnTx are both' integrable. If p(L) is - - a

integrable (and of constant dlmenswn) then T= p,_"dQ and so the vamshmg of T : v
also says that dQ = 0, :
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Admtsszble functwns and. hamzltoman vector ftelds

Since (LATX)® = p*(L), the mtegrabthty of the- dxstnbunon LnTX 1mp11es

that a basis ( Xj.@{) may be chosen suchi that the col are closed- (thxs may be arrived
at by takmg linear combmauons of an arbltrary basxs) “Thus, the toi aré locally

dlfferenttals of admissible functions, where we call a functlon admtssrble if (X .df )‘. C

isa secuon of L for some vector ﬁeld X. We call, X a hamﬂtoman vector. ﬁeld for 1.
We may define a bracket on adnussrble functions: {f1 Tab=Xpi ’y 1= df, (Xz)

where Xiis a harmltoman vector field for 1. We will s see later that the bracket of -

_two admxssxble functions is. agam admissible, = . - :
If (P X +X is adlffeomorplusm, then 9 actson L as follows B

(X a)) (‘P"X lP*(o) (where P¥X = (Pu=T)X ) The mﬁmtesmal vers1on oftlus_ '

is an actton on L by vector ﬁelds
T & (Xw)= (g X, caco) X, dco(E. )+ d(o)(E.)) )

Theorem ‘Let L be an integrable Dirac strucure- and let (X1,0)1) (X2 a)z) and

(X3.003) bé sections of L. Then (£x1(X2 mz) (X;.co;)) = da),(Xz X3) -
Corollary If p(L) and LnTX have constant dunensxon then
‘ X LCLﬁdmIP(L) 0.
Proof of theorem By the formula preceding the theorem we have "
Xy (Xz.ﬁ)z) ([X1.X2] dﬁ)z(Xp )*d((t)z()h )))
o -([X1 Xal, d(t)z()(,,')fdl'lu)
50 {Xq-(Xa,0,), (x;.m;)) = w3-[X, X2]+d02(x1.X3)+X3 Hm
= X1 03(Xg) - X+ 03(X1) - deg(Xq X2) - dW(X3.X1) + X5-Hy, -
z- T((X,.m;)@(xz,mz)®(xs.m3)) +dwq(X2.X3)
= dwy(X2.X3) since T vanisheson L by hypothesis, QED
Proof of Corollary. Use the fact that X-LCL e {X-LL},=0 .
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Dirac vector f‘elds S
By the previous corollary, locally hamrltoman vector ﬁelds are Dlrac vector

. fields, i.e. mﬁmtesxmal automorphisms of the Dlrac structure on X.In partlcular if -

L has a basis (Xi ‘*’t) with d(oI 0 , plL) is spannedbymfimtesunal

- automorphisms.

Now let X bean arbmary vector field, and (X, co,) (X2.97) sections of. L
<KX (Xq.1), (x2 02)3 = X Xi1d0i(X, )+ +d(, (X)), (xz.mz)x c
= Wp(IX. Xy D+ Xp-31(X) *dw,(x Xz) .
2 o (IX.X 1) + Xp:00¢(X) + X~ w,(xz) xz m1(x) m,(lx le)
=X m1(xa)+m2([x X31) - @y (X, X2]) o

’Thus the condition that L bemvanantunder X is: X-Hyp= 04(IX, X1]) co1([X X2])
for all sections (Xq,61),(X2:w5) of L.

CIFL is the graph of a Poisson bundle ‘map, and if wq = df and toz dg, then
this says: X{f.gF=dg(lX, Xf]) di({x, Xg])
1 = X(Xelg)) - X(X(g)) - X(Xg(1) + Xg(X (1))
' '2X {t, g} {1, X(g)} {X(f).g}

or XAt g} {X().gk+ {t.x(g)
' whxch is just the condition that X be a Poxsson vector field.

CIfLis the graph ofa pre-symplecuc structure, then
W, _o(x,,.) 5O . Hyg= wz(x,) Q(X2.X1) = -Q(X;, xz)

Therefore X H12-—X Q(Xj.X2)"‘f.xQ(X1 Xz) ~Q([X, X1] XZ) Q(X1 [X Xg])

Also  @o([X,X4]) - 04(IX, Xa)) = QX2.[X.X11) - QX .[X X31), so the equation- for .
a Dirac vector field says that £4Q(X1,X5) =0 for all X;,X, inL; in this case
p(L)=TX; so this actually says . LyQ=0 'which is the condition for a locally

hamiltonian vector field, i.e. the only vector fields leaving a pre-symplectic

‘ structure invariant are the locally hamiltonian ones.

Now let (Y, Jl) be a section of an integrable Dirac structure L such that ‘
dp=0; then - X-(Y ;1) (X, Y1 dp(x )+d(p(x))) (X, Y] d(u(x))).

-~
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Suppose that (Xf.df) (Xg.dg) (Xh.dh) are all sections of L. Recall that we
" getabracketon admrsslble funcuons, givenby {f .g} X¢+g,s0 the acuon of the

hamxltoman vector fields is Xf (Xg.dg) = ([X¢.X gl d{f.g}) we know that this i 1s' ,

‘ agamm L,sowe ﬁnd that {f g} is admissible with ham11toman vector ﬁeld [X,.
: Inaddmon, : - -
{f {g h}} X¢-{g, h}-f[Xg.Xh] f=-Xg {h T} Xy -{g. f}-—{g {h f}} {h {g f}}
or after rearranging:- {f.{g.h}}+ {h, lf g}} +{gin.H=0. Thus the bracket on
- admxss1ble functions sattsﬁes the Jacob1 1dent1ty R -

'Ihe Leibnitz 1dentlty also holds ‘as follows if f and gare adnnss1ble

functions then the identity d(f g)=fdg + g df implies that fo g has hanultoman vector

ﬁeld X +gX, and so fg is also. adxmssrble Therefore
o {fg.hl= T Xpg"h=1Xg-h+gX,-h= flg, h}*g{f h}
Hence the admlssxble funcnons form aPoxsson algebra o

\
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