QUANTUM MOMENT(UM) MAP(PING)S
A HOPF ALGEBRA APPROACH

GIZEM KARAALI

1. INTRODUCTION

A basic question related to group actions on manifolds preserving
some geometric structure is the existence of moment maps '. The no-
tion is well developed in the case of symplectic or hamiltonian actions.
A natural generalization to Poisson actions was made in [L.1], and we
will review this shortly in one of the sections of this note. As a natural
next step, one would like to quantize moment maps. Up to now, there
have been two different methods to approach this problem . One of
these is via the method of deformation quantization, and this is the
topic of Bursztyn’s note, see [B]. The topic of the present note is the
second method, basically developed in [L.2].

The main ingredients in this method are those of quantum algebra:
Hopf algebras, and more particularly quantum groups. Therefore we
will start with a basic introduction to these concepts. Fundamental
definitions and basic facts about quantum groups will be described in
Section 2. Section 3 of this paper will mainly be a review of Poisson
geometry, and more particularly Poisson-Lie groups, in order to give
finally a (sketchy) recap of [L1] where we see how the notion of mo-
ment maps is generalized to the setting of Poisson actions. Finally in
Section 4, we will review [L.2], where Lu develops her quantum moment
map. Although Lu develops a lot more for a quantum theory including
reduction and semidirect products in [L2], we will only be concerned
with the moment map and restrict ourselves mainly to Section 3 of her

paper.

!Among the many versions (as hinted in the title of this note), we choose to use
the term moment map. This choice is made only to minimize typing efforts and
has no philosophical basis.

ZPerhaps one should take this distinction with a grain of salt; when one gets into
the details of the method discussed in this paper, one sees that the concepts of de-
formation and quantization are quite basic to the constructions involved. However
the quantum group notions which arise here do not appear in the papers discussed
in [B].
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2. HOPF ALGEBRAS AND QUANTUM GROUPS

2.1. Definitions: Here we give the basic definitions regarding Hopf
algebras and quantum groups. One may check [CP],[CW] or [M] for
a more transparent version of these definitions involving commutative
diagrams.

Definition 1. A k-algebra is a k-vector space A together with two
k-linear maps, multiplication m : A® A — A and unit u : £ — A, such
that m is associative (i.e. satisfies m(m®:id) = m(id®@m)) and the unit
map satisfies the unit axiom:

s1 = m(u®id) = m(id®u) = sy

where s; is the scalar multiplication from £®A into A, and s, is the
scalar multiplication from A®k into A.

Definition 2. A k-coalgebra is a k-vector space C together with two
k-linear maps, comultiplication A : €' = €' ® €' and counit € : €' — k,
such that A is coassociative (i.e. satisfies (ARid)A = (1dRA)A) and

the counit map satisfies the counit axiom:
(12 ) = (end)A = (1dRe)A = ( ®1)

where (1® ) is the map ¢ — k®C which sends ¢ € C to 1®c, and
( ®1) is the map C' — C®k which sends ¢ € C to e®1.

Definition 3. An algebra A is called commutative if mgoo = my. A
coalgebra C' is called cocommutative if 0 0o Ac = Ac. (In both cases, o
is the twist map 2@y — y®z.)

We note that if C'is a coalgebra and A is an algebra, then Hom(C, A)
becomes an algebra under the convolution product * defined as

(fxg)(c) =mo (f@g)(Ac)
for all f,g € Homy(C, A),c € C.The unit element in Hom(C, A) is

ue. We continue with the definitions:

Definition 4. A k-space B is a bialgebra if (B, m,u) is a k-algebra,
(B, A,¢€) is a k-coalgebra, and either of the following (equivalent) con-
ditions holds:

(1) A and € are algebra morphisms. (A map f: A — B is a algebra
morphism if foma=mpo (f®f) and ugp = foua.)

(2) m and u are coalgebra morphisms. (A map f: C — D is a
coalgebra morphism if Apof = (f@f)A¢ and ec = epof.)
Definition 5. Let (H,m,u,A, ¢) be a bialgebra. then H is a Hopf
algebra if there exists an element S € Homy(H, H) which is an inverse
to 1dy under convolution . S is called an antipode for H.
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A standard example of a Hopf algebra is the group algebra k[G] of
a group (. The coproduct is given by A(g) = g®¢ and the counit is
given by €(g) = 1 on the elements g of the group G. (More generally
for an arbitrary coalgebra C, elements g € C' satisfying A(g) = g®g
and €(g) = 1 are called group-like.) The antipode is defined on the
group elements as S(g) = g7".

Dually, we can look at the algebra A = Fun((G) of functions on
a group (G 3. Here the multiplication is the natural commutative
one: (f1f2)(g) = fi(g)f2(g), and the unit is the map u mapping el-
ements of the field k to the associated constant maps. We can identify
Fun(GxG) with A®A, so the group multiplication considered as a
mapping GxG — G induces the copruduct A : A — A®A given by
A(f)(g1,92) = f(g192). The counit is the map ¢ : A — k mapping
f € Ato f(e), where e is the identity element of G. Finally the an-
tipode is the map S defined by S(f)(g) = f(g~'). Thus we have a
commutative Hopf algebra structure on A. (It will also be cocommu-
tative if the group G is commutative.)

Another family of examples is given by universal enveloping algebras
U(g) of Lie algebras g. In this case, the coalgebra structure is given as
follows: A(z) = z®1+1®z and €(z) = 0 for any = € g. (More generally
for an arbitrary coalgebra C', elements z € C satisfying A(z) = 2®1 +
1®z and €(x) = 0 are called the primitive elements of C.) The antipode
is defined on the Lie algebra elements as S(z) = —z.

Next, we introduce a useful notation due to Sweedler: Let C' be any
coalgebra with comultiplication A : ' — C®C. The sigma notation
for A is given as follows: For any ¢ € (', we write:

A(C) = Z C(1)®C(2)

The subscripts here are just symbolic, the elements c¢(y), ¢y do not
stand for particular elements of C'. Recall that A maps €' to C®C,
and so for any ¢ € C' we will have A(¢) = (e11®¢12)+- -+ (en1®@en2)
for some elements ¢; ; € C' and for some integer N that depends on c.
The Sweedler notation is just a method of separating the ¢;; from the
¢i2- (In a sense, c(1y stands for the generic ¢; 1, and ¢(y) stands for the
generic ¢; 2.) With this notation, our counit axiom, in the definition of
a coalgebra (Definition 2), becomes:

c=Y ele)ep = Y elc@)eq),

3This example will be the most important example to keep in mind for this
review paper. QOur major motivation for studying Hopf algebras originates from
this example.
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for any ¢ € C. The convolution product we defined in Homy(C, A)

becomes:
(fxg)(c) = fle

Now we introduce two notions of duahty.

Definition 6. (1) For any k-space V, V* = Homy(V,k) is called the
linear dual of V. (This defines a nondegenerate bilinear form ( , )
VRV = kvia (f,v) = f(v)).

(2) The finite dual of an algebra A is defined to be A° = {f €
A*; f(I) = 0 for some ideal I of A such that dim(A/I) < co}.

We can define these duals for any space with one or more of the
above structures. It can be shown that the linear dual of a coalgebra
will have a natural algebra structure, but one needs to introduce the
finite dual to conclude the analogous result for an algebra: If A is not
finite dimensional, A*®A* is a proper subspace of (A®A)*, and so the
image of m* : A* — (A®A)*, the dual of the multiplication map, may
or may not lie in A*®A*. In fact, one can show that A° is the largest
subspace V of A* such that m*(V) C VaV.

Now let H be a Hopf algebra and H* be its (finite) dual Hopf algebra.
The pairing ( , ) between H and H* satisfies:

(x,ab) Z;z: 1)@ (2) ,a®b),

(wy,a) = (x@y, Y | a@)Bag)
and
(x,1m) = enx(7),
(g, a(= en(a),

(Sm+(2),a) = (z, 5u(a))
where a,b € H and =,y € H*.

We are finally ready to define quantum groups. Here is the definition
from [L2]:

Definition 7. A quantum group is a Hopf algebra (Fun(G), *n, A, S, €4)
consisting of:

(1) a one-parameter family of associative algebra structures *; on the
space of functions Fun(G) of a group G (here G can be C'*, analytic,
or formal);

(2) themap A : Fun(G) — Fun(G)® Fun(G) defined by: A(f)(g1,92)
= f(g192) for any g1,¢92 € G, which is the pullback of the group mul-
tiplication map of (G [Lu’s note here: The comultiplication A here is
“not quantized” in the sense that it is simply the pullback; we are not
given a one-parameter family Aj of comultiplications];
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(3) (the antipodes) maps Si from Fun(G) to itself such that Sy is
given by: So(f)(g) = f(g™'); and

(4) (the counits) maps €, from Fun(G) to the ground field &k such
that € is given by: €(f) = f(e) where e€( is the unit element of G.

We might sum up the above as follows: A quantum group is a col-
lection of Hopf algebra structures on the space of functions of a group
(7. These structures are parametrized by a (possibly formal) variable
h, and are deformations of the natural (commutative) Hopf algebra
structure on Fun(G) *.

Now we have defined our objects of interest. In the next section we
will describe the notion of inner action for a Hopf algebra, and the cor-
responding notion of a quantum group action will thus be formalized.
This type of action will turn out to be the one fit for developing the
notion of a quantum moment map.

2.2. Inner actions of Hopf Algebras: Here our basic reference will
be [M]. We start with definitions for general algebras and coalgebras.

Definition 8. For a k-algebra A, a (left) A-module is a k-space M
with a k-linear map v : AQM — M such that v(m®:id) = v(1d®~)

and y(u®id) = scalar multiplication.

Translated to the language of actions, we have: For a k-algebra A,
we say that A acts on the k-space M if M is a left A-module. The
action is given by the map ~ °.

The following is the dual notion of a (co-)action of a coalgebra:

Definition 9. For a k-coalgebra C, a (right) C'-comodule is a k-space
M with a k-linear map p : M — M®C such that (1dA)p = (p®id)p
and (id®€)p = tensoring with 1. In this case we say that p is a coaction

of C'on M.
We will also need:

Definition 10. (1) Let A be an algebra. Let M, N be (left) A-modules,
with structure maps yp; and vy respectively. A map f: M — N is
called an A-module map if f oy = yn o (1d®f).

*Historically, the category of quantum groups was defined as a dual to the cat-
egory of Hopf algebras, with the motivation coming from the duality between the
category of groups and commutative Hopf algebras. (One can check [D] for such a
description.) Today, the phrase quantum group is almost analogous to the phrase
Hopf algebra. We will stick to Lu’s definition here, and look at quantum groups as
Hopf algebras obtained from deformations of the function algebra of a group.

®Note that this definition of an algebra action is the usual one; we only state it
here so that we can see the duality when we define the corresponding notion of a
coaction.
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(2) Let C be a coalgebra. Let M, N be (right) C-comodules, with
structure maps pps and py respectively. A map f: M — N is called a
C-comodule map if py o f = (f®id) o pu.

So these are maps of algebras and coalgebras which preserve the
module and comodule structures on the corresponding spaces.

Let us consider some basic examples:

Example 1. For any coalgebra C, M = C is a right comodule using
p=A. This gives us a left action of C* on C: For f € C*,c € C, we
let (f = c) =Y (f co)cq), where (, ) is the nondegenerate pairing
between C' and its linear dual C*. Actually one can show that (=) is
the transpose of right multiplication in C*, noting that (g,(f = ¢)) =
(9f.c).
Example 2. There is also a natural right action of C* on C: For
feCceC welel (c< f)=>([,cuyce). Again we can show thal
(9,(c<= [)) =(fg,¢), so (<) is the transpose of left multiplication in
C*.
Example 3. Analogously we can define a left (resp. right) action (<)
(resp. (<)) of A on A* for any algebra A which is the transpose of
right (resp. left) multiplication on A.

Now we specialize to Hopf algebra actions:

Definition 11. Let H be a Hopf algebra. An algebra A is a (left)
H-module algebra if:

(1) Ais a (left) H-module via h®a +— h - a, (so H, as an algebra,
acts on A);

(2) h-(ab) = > (hqy - a)(hg)-b) for any a,b € A, (so my is an
H-module map); and

(3) h- 14 = €(h)14, (so uy is an H-module map).

(We say that H measures A if only (2) and (3) are satisfied.)

Thus, given a Hopf algebra H and an algebra A, we have a Hopf
algebra action of H on A if A is a (left-) H-module (i.e. H acts on A
as an algebra) and the algebraic structure of A is compatible with this
action. Similarly we can define a Hopf algebra co-action:

Definition 12. An algebra A is a (right) H-comodule algebra if

(1) A is a (right) H-comodule, via p : A — A®H, (so H, as a
coalgebra, acts on A);

(2) plab) = > (anybay) @ (a(e)b)) for all a,b € A, (so m4 is a (right)
H-comodule map);

(3) p(1a) = 14®14, (so uy is an H-comodule map).

Therefore, given a Hopf algebra H and an algebra A, we have a Hopf
algebra co-action of H on A if A is a (right-) H-comodule (i.e. H acts
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on A as a coalgebra) and the algebraic structure of A is compatible
with this action.
Let us look at some more examples.

Example 4. For any Hopf algebra H, we have both an action and a
coaction on M = H by right multiplication and A respectively.

Example 5. The trivial H-module M is defined as follows: For h € H,
mée M, h-m=c¢e(h)m.

Example 6. Let H = k(G. Then it is well-known that we can find a
correspondence between H-module algebras and group representations
of G. A nice characterization of H-comodule algebras is also available;
namely on any H-comodule algebra we can find a natural G-graded
algebra structure.

Example 7. Let H be an arbitrary Hopf algebra. Then the left adjoint
action ad; : HQH — H, of H on itself is defined to be:

(adih)(k) =) hayk(S(hez)

for all h,k € H. The right adjoint action ad, : HQH — H, of H on
itself is defined to be:

(ad.h)(k) = S(hq)kh)
for all h,k € H.
Finally we make the following:

Definition 13. Let H be a Hopf algebra, and A be an H-module
algebra. Consider an action H®R A — A given by: h®a — h - a, such
that:

(1) h-(ab) = > (hq) - a)(h() - b) for any a,b € A; and

(2) h - 1A = é(h)lA,
(i.e. H measures A.) Then this action is called inner if there exists
a convolution invertible map v € Homy(H, A) such that for all h €
H,a € A we have:

h-a= Z u(h(l))au_l(h(g)).

(We may always assume u(1) = 1 = u~'(1), for if not, we can simply
replace u by v(h) = u(1)"'u(h) for all h € H.)

One can check that the left and right adjoint actions of a Hopf algebra
H on itself are inner: Just set u(h) = h,u='(h) = S(h). Also the trivial
action of H on any algebra A will also be inner: u(h) = u='(h) =
¢(h). Note that if we have an inner action of H on some algebra
A and g is group-like, then ¢ acts as the inner automorphism of A
defined by = — u(g)z(u(g))™". Conversely, if a group G acts as inner
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automorphisms of A, then the action of H = kG is inner. On the
other hand, if p is a primitive element of H, then p acts as the inner
derivation = — u(p)x — zu(p) = [u(p), z]. Conversely if a Lie algebra
g acts as inner derivations of A, then the action of H = g will be
inner. Thus inner actions may be seen as a natural generalization of
inner automorphisms and inner derivations.

Here we will be mainly interested in inner actions. Under semi-
classical limits, inner actions of Hopf algebras will correspond to Pois-
son actions of related Poisson-Lie groups and the study of moment
maps for Poisson actions is thus relevant. Therefore we will develop
the theory for Poisson actions in the next section.

3. PoOISSON-LIE GROUPS, POISSON ACTIONS

3.1. Basic Notions: First we will start with the basics and give some
fundamental definitions. Here we will mostly be using [CP], the first
chapter of which is a recap of the theory of Poisson-Lie groups. Also
one may look at [CW] or [R]. For a more detailed development of the
Poisson geometry behind all this, one can check [V].

Recall that a Poisson structure on a manifold M is a skew-symmetric
R-bilinear bracket {-,-} : C*(M)®C*(M) — C*(M) satisfying the
Jacobi identity (i.e. a Lie bracket on C*(M)), and the Leibniz rule:

{fife fs} = filfas s} + {1, fs} e

It is easy to see that the Leibniz identity means that for any fixed
f € C®(M), the map g — {f, g} is a derivation of C*(M), and gives
us what we call the Hamiltonian vector field corresponding to f. Thus
we can equivalently say that the Poisson structure on M is a bivector
field 7 (i.e. a skew-symmetric 2-tensor, an element of 7'M ®?) called the
Poisson bivector. (The Jacobi identity, on the other hand, is equivalent
to the vanishing of the Schouten bracket [7, 7], a natural extension of
the Lie bracket, which will not be defined here. One can look at [V]
for the definition and basic properties of the Schouten bracket.)
A natural definition is:

Definition 14. A map F : N — M is a Poisson map if it preserves
the Poisson bracket, i.e.

{fi,famo F={fioF, fyoFin, i, [ € C*(M),

or equivalently in terms of the Poisson bivector,

(dF@dF)rn(z) = T (F(x)).
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In other words, a Poisson map between two Poisson manifolds is a
map whose pullback on functions is a Lie algebra homomorphism with
respect to the Poisson brackets.

Also recall that for two Poisson manifolds (M, {-,-}a), (N, {-, - }n),
the product Poisson bracket on C*°(M x N) is given by:

{f1,f2}M><N($7y) = {fl('ay)an('ay)}M(x) + {fl(xa ')7f2($7 )}N(y)

Finally here is our basic definition:

Definition 15. A Poisson-Lie group is a Lie group GG which has a
Poisson structure such that the multiplication map m : G x G — G is
a Poisson map, where G x (7 is given the product Poisson structure.

The fact that m is a Poisson map can be expressed as:

{flva}G(:Ey> = {floRyvaORy}G($> + {flOLzafZOLI}G(y)v

or in terms of the Poisson bivector mq:
ma(zy) = (dR,®@dR,)mg(z) + (dL,@dL,)ma(y),

or by some abuse of notation:

() mo(ay) = mo(a) -y + 7 7aly).

The natural definition for a Poisson action is now obvious: Let
(G,7mg) be a Poisson-Lie group, and (P, mp) be a Poisson manifold.
Then an action ¢ : G x P — P is a Poisson action if o is a Poisson
map. In terms of the Poisson bivectors, (note the abuse of notation
again!!) this translates to:

mp(g-2) =7a(g) z+g-mp(2).

Now let (G, mg) be a Poisson-Lie group. By (%), it is easy to see that
the Poisson bivector vanishes at e, the identity element of GG. So we can
differentiate 75 and get a linear Poisson structure on g. This gives a Lie
algebra structure on g*. In fact this is an example of the correspondence
between linear Poisson structures on a Lie algebra g and Lie algebra
structures on its dual g*. Thus every Poisson-Lie group structure on
a group (¢ gives rise to a Lie bracket on g*, and in fact is determined
by this Lie algebra structure. (One can look at any of [CP], [CW], [R],
[V] for a basic discussion of the above).

One can prove that, if 7 is a Poisson structure on G which makes ¢
into a Poisson-Lie group, then ¢ = dm must satisfy the cocycle condi-
tion:

([X,Y]) = [X, (V)] - [V; (X))
where [+, -] stands for the Schouten bracket. Conversely, if we start with
the usual Lie algebra structure on g (i.e. the one coming from the Lie
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group structure of (¢; denote it by [-, -],) and some Lie algebra structure
on g* (denote this by [-,-]*), the compatibility condition for these two
to give rise to a Poisson-Lie group structure on G is summarized in the
cocycle condition again. In fact, the following are equivalent:

(1) [-,-]*, (more precisely, its dual map from g into g A g), satisfies
the cocycle condition with respect to [-, ],

(2) [-,-], (more precisely, its dual map from g* into g* A g*), satisfies
the cocycle condition with respect to [, -]*,

(3) There is a Lie bracket on the vector space g + g* which extends
the two brackets on g and g*, and leaves invariant the natural inner
product on g 4 g* given by:

(X+n,Y+)=nY)+{X) X, Y egn(eg,

(4) ¢ in the cocycle condition can be integrated to give a multiplica-
tive structure on the underlying group, (so if we are looking at the
cocycle condition of (1), we integrate to get a multiplicative structure
on (&, whereas the corresponding procedure for the cocycle condition
of (2) gives a multiplicative structure on the dual group G*) °.

Summarizing all the above, we have:

Proposition 1. Fvery Poisson-Lie group G is accompanied by ils dual
G*, a Poisson-Lie group, which is the (simply connected) Lie group
with Lie algebra g*, whose Poisson structure is determined by the Lie
bracket on g.

Observe that the dual of the dual Poisson-Lie group G* is the uni-
versal covering group of (G, by the simply connectedness hypothesis.

Next we describe the dressing actions, which will be the generaliza-
tion of the coadjoint action to Poisson actions; these will be relevant
when we want to generalize the notion of G-equivariance to moment
maps for Poisson actions. (Also they will provide a basic example of
Poisson actions as we will see below).

6When we have a compatible pair of Lie algebras (g,9%) as above, we say that
the pair is a Lie bialgebra. To see how this fits in with the general definition of a
bialgebra in the second section, one notices first that the Lie coalgebra structure is
defined as a skew-symmetric linear map g — g ® g called the cocommutator, which
satisfies a certain condition (called the coJacobi identity). In other words, we may
think of a Lie bialgebra as a space on which two compatible structures are given,
one of which is a commutator, which gives a Lie algebra structure to our space,
and the other is a cocommutator which gives a Lie algebra structure to its dual.
Thus, the analogy with the definitions in the second section is clear: We define a
Lie bialgebra to be a space which is both a Lie algebra and a Lie coalgebra, with
the two structures satisfying the cocycle condition mentioned above.
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For X € g let X'/ (resp. X"9"') denote the left-invariant (resp.
right-invariant) 1-form on G* which is equal to X at the identity (us-
ing the fact that g and g* are dual). Given a I-form «, the Poisson
bivector 7 converts it to a vector field 7#(a), (here we denote by 7#
the bundle map T*G — TG associated to m). The fields 7#(X'"*/1)
(resp. 7#(X"9")) form a Lie algebra isomorphic to g. These induce
two actions of the Lie algebra g on G* which are the exact analogs of
the coadjoint action (We actually get: The linear part of the dressing
action at the identity is the coadjoint action. Note only that, unlike
the coadjoint action, the dressing actions need not be Hamiltonian).
We call these actions the infinitesimal dressing actions.

We cannot in general integrate the infinitesimal dressing actions to
get a global group action. However in the cases where we can, the
dressing action of GG on G* is defined to be this (global) action. This
happens precisely when the dressing action of the dual G* on G is
(globally) defined. The orbits of the dressing action of G* on G are
exactly the symplectic leaves of G.

3.2. Actions and Moment Maps in the Poisson Case. Here we
will be summarizing [L1].

When (' has the zero Poisson structure, its dual Poisson-Lie group
is just g*, with the abelian Lie group structure, and the left and right
dressing actions of G are simply the left and right coadjoint actions
of G on g*. Recall that, in the symplectic case, the moment map is
amap J : P — g" for a symplectic action G x P — P, and the G-
equivariance of the moment map is with respect to the coadjoint action
of the group on the dual of its Lie algebra. Generalizing from the above
observations, Lu in [L1] says that the moment map for a general left
(resp. right) Poisson action o : G x P — P should be a map from P to
the dual group G* with some properties to be specified later, and the
G-equivariance of the moment map should be with respect to the left
(resp. right) dressing action of G on G*.

We first wish to study Poisson actions a bit more in detail. We note
that working with Poisson actions in general is very difficult, as the
conditions for an action to be Poisson are rather weak; or equivalently,
Poisson actions do not preserve enough structure. We therefore would
like to study classes of actions which satisfy stronger conditions. Hence
we make the following:

Definition 16. An action o of a group G or a Lie algebra g on a
Poisson manifold (P, 7p) is tangential if for any element X € g, the

vector field generated by the action of X is tangent to each symplectic
leaf of P.



12 GIZEM KARAALI

In words, this means that an action on a Poisson manifold P is
tangential if it leaves the symplectic leaves in P invariant. Every action
on a symplectic manifold is tangential. The left and right (infinitesimal)
dressing actions of g* on (7, and the corresponding dressing actions of
G* on GG (when they are defined) are tangential as well. On the other
hand, the left action of a Poisson-Lie group on itself by left translations
is never tangential.

Lu in [L1] gives a Maurer-Cartan-like criterion for a tangential action
to be Poisson. (In fact, this is how she proves that the dressing actions,
if complete, are Poisson). Thus as long as we are restricted to tangential
actions, (which preserve symplectic leaves, so are naturally a good class
of actions to restrict to), we have a way to determine whether we have
a Poisson action.

We next give Lu’s definition for moment maps for a Poisson action.

Definition 17. A ¢ map J : P — G* is called a moment map for
the Poisson action o : G x P — P if for each X € g,

ox =ap*(JH(X")),

where ox is the vector field on P which generates the action o, x on
P, and 7p# is the bundle map 7P — T P associated to mp. A Poisson
action of G on P is said to have a moment map if there is a map .J as
above, which generates the action.

Similarly we can define o’y = —mp#(J*(X"9")); where X"%9" is the
right-invariant 1-form corresponding to X. This will give us a right
action of G on P. In this case one may note that the map X — o'y is a
Lie algebra homomorphism from g to the Lie algebra of vector fields on
P, while the analogous map for oy is a Lie algebra antihomomorphism.

When G has the zero Poisson structure, the above reduces to the
usual definition of a moment map (for symplectic actions); recall that
in that case G* = g*. Note also that for both the left and the right
dressing actions of G* on (G, when they are defined, the identity map
of GG is a moment map according to this definition.

Lu remarks that the expected version of Noether’s theorem still holds
for such a moment map:

Theorem 1. Let o : G x P — P be a Poisson action of a Poisson-Lie
group G on a Poisson manifold P with a moment map J : P — G*. If
H € C*(P) is G-invariant, then J is an integral of the Hamiltonian
vector field Xy of H.

Then she proves, modulo a proposition from Bourbaki, the following:

Theorem 2. Let o : G x P — P be a Poisson action of a Poisson-Lie
group G on a symplectic stimply connected manifold P. Then for every
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r € P and w € G*, there s a unique moment map J : P — G* with
J(z) = w.

To make the generalized definition for G-equivariance, we restrict to
complete (5, 1.e. we assume that the dressing vector fields are complete
and thus we can integrate the infinitesimal dressing actions to a global
action of G-

Definition 18. A moment map J : P — G* for a Poisson action o :
G x P — P is sald to be G-equivariant if for every g € G Joo, = A;joJ
where A is the (left) dressing action of GG on its dual G*.

Then we get:

Theorem 3. For a connected Poisson-Lie group G, a moment map
J: P — G* for a Poisson action o : G x P — P is G-equivariant if
and only if J is a Poisson map.

(This fits in well with the case when G has the zero Poisson structure.
Recall that in that case there is an affine Poisson structure on g*,
such that .J becomes a Poisson map with respect to this structure, and
furthermore it can be shown to be equivariant, too, when we change
the (G action on g* by a 2-cocycle.)

Lu goes on further to describe reduction in the particular case when
there is a tangential action which admits a moment map, but we will
stop reviewing [L1] here.

4. QUANTUM MOMENT MAPS

Finally we are ready to discuss Lu’s quantum moment maps [L2].

We first define:

Definition 19. Let P be a Poisson manifold. A one-parameter family
of noncommutative algebra structures denoted by #, on the vector
space Fun(P) is called a quantization of the Poisson structure {-,-}p,
if

(1) *o corresponds to the commutative multiplication; and

(2) the “derivative of *, at h = 07 is the Poisson bracket, i.e.

{f,g}Pz}{iL%%(f*hg—g*hf)

for f,g € Fun(P)".

Let GG be a Lie group and let (Fun(G),*,, A, Sy, €x) be a quantum
group. Then the semi-classical limit of #; is a Poisson structure on GG

"We repeat here Lu’s remark that any one-parameter family of noncommutative
algebra structures {*,} on Fun(P) which satisfies (1) will define a Poisson bracket
{-,-}p on P given by the formula (2). This Poisson bracket is called the semi-
classical limit of *p,.
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such that the usual multiplication map m : G x G — G is a Poisson
map, i.e. such that G becomes a Poisson-Lie group with this structure.
In this case we say that the quantum group (Fun(G),*n, A, S, €) is
a quantization of the Poisson-Lie group G.

Let H be a quantum group quantizing a Poisson-Lie group (G, and let
V' be a quantization of a Poisson manifold P. If we haveao : V — VRH
that defines a (right) H-comodule structure on V, and if ¢ is the pull-
back (on functions) of some map o¢ : PxG — P, then one can prove
that oq is a (right) Poisson action. In this case we are justified to say
that H’s (co)action on V' is a quantization of the Poisson action og. For
example, the right H-comodule structure on a quantum group H itself
given by the comultiplication of H is a quantization of the right action
of the corresponding Poisson-Lie group on itself by right translations.

Recall the definition of a moment map in the Poisson setting (see
Definition 17). Here we look at Hopf algebra theory to come up with
a similar situation. In other words, we want to find a map, from the
dual of a Hopf algebra to some algebra, with which we can define a
Hopf algebra action ®. Here is the well-known fact from Hopf algebra
theory that Lu states (one can find this result in [M]):

Proposition 2. If V is an algebra and if ® : H* — V is an algebra
homomorphism, then the map D® : H*@V — V defined by:

T@v — x(v) = Z P (z(1))v®(S(7(2))

defines a (left) action of H* on 'V and makes V into a (left) H*-module
algebra.

We note that the above action D?® defined by the map ® is inner.
(Check the definition of inner actions in Section 2.2 (Definition 13).
The convolution invertible map u of the definition there will be our ®,
and as S is the inverse to id under convolution, we will have ®~'(z) =
o(S(x)).)

This proposition suggests the following:

Definition 20. The map ® of the above proposition (i.e. an alge-

bra homomorphism ® : H* — V defining the corresponding action
D® . H*®V — V via

T@v — x(v) = Z (1)) v®(S(z(2)))

8Although most of Lu’s constructions in [L2] work for general Hopf algebras,
we will keep in mind the special case where H is a quantum group quantizing a
Poisson-Lie group G; in this case it follows from the Quantum Duality Principle
in [STS] that H* is a quantum group quantizing the dual group G*. Similarly, we
think of the H-module algebras and H*-module algebras as quantizations of some
Poisson manifolds on which our Poisson-Lie group G acts, in a Poisson manner.
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of H* on V) is called the moment map for the action D® of H* on V.

To justify this choice for the moment map, we look at the semi-
classical limit of the action D®. For this we assume that our Hopf
algebras are associated in the proper way to Poisson objects. More
precisely we assume that H* is a quantization of G*, the dual group of
a Poisson-Lie group G. Also we assume that V' is a quantization of a
Poisson manifold P, and the map ® : H* — V is the pullback of a map
¢ : P — G*. Then ¢ is Poisson as @ is an algebra homomorphism.
Explicitly calculating semi-classical limits, we will have:

lim i(a:(v) —e(z)v) =

h=0 h

= lim

h;}g% {Z (q)(x(l))vq)(Sh(:E(z)))) —v Z (@(x(l))cl)(Sh(;z;@))))} =
= lim 3" (@ )v — v®(a) B(Si(rw))] =

h—0

= lim% [(CI)(;v(l))v — vq)(x(l))) (I)(Sh(x(z)))] =

h—0

= ({# () v} & (Solz)

The bracket and the multiplication in the last line are respectively the
Poisson bracket and the commutative multiplication of Fun(P); in other
words, the former is the semi-classical limit of *; and the latter is *q of
V. The multiplications in the first four lines are the noncommutative
multiplications *;, of V. Also note that (z,v) — €(x)v is the trivial
action of H* on V.

Define the vector field o, on P by

v {0 (2)), v1 6 (So(2(z)), v € Fun(P)
or by
Oz = _¢*(SO($(2)))X¢*(I(1))

where Xyu(z,)) is the hamiltonian vector field corresponding to the
function ¢*(z ().

We see that in this way, each element z of H* = Fun(G*) defines
a vector field o, on P. The fact that D?® is a left action of H* on
V implies that the map = — o, is a Lie algebra homomorphism from
(Fun(G*),{-,-}) to the Lie algebra of vector fields on P with the com-
mutator bracket. Lu proves:
Theorem 4. The infinitesimal action x — o, of (Fun(G*),{-,-}) on P
is the same as the right infinitesimal action X — o'x of g on P induced
by the Poisson map ¢ : P — G* as given by o'x = —mp#(¢*(X79M));
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where X9 is the righl-invariant 1-form corresponding to X. There-
fore, the action D® of H* on'V is a quantization of the Poisson action

of G on P induced by ¢.

Thus we can see why Lu’s definition for the quantum moment map is
reasonable: The quantum moment map for the quantum action defined
as above is related in a natural way to (more precisely is the pullback
of) the moment map of the limiting Poisson action.

Thus having justified her choice for the quantum moment map, Lu
goes on to discuss a few of the properties of the action D® and of the
map ®. One such is the following:

Proposition 3. The action D® of H* on V leaves every two-sided
ideal of V' invariant.

This follows readily from the definition of D®. The semi-classical re-
sult corresponding to this is the fact that a Poisson action on a Poisson
manifold P with a moment map leaves the symplectic leaves of P in-
variant.

Let’s consider a basic example. Recall, from Section 2.2, the defini-
tion of adjoint actions for a Hopf algebra (Example 7). One can see
actually that the left (resp. right) action of H* on itself induced by the
identity map tdy« : H* — H* turns out to be precisely the left (resp.
right) adjoint action of H* on itself.

In Section 2.2, the adjoint actions were defined for an arbitrary Hopf
algebra. However if we again look at the special case which we are
interested in, that is, if we assume that H is a quantum group associ-
ated to a Poisson-Lie group, then we can see that the above generalizes
the notion of the dressing action. In fact the above theorem (Theorem
4) implies that the left (resp. right) adjoint action of H* on itself is a
quantization of the right (resp. left) dressing action G on G*. Thus the
adjoint actions defined above may be called quantum dressing actions
as well.

In the Poisson case, the dressing actions came up in the study of G-
equivariance. So it is natural to expect the adjoint actions to have some
relevance in the corresponding notion for the quantum setting. Indeed
in Lu’s Proposition 3.13, we see that this expectation is justified:
Proposition 4. The map ® : H* — V is H*-equivariant with respect
to the left adjoint action of H* on ilself and the left action D® of H*
on V.

To see the analogy, one needs only to review Theorem 3 of Section
3.2, and to note that the quantum moment map ® corresponds to a
quantum action which is the quantization of a Poisson action with
Poisson moment map ¢.
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5. FINAL REMARKS- OTHER DIRECTIONS

Here we have discussed one method of quantizing the notion of mo-
ment maps. This method seems fruitful as it leads naturally to a gen-
eralization of the reduction construction; see [L.2] for more on this. It
might be interesting to compare the moment map defined here with
the map described in [B], as both methods clearly involve deforma-
tions. We have mostly discussed the results in the special case where
our Hopf algebras were associated to certain Poisson objects; clearly
the constructions here were developed with the Poisson picture in mind.
However it may also be of some interest to see how far one can get for
the general Hopf algebra case.
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