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Abstract. This note presents some recent results on the new notion of quan-
tum groupoid from both the perspective of Poisson geometry and Operator
algebras. We shall only briefly present the major results known so far on these

new objects, together with some preliminary definitions on groupoids, Poisson
geometry, and operator algebras.

”The knowledge at which geometry aims is the knowledge of the
eternal. ” - Plato, Republic, VII, 52.

1. Introduction

Quantum groupoids are objects which are hoped to improve our understanding
of non-commutative algebras as geometric objects, like groupoids provide us with
tools in the commutative case.

An important direction of study for non-commutative algebras is summarized by
an allegory: a non-commutative algebra is the algebra of (complex valued) functions
on some quantum space which would not be described within set theory. To an
extend, this impossibility to see the quantum space is the ultimate expression of
the Heisenberg’s uncertainty principle: mathematically, it translates into the non-
commutativity of the observable of the quantum systems, but in fact expresses our
inability to have access to the quantum space itself, but only through measurements
of limited precision. On the other hand, the enunciated allegory is there to state that
the quantum space, if inaccessible, still exists. Thus, one tries to study it through
its algebra of observable, starting by exporting to it the understood notions of the
classical case.

An issue is to understand how complementary structures on a classical space
could be extended to quantum space. The case of (topological) groups has been
extensively studied for the last two decades, leading to the well-known quantum
groups. Essentially, the multiplication, the neutral element and the inverse of the
group lift to the algebra of continuous functions into a comultiplication ∆, an
antipode S and a counit ε, turning this algebra into a Hopf algebra (cf [8], [1],[7]):

Definition 1. A Hopf algebra (A,∆, S) is a unital associative algebra A together
with:
• A unital monomorphism ∆ : A→ A⊗A which is coassociative:

(∆⊗ Id) ◦∆ = (Id⊗∆) ◦∆
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This is only the dual property of the associativity of the multiplication of
the group. Note also that the tensor product, in general, has to be completed
for some norm on A which is, in the case of the space of continuous functions
on a locally compact group, a C∗–algebra. But modulo this completion, the
comultiplication on C(G) is given by: ∀f ∈ C(G) ∆(f) = [(x, y) ∈ G2 7→
f(xy)].

• An (involutive) unital antiautomorphism S : A→ A, such that:

σ ◦∆ ◦ S = (S ⊗ S) ◦∆

where σ(x ⊗ y) = y ⊗ x for all elementary tensors and is extended by
linearity.

For a group, we just set: S(f) = [g 7−→ f(g−1)].
A counital Hopf algebra1 (A,∆, S, ε) is a Hopf algebra (A,∆, S) together with

the counit ε satisfying:
• ε is a unital algebra homomorphism from A into C,
• (ε⊗Id) ◦∆ = (Id⊗ε) ◦∆ =Id,
• ∀a ∈ A [µ ◦ (S⊗Id) ◦ ∆](a) = [µ ◦ (Id⊗S) ◦ ∆](a) = ε(a)a, where µ is the

multiplication of A.
In this last case, the assumption that ∆ is injective could be relaxed as it is

immediately implied by the existence of a counit.

In the case of these richer algebraic structure, the fundamental analogy we
started with is needing enlargement. Indeed, a (compact) Lie group has three
natural algebras associated with it: apart from the algebra of continuous functions,
one has the group algebra, and the universal enveloping algebra of its Lie algebra
(other algebras can be considered, as the algebra of smooth functions...). The two
first algebras are dual from each other when the original group is commutative
(and only locally compact), and a whole theory has been developed (cf [18]) to ex-
tend this duality to some extend to non-commutative topological locally compact
groups. The first one is always commutative, but the second one is commutative
if, and only if the group is. However, via the duality theory of Takesaki, there is
a natural comultiplication on the group algebra, which is co-commutative, mean-
ing that it is valued in the symmetric square-tensor product of the group algebra.
Moreover, all cocommutative counital (C∗–)Hopf algebras are group algebras of
some locally compact groups. Thus, the extra structure of groups allow us to use
other generalization of classical space into quantum space: for instance, consider
a non-cocommutative algebra as ”group algebra” for some quantum group. This
theory is all the more satisfactory as indeed the theory in [18] applies even to these
quantum spaces.

A different approach is to consider the universal enveloping algebra. The uni-
versal enveloping algebra of a Lie algebra of a Poisson group is naturally endowed
with a structure of Hopf algebra (but not C∗ !) coding the Poisson structure - the
other operations of the group having been used to defined the algebra itself. This
last object is of great importance for the theory of quantum groups. In this case,
one can see this algebra as coding the notion of (right invariant) differential oper-
ators on the original Poisson groups, providing thus an encoding of the differential
structure of the group.

1Many authors actually call Hopf algebra what we named counital Hopf algebra. But in fact,
other similar definitions can be found. We retain this one for the convenience of the exposition.
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The quantum groupoids have appeared as a generalization of quantum groups,
in the diverse meanings this notion covers. In these notes, we shall give a brief
account of these developments. A first path of interest focuses on a generalization
of abstract harmonic analysis to groupoids, and includes the study of the algebra
of functions on a (quantum) groupoid. Another path focuses on the deformation
of a universal enveloping algebra of the Lie algebroid of a Poisson groupoid: each
time, the suffix ”oid” refers to a generalization we will define further.

Our first part will be concerned with a brief introduction to the notion of
groupoids, then include some definitions of Poisson geometry, which we shall use
while presenting Poisson groupoids. Our second section will present some versions
of the algebras of functions on quantum groupoids, and of the quantum groupoids
algebras, in the framework of Von Neumann algebras theory. At last, our last part
will be concerned with the deformation of the universal algebra of a Lie algebroid,
as another approach to quantum Poisson groupoids.

2. Groupoids and Poisson Geometry

2.1. The notion of groupoids. A groupoid is a small category whose all arrows

are invertible (cf [2]). More explicitly, referring to [15]:

Definition 2. A groupoid is a set G endowed with a function ◦ : G(2) → G, where
G(2) is a subset of G, such that:

1. Associativity:

∀((x, y), (y, z)) ∈ (G(2))2 ((x ◦ y, z), (x, y ◦ z)) ∈ (G(2))2 and (x ◦ y) ◦ z = x ◦ (y ◦ z)

2. Existence of inverse:
(a) ∀x ∈ G ∃x−1 ∈ G ((x, x−1), (x−1, x)) ∈ G(2),
(b) ∀x ∈ G (x−1)−1 = x,
(c) ∀(x, y) ∈ G(2) x−1 ◦ (x ◦ y) = y,
(d) ∀(y, x) ∈ G(2) (y ◦ x) ◦ x−1 = y.

The set G(2) is called the set of composable pairs. The groupoid will be denoted
(G, ◦) or even G if no confusion arises.

Let us clarify the relation between this definition and the definition in terms of
category. Let us introduce the following maps:

Definition 3. Given a groupoid (G, ◦), we define the source map s : G → G and
the range map r : G → G by

s : x 7−→ x−1 ◦ x,

r : x 7−→ x ◦ x−1.

Denote by G(0) = s(G), called the set of units of G.

We obtain now the equivalence between the definition 2 and the category inter-
pretation of groupoids:

Proposition 1. • Given a groupoid (G, ◦), then:
– G(0) = r(G),
– G(2) = {(x, y) ∈ G2 : s(y) = r(y)}
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– G is the set of homomorphisms of some small category whose set of objects
is G(0); more precisely:
∗ Any element of G is a morphism from s(x) into r(x),
∗ The product in G(2) is the composition of the corresponding maps.
∗ The inverse in G is the inverse for the corresponding maps. In partic-

ular, any morphism for the category thus defined is an isomorphism.
• Conversely, given a small category whose all morphisms are isomorphisms,

then the set of homomorphisms of the category (where the objects are iden-
tified with their identity isomorphisms), together with the composition, is a
groupoid.

For this reason, a groupoid (G,◦) is sometimes said to be a groupoid over G(0).
More generally, a groupoid gives rise to the following hierarchy of sets:

G(0) = s(G),

G(1) = G,

G(2) = {(x, y) ∈ G2 : s(y) = r(x)},

G(3) = {(x, y, z) ∈ G3 : (x, y) ∈ G(2), (y, z) ∈ G(2)},
...

G(n) = {(xi)i=1,... ,n : (xi)i=1,... ,n−1 ∈ G(n−1), (xn−1, xn) ∈ G(2)} for n ≥ 2.

We shall introduce a couple more definitions:

Definition 4. Let (G, ◦) be a groupoid. For any x ∈ G, s−1(x) is called the source-
fiber of x and r−1(x) is called the range-fiber of x.

Definition 5. A subgroupoid G′ of a groupoid (G, ◦) is a subset of G closed under
the multiplication and the inverse operation in G. Moreover, if G′(0) = G(0), then
the subgroupoid G′ is said to be wide.

The class of groupoids is indeed a category, once one define a homomorphism of
groupoids to be a covariant functor (in the category framework). In the set-theoretic
language used throughout these notes, this translate into:

Definition 6. Let (G1, ◦1) and (G2, ◦2) be two groupoids. Then a map ϕ : G1 → G2

is a homomorphism of groupoids when:

∀(x, y) ∈ G(2)
1 (ϕ(x), ϕ(y)) ∈ G(2)

2 and ϕ(x ◦1 y) = ϕ(x) ◦2 ϕ(y).

Let us now see some important examples of groupoids.

Example 1. A group is a groupoid whose set of units is reduced to one element.
This unit is of course the neutral element of the group. Alternatively, a group is a
non-empty groupoid G such that G(2) = G.

Example 2. The trivial groupoid over any setX is the groupoid G such that G = X
and G(2) = X2, together with the multiplication defined by:

∀x ∈ X x ◦ x = x.
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Example 3. Given any set X endowed with an equivalence relation ∼, we define
a groupoid structure over X by letting G∼ = {(x, y) ∈ X2 : x ∼ y} together with the
multiplication:

◦ : {((x, y), (y, z)) ∈ G2
∼

: (x, y, z) ∈ X3} −→ G∼

((x, y), (y, z)) 7−→ (x, z).

This multiplication is well-defined by the transitivity of the equivalence relation,
which also gives the associativity property. Now, the symmetry of ∼ ensures that
for all (x, y) in G∼, (y, x) is also in G∼ and the latest is clearly the inverse of the
former. At last, the reflexivity is not required to define the structure; the set of
units of this groupoid is the set of elements x of X such that x ∼ x, so when ∼

is reflexive then G(0) = {(x, x) : x ∈ X} ' X. Note that for any (x, y) ∈ G∼,
s((x, y)) = x and r((x, y)) = y. We shall name this groupoid the groupoid graph
of the relation ∼.

In general, the set of units of a groupoid is always endowed with a canonical
equivalence relation:

Definition 7. Let (G, ◦) be a groupoid. We define on G(0) the equivalence relation
∼ by:

∀(u, v) ∈ G(0) u v v ⇐⇒ s−1(u) ∩ r−1(v) 6= ∅.

The equivalence class of u in G(0) is called the orbit of u in G.

It is easy to check that, in example 3, with the identification X ' G(0)
∼

, one
recovers the original equivalence relation thank to the previous definition.

Definition 8. A groupoid is said transitive when its unit set has only one orbit in
G.

These notions are especially well illustrated by the following example of groupoids:

Example 4. Action of a group. Let G be a (multiplicative) group acting on a set
E on the right - the action being denoted by ·. Then, if (u, s) and (v, t) are elements
of E ×G, we declare them composable if v = u · s, and then we set:

(u, s) ◦ (v, t) = (u, st).

We then have (u, s)−1 = (u ·s, s−1) and the set GE,G = E×G together with ◦ is a
groupoid. Moreover the set of units for this groupoid is G(0)

E,G = {(u, e) : u ∈ E} ∼= E
where e is the neutral element of G. Now, the orbit of an element of E for the
action · is the orbit of the corresponding unit in the groupoid (GE,G, ◦). Thus, GE,G
is transitive if, and only if the action · is.

It is worth noticing that this could be easily extended to the action of a groupoid
on a set, leading us to the construction of a groupoid from the action of another
groupoid on a set. We define the action of a groupoid on a set by:

Definition 9. (cf [17]) Let (G, ◦) be a groupoid. Let M be a set such that there
exists a map µ : M → G(0). We define the space G �M = {(γ,m) ∈ G ×M : s(γ) =
µ(m)}. A left action of G on M is a map · : G �M →M such that:

1. ∀(γ,m) ∈ G �M µ(γ ·m) = r(γ),
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2. ∀(γ1, γ2,m) ∈ G2 ×M(
(γ1, γ2) ∈ G(2) and (γ2,m) ∈ G �M

)
=⇒

{
(γ1, γ2 ·m) ∈ G �M and
γ1 · (γ2 ·m) = (γ1 ◦ γ2) ·m ,

3. ∀m ∈M µ(m) ·m = m.

Then notice that the same type of construction as above leads to a groupoid
structure on G �M .

We shall refer to [17] for other discussions around the notion of groupoids. An-
other source is [14], and an interesting presentation can also be found in [9], where
the tangent groupoid to a manifold plays an important role to deal with some
quantization issues.

2.1.1. Finite dimensional Groupoid algebra. The general theory for groupoid alge-
bra can be found in the original text of Renault ([15]), or as well in [14], and, in a
different perspective in[17]. We will limit ourselves here to the description of this
object in finite dimension. Let G be a finite groupoid. We adopt the following
notation: any element f of C

G is written as a formal sum
∑
γ∈G f(γ) · γ. The sum

of two functions leads to the natural sum on these formal linear combination. But
instead of the pointwise multiplication, we define the convolution product of two
such linear combinations by:

Definition 10. For (f, g) in
(
C
G)2, we define:

f ∗ g : γ ∈ G 7−→
∑

(γ1,γ2)∈G(2)

γ1γ2=γ

f(γ1)g(γ2)

or, equivalently,∑
γ1∈G

f(γ1) · γ1

 ∗
∑
γ2∈G

g(γ2) · γ2

 =
∑
γ∈G

 ∑
(γ1,γ2)∈G(2)

γ1γ2=γ

f(γ1)g(γ2)

 · γ.
Then it is easy to check that CG = ( C

G ,+, ∗) is a unital ring (so with the
obvious action of C on the left, it is a C–algebra). It is called the groupoid algebra
of G. One can extend slightly this definition by having some weights in the sums
above; we shall encounter later the conditions such weights should have to ensure
the algebra structure. For now, let us observe the following:

Example 5. Let Nn = {1, . . . , n} for some natural integer n > 0. Endow this set
with the equivalence relation:

∀(k, k′) ∈ N
2
n k ∼ k′.

Then, the groupoid algebra of the groupoid-graph of ∼ G∼ (cf example 3) is the
algebra of n× n-complex matrices.
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2.2. Poisson Groupoids. A very important class of groupoids we will be con-
cerned with in these notes is the class of Poisson groupoids as introduced by Pr.
Weinstein. Our first step is to recall some basic definitions about Poisson geome-
try. Then, we introduce the notion of Poisson groupoid as a generalization of both
Poisson groups and symplectic groupoids. A reference on Poisson groups and their
connections with quantum groups can be found in [8].

2.2.1. Poisson manifold. The Poisson structure on a manifold is inspired by the
Hamiltonian formalism of Newton and Einstein mechanics. We start by the notion
of Poisson algebra, before developing the theory of a manifold whose algebra of
function is a Poisson algebra. Throughout these notes, K denotes one of the field
R or C. All manifolds in what follows are finite dimensional.

Definition 11. Let A be an commutative associative algebra over K. (A, {., .}) is
said to be a Poisson algebra when {., .} : A⊗K A → A satisfies:

1. {., .} is K-linear on A⊗K A (i.e. K-bilinear on A),
2. ∀(a, b, c) ∈ A3 {ab, c} = a{b, c}+ {a, c}b (Leibniz’s identity),
3. (A, {., .}) is a Lie Algebra, i.e.

(a) ∀(a, b) ∈ A2 {a, b} = −{b, a},
(b) ∀(a, b, c) ∈ A3 {a, {b, c}}+{c, {a, b}}+{b, {c, a}} = 0 (jacobi’s identity}.

The bilinear map {., .} is called the Poisson Bracket on A.

We shall omit writing the field of scalar K wherever possible from now on.

Remark 1. For any a in A, the map ξa = {a, .} is a derivation called a Hamil-
tonian derivation.

Definition 12. An algebra homomorphism f : A → B between two Poisson alge-
bras (A, {., .}A) and (B, {., .}B) is a homomorphism of Poisson algebras, or Poisson
homomorphism, when:

∀(a, b) ∈ A2 {f(a), f(b)}B = f({a, b}A).

Of course, the class of Poisson algebras with Poisson homomorphisms is a cat-
egory, with the obvious definition for the category of unital Poisson algebras. Let
us now turn to the object of interest for Poisson geometry:

Definition 13. Let M be a C∞–differentiable manifold, and

{., .} : C∞(M)⊗ C∞(M)→ C∞(M).

(M, {., .}) is a C∞–Poisson manifold when (C∞(M), {., .}) is a Poisson algebra.

Remark 2. Given a C∞–Poisson manifold (M, {., .}) then (M,−{., .}) is also a
Poisson manifold.

Definition 14. A map f : M→ N between two C∞–Poisson manifolds M and
N is said to be a Poisson map when its lift f∗ : C∞(N ) → C∞(M) is a Poisson
homomorphism.

Again, the class of C∞–Poisson manifolds together with the Poisson maps is a
category. From now on we shall assume that all manifolds are C∞.
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Definition 15. Given ϕ ∈ C∞(M) for (M, {., .}) a Poisson manifold, the vector
field ξϕ = {ϕ, .} on M is said to be the Hamiltonian vector field of ϕ (where we
identify as usual derivations and vector fields).

Definition 16. A submanifold N of a Poisson manifold M is a Poisson subman-
ifold if, for any point n of N and any function ϕ ∈ C∞(M), ξϕ(n) is tangent to
N .

Denote now by Γ(X) the algebra of smooth sections on X where X is some
vector bundle over M, and T ∗(M) the algebra of smooth 1-form on M. Given
a manifold M, denote by < ., . > the natural pairing between TM ∧ TM and
T ∗M∧ T ∗M, and introduce the following bracket on the exterior algebra of the
sections of TM∧ TM:

Definition 17. The Schouten bracket [[., .]] is defined by:

∀(ui, vi)i∈N ∈ Γ(T (M))2n

 n∧
i=1

ui,
n∧
j=1

vj

 =
∑
i,,j

(−1)i+j [ui, vj ] ∧
∧
k 6=i

uk ∧
∧
h6=j

vh.

Now, we can explicit the announced connection between symplectic and Poisson
geometry:

Proposition 2. Let π be a (smooth) section of TM∧ TM; define the following
bilinear map

{f, g} =< df ∧ dg, π > .

Then {., .} defines a Poisson structure on M if, and only if [[π, π]] = 0. In this
case, π is called the associated Poisson bivector. Moreover, any Poisson bracket on
M is of such a form.

Given π a section of TM∧ TM such that [[π, π]] = 0, we can define a homo-
morphism of vector bundle π̌ : T ∗M→ TM by. Then:

Proposition 3. Keeping the previous notations, a Poisson manifold for which π̌
is an isomorphism is a symplectic manifold, whose symplectic form is:

ω(X,Y ) = [π̌−1(X)](Y ).

Of course, given (M, ω) is a symplectic manifold, defining π̌ by the previous for-
mula (which makes sense as ω is nondegenerate) endows M of a Poisson manifold
structure.

An important property of Poisson manifolds is for them to admit a decomposition
into symplectic submanifolds, called symplectic leaves:

Definition 18. Given (M, {., .}) a Poisson manifold, a Hamiltonian curve γ :
[0, 1]→M is a C∞–path such that there exists a function f ∈ C(M) satisfying:

∀t ∈ [0, 1] γ̇(t) = ξf (γ(t)).

Proposition 4. Given (M, {., .}) a Poisson manifold, define the following binary
relation on M:

∀(u, v) ∈M2 u ∼ v ⇐⇒ [∃γ Hamiltonian curve γ(0) = u and γ(1) = v].

Then ∼ is an equivalence relation on M. Its equivalence classes are Poisson
submanifolds of (M, {., .}) whose induced Poisson structure is indeed symplectic -
we shall call these manifolds the symplectic leaves of M.
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A fundamental construction for us is to endow the product manifold of two
Poisson manifolds with a new, natural Poisson structure.

Definition 19. [8]Let (M1, {., .}1) and (M2, {., .}2) be two Poisson manifolds.
Following the proposition 2:

∃π1 ∈ Γ(TM1 ∧ TM1) ∀(ϕ,ψ) ∈ C∞(M1)2 < dϕ ∧ dψ, π1 >= {ϕ,ψ}1,

∃π2 ∈ Γ(TM2 ∧ TM2) ∀(ϕ,ψ) ∈ C∞(M2)2 < dϕ ∧ dψ, π2 >= {ϕ,ψ}2.

Then define on C∞(M1 ×M2) the bracket {., .}:

∀(ϕ,ψ) ∈ C∞(M1 ×M2)2 < dϕ ∧ dψ, π >= {ϕ,ψ},

where ∀(m,n) ∈M1×M2 π(n,m) = π1(n)+π2(m). Then (M1×M2, {., .}) is
a Poisson manifold. We shall denote this manifold by (M1, {., .}1)× (M2, {., .}2).

One of the great interest of Poisson structures when concerned with quantization
issues lies at least in the two following points:
• The Hamiltonian formalism has still a meaning in Quantum physics. More

precisely, the Hamiltonian is the total energy of the system (sum of the kinetic
and potential energy of the physical system) in both Newton and Einstein
physics. Now the concept of (scalar) energy is still defined in quantum physics,
and is even the foundation of the work of Von Neumann on the mathematics
foundations of quantum mechanics(cf [12]).

• The Poisson structure is defined on the algebra of smooth functions of a man-
ifold, while the symplectic structure is a priori defined on the manifold itself.
Thus the Poisson structure is better suited to non-commutative generaliza-
tion. However, there is a great difficulty of identifying a subset of a C*-algebra
as an analog of ”smooth functions algebra” (which is not norm closed in the
algebra of continuous functions). There is no general solution to this question;
most of the time, the algebra retained for ”smooth functions” is an extension
of the notion of polynomials, as, for instance, the algebraic algebra generated
by the generating unitaries of a non commutative torus. This kind of algebra
satisfies two of the (necessary ?) conditions for being an algebra of smooth
functions: it is dense in the full C*-algebra and is closed under holomorphic
calculus.

2.2.2. Poisson groupoids. We are now concerned by endowing a groupoid with the
structure of a Poisson manifold. In the sequel, we will denote the groupoids by
their underlying set and use the usual mutliplicative notation. The notion of Pois-
son groupoid has been introduced in [20]. We shall motivate the definition by
introducing the notion of Poisson relation found in

Definition 20. A groupoid G is called a Lie groupoid when the set G is a manifold,
such that the inverse map is C∞ and the set G(2) is a submanifold, on which the
multiplication is also C∞.

To motivate the notion of Poisson groupoid, we shall define the Poisson relation
(cf [20]), which generalizes the notion of Poisson map:

Definition 21. Let P1 and P2 be any sets. The graph of a transformation f :
P2 −→ P1 will be defined (contrary to the most common convention) as {(f(y), y) :
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y ∈ P2}. Accordingly, if R ⊂ P1 × P2 and S ⊂ P2 × P3 are subsets, considered as
relations R : P2 7−→ P1 and S : P3 −→ P2, the composite relations R◦S : P3 −→ P1:

{(x, z) ∈ P1 × P3 : ∃y ∈ P2 (x, y) ∈ R and (y, z) ∈ S}.

If (P1, {., .}) and (P2, {., .}) are Poisson manifolds, then a Poisson relation R :
P1 −→ P2 is a coisotropic submanifold of the product (P1, {., .})× (P2,−{., .}).

Proposition 5. A map is a Poisson map if, and only if its graph is a Poisson
relation.

In fact, one can even show:

Proposition 6. Let φ be a submersion from the Poisson manifold P to the mani-
fold Q. Define the equivalence relation ∼ on P by:

∀(x, y) ∈ P 2 x ∼ y ⇐⇒ [φ(x) = φ(y)].

Then, there is a unique Poisson structure on Q such that the graph of ∼ is a
Poisson relation if ∼ is a coisotropic relation.

We are now in position to define the structure of Poisson groupoid:

Definition 22. A Poisson groupoid (G, {., .}) is a Lie groupoid G, such that
(G, {., .}) is a Poisson manifold, and the graph of the multiplication {(xy, x, y) :
(x, y) ∈ G(2)} is a coisotropic submanifold in (G, {., .})× (G ,−{., .})× (G,−{., .}).

The following theorem confirms that the previous definition ensures the compati-
bility of the Poisson structure with the main structural components of the groupoid:

Theorem 1. (cf [20]) Let (G, {., .}) be a Poisson groupoid. Then:

1. G(0) is a coisotropic submanifold of G,
2. The inversion map is an anti-Poisson map,
3. There is a unique Poisson structure on G(0) such that s is an anti Poisson

map and r is a Poisson map.

In preparation for the definition of the last section of this note, we shall quote
this important result, which gives a condition on the lift of the source and range
maps at the level of the algebras of smooth functions instead of just conditions on
the groupoid itself, which, as we stated in the introduction, ”disappears” in the
non-commutative setting:

Proposition 7. s∗(C∞(G(0))) and r∗(C∞(G(0))) are commuting anti-isomorphic
Poisson subalgebras of C∞(G).

The corresponding result on the groupoid itself is:

Corollary 1. (s, r) : {G.{., .}) −→ (G, {., .})× (G,−{., .}) is a Poisson map.

We shall refer to [20] and [21] for examples and a study of Poisson groupoids.
Also, [8] and [1] contain interesting expositions on Poisson groups, in view of their
quantization.
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3. Versions of Von Neumann algebras of functions of a Quantum

Groupoid and Quantum Groupoid algebras

We now turn to our main subject. As presented in the introduction, several
viewpoints can be adopted to describe a quantum structure for a group, and simi-
larly for a groupoid. This part is concerned with the search for structures encoding
the properties of a quantum groupoid as a non-commutative measurable space. It
is of interest to the operator algebra standpoint, and indeed the only available the-
ories at this point are using Von Neumann algebras. We therefore will briefly recall
some definitions about operator algebras, and then present a nice description of
finite quantum groupoids, before presenting the more complex ideas involved in the
study of infinite quantum groupoids.

3.1. Basic definitions of Operator algebras theory. We refer to [5],[6] for a
detailed account on operator algebras. We just introduce here the fundamental
notion of Von Neumann algebra, and quote some useful results we will need later
in our development. All our algebra and Hilbert spaces are taken over C.

Definition 23. Let H be a Complex Hilbert space. A Von Neumann algebra A
acting on H is a subset of the algebra B(H) of all bounded operators on H such
that:

1. A is closed under the adjoint operation, (the adjoint of A is denoted A∗),
2. A equals its bicommutant, namely:

A = {A ∈ B(H) : ∀B ∈ B(H) ∀C ∈ A (BC = CB) =⇒ (AB = BA)}.

If one calls commutant of a set A the set of bounded operators on B(H) which
commute with all elements in A, then the second point of our definition 23 says
that the commutant of the commutant of A is A.

As its name suggests, a Von Neumann algebra A inherits a unital subalgebra
structure from B(H), and the first point of the definition 23 means it indeed inherits
a ∗–subalgebra structure. The first remarkable feature of these algebras is the
famous Von Neumann bicommutant theorem:

Theorem 2. (Von Neumann) The two following assertions are equivalent:
1. A is a Von Neumann algebra,
2. A is a ∗-subalgebra of B(H), closed for the smallest topology making continu-

ous the maps:

(ξ, η) 7−→ 〈Aξ, η〉
for all (ξ, η) in H2, and where 〈., .〉 is the inner product on H.

This last topology is called the Weak Operator topology on B(H). It is obvious
that this topology is weaker than the norm topology of B(H), and so in particular
Von Neumann algebras are normed closed. To make the class of Von Neumann
algebra into a category, we introduce the following homomorphisms:

Definition 24. A map ϕ : A→ B is a *-homomorphism if it is an algebra homo-
morphism such that ∀T ∈ A ϕ(T ∗) = ϕ(T )∗. It is unital when ϕ(1) = 1.

The class of Von Neumann algebra together with unital ∗–homomorphism is a
category.
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One of the very fundamental fact about commutative Von Neumann algebras is
the following consequence of the spectral theorem for normal operators:

Theorem 3. Given an commutative VonNeumann algebra A, there is a locally
compact space Σ endowed with some Borel measure µ such that L∞(Σ, µ) is (unital)
∗–isomorphic to A. Conversely, any space L∞(Σ, µ) where Σ is a locally compact
space and µ a Borel measure on it is a Von Neumann algebra acting on the Hilbert
space L2(Σ, µ).

This theorem, expressed in the category vocabulary, tells us that the category of
L∞ spaces on locally compact spaces is a concrete realization of the dual category
of commutative Von Neumann algebras. This of course illustrates our initial alle-
gory: Von Neumann algebra are looked at as L∞ spaces for some ”quantum locally
compact space”.

Among all operators, the ones corresponding to quantum observable are the
self–adjoint operators2:

Definition 25. An bounded operator A on a Hilbert space is self-adjoint when
A∗ = A.

Von Neumann algebras have a natural ordered algebra structure defined on them:

Definition 26. Given A a Von Neumann algebra acting on the Hilbert space H,
let A+ be the Von Neumann algebra of positive operators, i.e.:

∀A ∈ A A ∈ A+ ⇐⇒ (∀ξ ∈ H 〈Aξ, ξ〉 ≥ 0)

One shows that any positive operator is self–adjoint.
Among important objects defined on Von Neumann algebras are the traces:

Definition 27. Let A be a Von Neumann algebra. A linear form ϕ on A is a trace
when:

∀(a, b) ∈ A2 ϕ(ab) = ϕ(ba).

Definition 28. A trace ϕ on some Von Neumann algebra A is faithful when:

∀a ∈ A+\{0} ϕ(a) > 0.

3.2. Finite Quantum Groupoids. We are exposing in this section the main
results of the theory of finite quantum groupoid, developed by [23]. Unfortunately,
if the formalism is relatively simple, it cannot be extended to infinite quantum
groupoids. Thus, we will discuss the best candidates for the general case in the
next paragraph. However, more general theories are yet to be completed, which
motivates us to give an account for the finite case, far better understood. It should
be noted that some other definitions have been provided, and a good summary of
these can be found in [13], where it is established that they are all equivalent.

2In fact, the natural algebras for quantum physics are C∗–algebras, which are more general
than Von Neumann algebras: they are those ∗–Banach algebra ∗–isomorphic to a norm-closed

∗–subalgebra of B(H) for some Hilbert space H. Also, self-adjointness and positivity are well
defined in any ∗–Banach algebra, see [3]. We restrict ourselves here to what is immediatly needed.
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3.2.1. Introduction. Let G be some non-empty finite groupoid, whose multiplica-
tion is denoted with the usual multiplicative formalism. As we indicated in the
introduction (cf definition 1), if G is indeed a group, the algebra l∞(G) of functions
on G is endowed with a structure of Hopf algebra. Now, what happens to this con-
struction when G is a groupoid? The antipode is unchanged, thanks to the axioms
on the existence of an inverse in the definition 2. Now, the comultiplication does
not make sense any more, as the product is only defined on the set of composable
pairs G(2). We are faced with two alternatives to solve this ambiguity:
• Either we try to extend the coproduct ∆(f) to all G2 for all f ∈ l∞(G),
• Or we modify the definition of the comultiplication so that it is valued in

another kind of product of algebras.
Obviously, the second idea seems more complicated. The first idea will fit very

well the case of finite groupoids: if one wants to extend ∆, the only choice which
respects linearity is given by:

∀f ∈ l∞(G) ∆(f) =
[
(x, y) 7−→

{
f(xy), when (x, y) ∈ G(2)

0 otherwise.

]
This comultiplication is still associative (cf definition1), and is still an algebra

monomorphism. However, it is no more unital: in fact, it is clear that ∆(1) is the
characteristic function of G(2) so ∆ is unital if, and only if G is a group. It is easy to
check the compatibility relation with the antipode still holds too. A last remark is
that, trivially, l∞(G) is a Von Neumann algebra, when the adjoint operation is the
complex conjugation - as it is ∗–isomorphic to C

#G acting by (left) multiplication
on itself, viewed this time as a Hermitian space.

In [23], Yamanouchi introduces the following definition:

Definition 29. A generalized Von Neumann Hopf algebra (A,∆, S) is:
1. A finite dimensional Von Neumann algebra A,
2. A ∗–monomorphism ∆ : A→ A⊗ A which satisfies coassociativity:

(Id⊗∆) ◦∆ = (∆⊗ Id) ◦∆,

called comultiplication (the image of an element in A is called the coproduct
of the element),

3. A unital involutive ∗–antiautomorphism S : A→ A such that:

σ ◦∆ ◦ S = (S ⊗ S) ◦∆,

where σ is the linear automorphism of A⊗ A defined by σ(x⊗ y) = y ⊗ x
for all elementary tensors x⊗ y ∈ A⊗ A. S is called the antipode.

We just seen that l∞(G) can be endowed with a natural generalized Von Neu-
mann Hopf algebra structure encoding the groupoid structure.

We shall now present Yamanouchi theory of generalized Kac algebra.

3.2.2. Generalized Kac algebras. From the perspective of operator algebras, it is
interesting to carry out (abstract) harmonic analysis on ”group-type” structures.
This idea motivated the article of Yamanouchi [23] which we are going to summarize
here. The basic ingredient for harmonic analysis is a Haar measure on the space
which we wish to study. This measure shall induce a Haar integral, which is a linear
form on the algebra of functions. This leads to the definition:
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Definition 30. A generalized Kac algebra (A,∆, S, ϕ) is a generalized Von Neu-
mann hopf algebra (A,∆, S), together with a faithful trace ϕ such that:

1. ϕ ◦ S = ϕ,
2. ϕ is left invariant, in the sense:

∀(x, y) ∈ A2 (Id⊗ ϕ)(∆(x)(1⊗ y)) = S(Id⊗ ϕ)((1⊗ x)∆(y)).

Let us first study the commutative case: when A is commutative,it is the space
of all functions on some finite set G (cf theorem 3). Yamanouchi establishes that
indeed, one can endow G with a groupoid structure such that the construction of the
previous paragraph gives back the generalized Kac algebra (A,∆, S, ϕ). Moreover,
ϕ is indeed a left-invariant integral on G. More precisely:

Proposition 8. Let ϕ be a linear form on l∞(G).Then ϕ : f 7−→
∑
γ∈G aγf(γ) is

a faithful Haar trace if, and only if:

∀γ ∈ G 0 < aγ = aγ−1 = as(γ) = ar(γ).

Example 6. Groupoid algebras. A fundamental example of generalized Kac al-
gebra is given by the groupoid algebra CG of a finite groupoid G, endowed with
a Haar integral ϕ as defined in proposition 8. The construction goes as follows:
CG is turned into a Hermitian space L2(ϕ) while endowed with the inner product
(.‖.) defined by (x‖y) = ϕ(y∗x) for all (x, y) in CG2. G then acts on L2(ϕ) by:
γ ∈ G 7→ λγ where λγ is the operator on L2(ϕ) defined by extending by linearity:

∀υ ∈ G λγ(υ) =
{
γυ, when (γ, υ) ∈ G(2),
0 otherwise.

Now, it is immediate to check that:

∀(γ, θ) ∈ G λγλθ =
{
λγθ, when (γ, θ) ∈ G(2),
0 otherwise;

(3.1)

∀γ ∈ G (λγ)∗ = λγ−1 .

Set ACG to be the linear spans of {λγ : γ ∈ G}. As this last set is stable by multi-
plication and adjunction by equation 3.1, ACG is a Von Neumann algebra (note that
in finite dimension, any norm closed set is weak-operator topology closed). More-
over, CG is canonically ∗–isomorphic to ACG, by letting

∑
γ∈G aγ ·γ 7→

∑
γ∈G aγλγ

(which acts like the Fourier Transform). Now define the comultiplication ∆CG on
ACG by linearly extending the map λγ : γ ∈ G 7−→ λγ ⊗ λγ . At last, the antipode is
defined by:

Thus, (ACG ,∆CG , SCG , ϕ) is a cocommutative generalized Kac algebra.

Another important result of Yamanouchi is that any cocommutative generalized
Kac algebra arises from such a construction. Thus, given a finite groupoid with
some Haar integral on it, there are two generalized Kac algebras derived from it:
an commutative one obtained from the functions algebra and a cocommutative
one obtained from the groupoid algebra. Moreover, given any (co)commutative
generalized Kac algebra, one recovers a groupoid and a Haar integral, so that
can always pair a commutative and a cocommutative generalized Kac algebra by
associating them when they lead to the same groupoid with the same Haar integral
- we shall say the algebras in such a pair are associated.

This leads us to the duality theory of Yamanouchi, which extends in the case
of finite dimensional Kac algebra the duality theory of Takesaki (cf [18]). We first
define the category of generalized Kac algebra:
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Definition 31. A homomorphism of generalized Kac algebra θ : (A,∆A, SA, ϕA)→
(B,∆B , SB, ϕB) is a unital ∗–homomorphismA→ B such that:

1. (θ ⊗ θ) ◦∆A = ∆B ◦ θ,
2. θ ◦ SA = SB ◦ θ.
The class of generalized Kac algebra, together with these morphisms, is a cate-

gory.

Now we are able to state a fundamental theorem:

Theorem 4. There exists an involutive contravariant functor Dual from the cate-
gory of generalized Kac algebra into itself, such that:
• If (A,∆, S, ϕ) is an commutative generalized Kac algebra, then Dual[(A,∆, S, ϕ)]

is its associated cocommutative generalized Kac algebra,
• If (A,∆, S, ϕ) is a cocommutative generalized Kac algebra, then Dual[(A,∆, S, ϕ)]

is its associated commutative generalized Kac algebra.

The strength of this theorem is that it gives a dual to any generalized Kac al-
gebra, allowing us to indeed perform Harmonic analysis on quantum groupoids in
very much the same way as for groupoids. Among other important point, note that
a cocommutative generalized Kac algebra is commutative if, and only if its asso-
ciated groupoid is commutative. Thus, as soon as we deal with non-commutative
groupoids, we actually see non-commutative algebras appearing in any attempt of
building a reasonable duality theory - the same situation occurs with groups. Thus,
there is really very little difference between a quantum groupoid and a classical one
from this perspective.

3.3. A note on Infinite Quantum groupoids. Consider now the infinite groupoid
R

2, whose multiplication is defined by (x, y)(x, z) = (x, y + z) (i.e. view R
2 as a

bundle of additive groups R over R). Then, notice that if we were trying to extend
the example in 3.2.1, we would find that the comultiplication is non zero only on
{((x, y), (x, z)) : (x, y, z) ∈ R

3}, which has Lebesgues measure 0 in R
4. Thus, in

L∞(R4), the comultiplication would be identically zero. The all formalism devel-
oped above collapsed, and we need to consider a tensor product adapted to infinite
groupoids. The solution resides in making the comultiplication assume its values in
a ”restricted tensor product”. This way is being explored by Vallin (cf [19]), Enock
(cf [4]), and is based upon the notion of relative tensor product of Hilbert spaces
carried out by Sauvageot (cf [16]).

The general idea is to look at a groupoid as a ”generalized bundle of groups”,
or even better as a ”fibered structure”. The right mathematical translation of this
notion is the notion of module. The use of modules as generalization of vector
bundles or other kind of fibered structures are common, some can be found in [2].
In particular, a space of functions on a groupoid can be seen as a module over
the space of functions of the same type over the unit space of the groupoids. This
was first pointed out in [11]. The articles of Vallin and Enock previously quoted
look at the Von Neumann algebra L∞(G) of essentially bounded functions on the
Hausdorff locally compact groupoid G as a module over the algebra L∞(G(0)). The
set of axioms thus obtained defines the category of Hopf Bimodules. These objects
are still studied, and require the construction of the fiber product of Von Neumann
algebra, which involved too much operator algebra for this note.
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An important result from [13] is that, when a Hopf Bimodule is finite dimensional
(over a finite dimensional basis algebra) then this notion is equivalent to the notion
of generalized Kac algebra. In particular, one retrieves the characterization of the
commutative Hopf bi-modules as algebras of functions on some finite groupoid.
However, a self-contained proof solely based on the formalism of Hopf bi-modules
is proposed in [19] for the finite dimensional case. The proof is also given for the
characterization of cocommutative Hopf-bimodules as groupoid algebras, again in
finite dimension. As of today, the infinite dimensional characterization remains
open, as well as a general duality theory.

4. A version of Quantized Poisson Groupoid

We turn at present to a more geometric approach. The procedure here is to
encode the differential structure of a Poisson groupoid into an algebra. Thus, we
look at the corresponding notion as an algebra over a quantum Poisson groupoid.
The approach is very much a generalization of the quantization of the universal
enveloping algebra of a Poisson group, and we refer to [8] for a nice account on this
topic. Globally, the differential objects coding the groupoid multiplication are those
(left) invariant for it, so the basic object is the Lie algebroid associated to a Poisson
groupoid. Then, the Poisson structure allows us to obtain a ”Hopf algebra-type”
of objects - named Hopf algebroid - which is the basis of the quantization.

The description use algebras of differential operators which do not enjoy the fine
properties of the operator algebras of functional analysis. Thus the description of
the quantized object is highly algebraic. We finish our account with some basic
results on deformation quantization of a Poisson groupoid.

4.1. Lie Algebroids and Hopf Algebroids. The structure of Lie algebroid is
the infinitesimal counterpart of a Lie groupoid. We refer to [17] for an extensive
study of this structure. For our purpose, it is of interest to endow the Lie Algebroid
of a Poisson groupoid of a supplementary structure leading to the notion of Hopf
algebroid, which will serve as Lie algebroids for Quantum Poisson Groupoid.

4.1.1. Lie Algebroids.

Definition 32. A Lie Algebroid over a manifold M is a real vector bundle E over
M together with a bundle map ρ : E → TM and a real Lie algebra structure [., .]E
on the set Γ(E) of sections of E such that:

1. The induced map Γ(ρ) : Γ(E) → Γ(M) is a Lie algebra homomorphism,
(remember that Γ(M) is the Lie algebra of vector fields on M)

2. ∀f ∈ C∞(M) ∀(u, v) ∈ Γ(E) [u, fv]E = [u, fv]E + (ρ(u) · f)v.
The map ρ is the anchor of the Lie algebroid.

We refer to [17] for many examples. We shall only indicate the following impor-
tant examples, which will help us quantizing groupoids:

Example 7. The Lie Algebroid of a Lie groupoid. Let G be a groupoid. G acts on
the left on itself as follows:

Proposition 9. Following the definition 9, let µ : γ ∈ G 7−→ r(γ), and then
consider the map:

·l : G � G = {(γ, θ) ∈ G × G : s(γ) = r(θ)} −→ G
(γ, θ) 7−→ γθ.
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Then (µ, ·l) defines an action of the groupoid G on itself, named the canonical
left action of G on itself.

If moreover G is a Lie groupoid, by definition, for all γ ∈ G, the map θ 7−→ γ ·l θ
is a diffeomorphism of the manifold structure.

Now, it is easy to check the source map is indeed invariant with respect to the
canonical left action on the groupoid. Thus, we introduce:

Example 8. Definition 33. Let G be a Lie groupoid. A vector field X on G is
left invariant when dr(X) = 0 where dr is the linear tangent map for the range map
r.

Proposition 10. A left invariant vector field on G is fully determined by its values
along G(0).

Notation 1. Denote by χ(G) be the set of left invariant vector fields on the Lie
groupoid G.

Proposition 11. χ(G) is a Lie subalgebra of the Lie algebra of the vector fields on
G. Moreover, any vector field in χ(G) is fully determines by its values along G(0),
as a corollary of proposition 10.

Left invariant functions are also fully determines by their values along G(0).
Conversely, any function on G(0) can be extended (by composing it with the source
map of the groupoid) to a left invariant function on G. So we can identify the space
of left invariant smooth functions with the smooth functions on G(0). Now, χ(G) acts
on the left invariant functions by differentiation. With the previous identification
we obtain a map ρ : χ(G)→ Γ(TG(0)). In order to proof that χ(G) is a lie algebroid,
we shall endow it with a vector bundle structure over G(0). This is achieved through
the following identification:

Proposition 12. If E is the normal bundle of G(0), then Γ(E) ' χ(G) as vector
bundles. Moreover, since χ(G) is a Lie subalgebra of TG, the previous isomorphism
of vector bundle induces a Lie algebra structure on the sections of E.

Thus, using the previous identification which sends a left invariant vector field
to a section of the normal bundle of G(0), we have proved:

Proposition 13. The normal bundle E of G(0) is endowed with a Lie algebroid
structure over G(0), whose anchor map is ρ and with its canonical lie algebra struc-
ture.

It is called the Lie algebroid of the Lie groupoid G.

A natural question, in view of the relation between Lie groups and Lie algebras,
is to know when one can ”integrates” a Lie algebroid to obtain a Lie groupoid of
which it would be the Lie algebroid as in the previous example. Unfortunately, it is
not always the case. However, a theorem of Dazord shows that every Lie algebroid
obtained from the action of a Lie algebra on a manifold is integrable. We refer
again to [17] for a discussion of this topic, together with the development of the
theory of these objects.

Now, in preparation for our work with Poisson groupoids, we shall investigate
some constructions of Lie algebroids on a Poisson manifolds, and see a duality
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for Lie algebroids. Let (M, {., .}) be a Poisson manifold, and π be the associated
Poisson bivector. Then, as seen previously, we have a map:

π̌ : T ∗M−→ TM.

The following result proposition is the starting point to define a Lie algebroid
over M reflecting the Poisson structure:

Proposition 14. (cf [17]) There is a Lie bracket on Γ(T ∗M) such that:
1. ∀(f, g) ∈ C∞(M)2 [df, dg] = d{f, g}
2. π̌ : Γ(T ∗M) −→ Γ(TM) is a Lie algebra anti-homomorphism.

Thus:

Proposition 15. LetM be a Poisson manifold. T ∗M is made into a Lie algebroid
with the Lie bracket on its smooth sections defined in proposition 14, and the anchor
being −π̌, where π̌ is the associated Poisson bivector.

This Lie algebroid is called the Lie algebroid of the Poisson manifold (M, {., .}).

The Lie algebroid of a Poisson manifold (M, {., .}) is not always integrable,
but when this does happen, the Lie groupoid thus obtained is endowed with a
compatible symplectic structure.

Now, in the case of a Poisson groupoid, the supplementary structure given by
the Poisson bracket allows some interesting development in the construction of a
dual Lie algebroid to the Lie algebroid of the groupoid.

In general, the dual of a Lie algebroid is not an algebroid:

Proposition 16. (cf [17]) Let E be a Lie algebroid over a n–dimensional manifold
M , with Lie bracket on Γ(E) denoted by [., .]E and anchor ρ. Then, for some local
coordinates (x1, . . . , xn) of M and some local basis (e1, . . . , en) for Γ(E), we define
the constants (bi,j)i,j=1,...n and (ci,j,k)i,j,k=1,...n by:

∀(i, j) ∈ {1, . . . , n}2 [ei, ej ]E =
n∑
k=1

ci,j,kek,

∀i ∈ {1, . . . , n} ρ(ei) =
n∑
j=1

bi,jej.

Now, let (ξ1, . . . , ξn) be the dual local basis (e1, . . . , en) the dual bundle E∗ of
E. Define on C∞(E∗) the bracket {., .}E∗ by:

∀(i, j) ∈ {1, . . . , n}2 {xi, xj}E∗ = 0,

{ξi, ξj}E∗ =
n∑
k=1

ci,j,kξk,

{ξi, xj}E∗ = −bi,j.

Then (E∗, {., .}E∗) is a Poisson manifold. We call this vector bundle the dual of
the Lie algebroid E.

It is remarkable that the Poisson bracket on a Poisson groupoid G induces a map
on its Lie algebroid χ(G) whose transpose (or dual map) endows the dual of χ(G)
in the previous sense with a Lie algebroid structure. Moreover, it is straightforward
the Poisson structure on the dual Lie algebroid transposes back to the algebroid
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structure on χ(G), making the duality theory for Lie algebroids of Poisson groupoids
reflexive. Thus, there is an interest in summarizing the all information provided by
the pair (χ(G), χ(G)∗) in one object:

Definition 34. (cf [21]) Suppose that E is a Lie algebroid over a manifold M,
and suppose that its dual E∗ also carries a structure of Lie algebroid on the same
manifold. Then (E,E∗) is a Lie bialgebroid when:

∀(X,Y ) ∈ Γ(E) d∗([X,Y ]) = [d∗X,Y ] + [X, d∗Y ].

This notion generalizes the concept of Lie bialgebra for Poisson groups (cf [1])..

4.1.2. Hopf Algebroids. Hopf algebroids have been introduced in [10] as an algebraic

structure which could encompass the structure of ”universal enveloping algebra of
a quantum groupoid” - which we shall abbreviate by QUE-algebroids. Indeed,
any universal enveloping algebra of a Lie algebroid is endowed with the following
structure:

Definition 35. A (counital) Hopf algebroid (A,B, α, β,∆, ε) over a (unital) ring
K is defined by:

1. A and B are associative unital K–algebras, and α and β are homomorphisms
from B to A.

2. The ranges of α and β commute in A, which implies that A is naturally
endowed with a (B,B)–bimodule3 structure given by:

∀(a, b) ∈ B2 ∀x ∈ A a · x · b = α(a)β(b)x.

3. ∆ : A → A ⊗B A is a (B,B)–bimodule homomorphism satisfying coassocia-
tivity:

(∆⊗B Id) ◦∆ = (Id⊗B ∆) ◦∆,4

4. ∆ is also a unital K–algebra homomorphism,
5. ∀(a, b) ∈ A×B ∆(a)(α(b)⊗B 1) = ∆(a)(1⊗B β(b)),
6. ε : A→ B is a (B,B)–bimodule homomorphism satisfying ε(1) = 1 and

(ε⊗B Id) ◦∆ = (Id⊗B ε) ◦∆ = IdA.

In the previous definition, we used for condition 6 the identification A ⊗B B '
B ⊗B A ' A. The algebra A is called the total algebra, and the algebra B is called
the based algebra. ∆ is called the comultiplication, and ε the counit of the Hopf
algebroid.

Example 9. While non present in [10] or [22], here is an easy illustration of the
definition. Let G is a finite groupoid, then let AG = C

G be the algebra of functions on
G, and let BG = C

G(0)
be the algebra of functions on the set of units of G. Then, let

αG,βG,∆G be the respective Gelfand duals5 of the source, range and multiplications
map, and let εG maps any function on G to its restriction to the set of units of G.

Then it is easy to check (AG , BG , αG , βG ,∆G , εG) is a Hopf algebroid.

3A (B,B)–bimodule A is a left and right module on B, compatible in the sense that: ∀(a, b, x) ∈
B2 ×A (a · x) · b = a · (x · b).

5The Gelfand dual of µ is f 7−→ f ◦ µ.
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Now, let us turn to the case of Poisson groupoids. As we seen previously, several
algebroids structures coexist. We shall now define a bialgebroid structure summa-
rizing all this information.

Example 10. (cf [10]) Let A be an algebra. Then, if we denote by Aop the opposite
algebra, one can define the following Hopf algebroid structure on A⊗Aop:

1. The source map α : A −→ A⊗Aop is a 7−→ α(a) = a⊗ 1, and the target map
β : A −→ A⊗Aop is a 7−→ β(a) = 1⊗ a,

2. The comultiplication ∆ : A ⊗ Aop −→ (A ⊗ Aop) ⊗A (A ⊗ Aop) is a ⊗ b 7−→
(a⊗ 1)⊗A (1⊗ b),

3. The counit is ε : a⊗ b 7−→ ab.
This structure is modeled on the coarse groupoid structure on the product of a

Poisson manifold by its opposite, defined in [20].

Example 11. Let D(M) be the algebra of differential operators on a smooth man-
ifold M. Define the following structural maps:

1. ∀X ∈ D(M) ∀(f, g) ∈ C∞(M) ∆(x)(f ⊗ g) = x(fg),
2. α and β are the natural inclusions of C∞(M) into D(M),
3. ε projects any differential operator on its 0th-order part.
As establish in [21], we have thus defined a bialgebroid (D(M), C∞(M), α, β,∆, ε).

Example 12. A very important special corollary of the example 11 is the Hopf
algebroid structure on the Universal Enveloping Algebra UA of a Lie algebroid A
which integrates to a Poisson groupoid G. UA is then isomorphic to the subalgebra of
D(M) of right invariant vector fields on G. Then, (UA,C∞(M), α, β,∆ �UA, ε �UA)
is a bialgebroid (cf [21]).

Definition 36. A coinvolutive counital Hopf algebroid (A,B, α, β,∆, S, ε) is such
that (A,B, α, β,∆, ε) is a counital Hopf algebroid and S : A → A is an anti-
automorphism such that:

1. S ◦ β = α,
2. If µ is the multiplication of A, then µ ◦ (S⊗BId) ◦∆ = β ◦ ε ◦ S,
3. There exists a section γ of the natural projection A⊗A −→ A⊗BA such that:

(a) γ is linear A⊗B A −→ A⊗A,
(b) µ ◦ (Id⊗S) ◦ γ ◦∆ = α ◦ ε.

Example 13. Consider the example 9 and consider the map:

∀f ∈ AG SG(f) = [γ ∈ G 7−→ f(γ−1)].

Then (AG , BG , αG , βG ,∆G , SG , εG) is a coinvolutive Hopf algebroid.

Remark 3. In [21] and previous works, the notion of Lie bialgebroid was defined as
in our previous section as a pair of Lie algebroids in duality. But in [10], the notion
of bialgebroid is what we named counital Hopf bimodule, while there a coinvolutive
counital Hopf algebroid is called a Hopf algebroid. We have used the previous termi-
nology in view of this problem, and followed there one of the usual terminology on
Hopf algebra, extended here to modules. The term coinvolutive is not very good as
we do not indeed require the antipode to be involutive, but we avoided to introduce
a specific notation just for these notes.

Example 14. Another broad class of examples is given by the Hopf algebra (cf.
for instance [1],[7],[8]). Given a Hopf algebra (A,∆, S, ε), it is trivially turned into
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a coinvolutive Hopf algebroid by letting (A,C, α, β,∆, S, ε) where α = β : z 7−→ z.1.
This is an immediate consequence of the fact groupoids are generalizations of groups:
see again example 9 and consider what happens when G is indeed a group.

4.2. Formal Deformation of Poisson Groupoids. We are now using the di-

verse notions introduced so far to indeed ”quantized” a Poisson groupoid. This
algebraic approach consists in quantizing the Universal Lie bialgebroid associated
to a Poisson groupoid - very much as quantizing a Poisson group is quantizing its
universal enveloping Lie algebra. Quantizing means that we modify the multipli-
cation in a ”as smooth as possible” way, given as much structure we have. In the
coming setting, developed by [22], the requirements are purely algebraic - in con-
trast, for instance, of strict quantization (introduced by Pr. Rieffel) where strong
continuity and structural requirements are made (cf [9] for an exposition on this
topic and references).

The general concept is to start from a coinvolutive Hopf algebroid reflecting
the Poisson groupoid one wanted to quantize. Then, one associates to it a bundle
of coinvolutive Hopf algebroids, such that at (some) first approximation, the dif-
ferent structural maps are left unchanged, but in fact are modified toward some
”goal” multiplication, induced by the Poisson bracket on the original object. More
precisely:

Definition 37. A deformation of a counital Hopf algebroid (A,B, α, β,∆, ε) over
a field K is a bialgebroid (Ã, B̃, α̃, β̃, ∆̃, ε̃) over K[[X]] the ring of formal power
series on K such that:

1. Ã is isomorphic to A[[X]] as a K[[X]]–module, and admits 1A as unit,
2. B̃ is isomorphic to B[[X]] as a K[[X]]–module, and admits 1B as unit,
3. α̃ ≡ α(modX), β̃ ≡ β(modX), ε̃ = ε(modX), µ̃ ≡ µ(modX), where µ

(respectively µ̃) is the multiplication of A (respectively of Ã).
4. ∆ ≡ ∆(modX ⊗B X),
Moreover, all the structural maps α̃, β̃, ∆̃, ε̃, µ̃ and + are continuous for the X–

adic topology6.

This formal deformation is a general tool used for purely algebraic quantization:
as linear spaces and even as modules, a deformation is trivial in the sense it is
isomorphic to the power series module on the original algebras of the bialgebroids.
The point is that, as algebra, they can be quite different: the multiplication is
modified.

Remark 4. In this context, a deformation of the universal enveloping algebra of
a Poisson groupoid endowed with its natural coinvolutive Hopf algebroid structure is
sometimes called a quantum groupoid, but we shall prefer to view it as (a candidate
for) the universal enveloping algebra of a Poisson Quantum groupoid. It is indeed
unclear wether this ”quantum groupoids” are related to the ”quantum groupoids” of
the quantum groupoid algebra, for instance. While the constructions share many
similarity, their interpretation differs greatly, leading to a multiplicity a priori of
the notion of Quantum Groupoids, defined by some complementary structures, or
more precisely on the viewpoint adopted in each study.

6The X–adic topology on a K[[X]]–module M is defined as being the smallest topology such
that the translations are continuous and a basis of neighborhood for 0 is given by (XnM)n∈N.
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Now, one of major topic when studying deformation is the problem of the semi-
classical limit. Namely, given a non-commutative object from the quantum world,
is it true that, when the ”order of scale” of the considered system get to be very
much larger than the ”quantum order of scale”, the objects becomes ”commutative”
? In physics, a fundamental notion is the notion of action. Without going to
deep into physics, let us just say that an action is a quantity homogeneous to an
energy times a time. Typically, one can express the order of magnitude of some
”action” naturally associated to a physical system, like . The decision or whether
the theory to apply is quantum physics or Newton/Einstein ’s physics, roughly, is
based upon a comparison between this ”natural action” and the Planck’s constant
~ = 1.05457266 × 10−34 J s. (Other methods are to compute the Poincare wave
length of the particles in the systems and compare them to some threshold value;
these are of course equivalent - the second one corresponds more to the Schrodinger’s
wave mechanics original approach of quantum mechanics).

It is not easy to make sense of this problem. The principle according to which
this should hold is known as the Bohr’s principle. In our mathematical setting,
the way this is approached is by means of deformations. In the previous definition,
the undeterminate h is playing the role of the Planck’s constant. Now, instead of
making the scale of the system grows, we make the value h goes to 0. In view of
our discussion, this simply corresponds to changing the units in which we make the
measurements.

The question is then: do we obtain some kind of commutative structure when
this happens? Is it ”classical”? In the case of our note, we would like to know if, by
such a procedure, a universal enveloping algebra of a Poisson Quantum groupoid
goes down to the universal algebra of an integrable algebroid. The answer is given
in [22]:

Theorem 5. A universal enveloping algebra of a Poisson Quantum groupoid nat-
urally induces a Lie bialgebroid (E,E∗) as a classical limit.

From there, a natural question arises: is any Lie bialgebroid a classical limit of
a universal enveloping algebra of a Poisson Quantum groupoid? It is not known,
and was conjectured in [22]. Some specific class of Lie bialgebroids are indeed
quantizable, we shall refer to [22] for this result.
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