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Abstract

Morse theory was originally due td/arston Morse [5]. It gives us
a method to study the topology of a manifold using the information of the
critical points of a Morse function defined on the manifold. Based on the
same idea, Morse homology was introducedmyom, Smale, Milnor,
and W itten in various forms. This paper is a survey of some work in this
direction. The first part of the paper focuses on the classical flow line ap-
proach byT'hom, Smale, and Milnor. The second part of the paper will
concentrate orfiVitten's alternative and powerful approach using Hodge
theory.

1 Basic concepts in classical Morse theory

In this paper, letM be a compact dimensional manifold and : M — R be
a smooth function. A poinp € M is called acritical point if the induced map
f« : TM, — TRy has rank zero. In other wordgjs a critical point off if and
only if in any local coordinate system aroup@ne has

of  v_of . _Of

(p) = 0.

The real valuef(p) is then called ecritical value of f. A critical point p is
said to benon-degeneratéf, in a local coordinate system aroupdthe Hessian
(%(p)) of f atp is non-degenerate. For a non-degenerate critical point, the

number of negative eigenvalues of the Hessian iMivsse index. If all critical



points of f are hon-degenerate, the functigns then called aMorse function.
There is a theorem which says that for any closed smooth manifgld generic
C* function f : M — R is Morse.

The local form of a Morse function is nicely described in the following
lemma [3]:

Theorem 1.1 (Morse lemma)Let p be a non-degenerate critical point ff
Then there is a local coordinate systémh, ..., y") in a neighborhood’ of p with
y'(p) = 0 for all 7 and such that the identity:

F=fo) =W = =)+ @)+ (")
holds throughout/, where) is the Morse index of atp.

An easy corollary of Morse lemma is that non-degenerate critical points are
isolated.

The classical idea of Morse theory is to study the submanifétd= {p €
M|f(p) < a}, wherea is not a critical value off. Let's assume that all/*’s are
compact. There are two important theorems concerning the change of homotopy
type of M* asa increasing [3]:

Theorem 1.2If there is no critical value of within the intervala, b], then
M* is diffeomorphic to)M/°. Moreover,M® is a deformation retract af/°.

Theorem 1.3If there is only one non-degenerate critical point within the
interval [a, b] of index )\, then the homotopy type df/® is obtained from that of
M*® with a \-cell attached.

These theorems give rise to the following famstreng Morse inequalities
which are lower bounds on the number of critical pointsfofThey are bridges
between analysis and topology [6].

Theorem 1.4 (Morse inequalities) Let b, denote thek! Betti number of
M, i.e. the dimension of the cohomology grofi§ (M, R), and letc,, denote the
number of index: critical points off. If all critical points of f are non-degenerate,
then

Cp—Crk_1+Cp_o—"" '+(—1)k00 Z bk—bk_l—i‘bk_g—' . +(—1)kb0 for each k?,
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Y (Dfe =Y (=1)fbe = x(M).

k=0 k=0

Poincaré asked a classical question about this inequality, the farfRoircaré
conjecture: If an n-manifold M has the same Betti numbers as thaphere,
does it follow that it can have a Morse function with exactly two critical points
and hence be homeomorphic $8? This was proved to be true far = 4 by
Freedman [2], and forn > 5 by Smale [9]. [4] gives a Morse-theoretical
proof of Smale’s famoush-cobordism theoremwhich plays an essential role
in Smale’s proof of the Poincaré conjecture in dimension greater than

Theorem 1.5(Smale’s h-cobordism theorem) Lé¥/"*! be a compact man-
ifold with boundary. IfoW = V;* U V* such that eacl; is simply connected and
is a deformation retract d¥/, thenW is diffeomorphic toV; x [0, 1], and soV; is
diffeomorphic toVs.

If we take a closer look at the procedure of attaching cells, we will get the
following handle decomposition of the manifold:

Theorem 1.6Every connected closed smooth manifald is diffeomorphic
to a union of finitely many handle§} = B* x B"~* (B* is a\-dim ball), where
the handleg?? are in one-to-one correspondence with the critical points of index
A. Conversely, given a decomposition of the manifold into a sum of handles, there
exists a Morse function which gives induces the same decomposition.

But even if two manifolds have the same number of cells in each dimension,
they are not necessarily homotopy equivalent to each other. In order to know the
homotopy type of the manifold, we need to study the attaching maps. The first
successful attempts were made®iyom [10], Smale [8], and Milnor [3] (40's
- 60’s). The idea of Morse homology come from them.

2 Classical approach of Morse homology

Now let ¢ be a Riemannian metric al/. Consider the negative gradient flaw
of a Morse functionf:
p:Rx M — M,
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% (t,x) = =V f(p(t,z)), »(0,-)=idu.

If pis a critical point of f, one can define thetable manifold and unstable
manifold as:
Wy ={x € M| lim o(t,z) = p},

Wy ={x € M| lim o(t,z) = p}.

If pis a non-degenerate critical point ¢f 7,1V’ is the negative eigenspace of
the Hessiarf (f, p), soW,' is an embedded open disk with dimension equal to
ind(p), the Morse index of. Similarly 1V} is an embedded open disk with dimen-
sionn-ind(p). Thom first recognized that the decomposition/af into unstable
manifolds gives a cell decomposition which is homologically equivalent to the
one described in Theorem 1.6. But, in general, this decomposition is not a CW-
complex from which one can compute homology group. However, in the 50’s,
Smale found that if we put an additional requirement on the Riemannian met-
ric, the cells we get will attach to each other properly and give us the desired
CW-complex structure. The requirement on the p#iy) is calledMorse-Smale
condition: namely, f is a Morse function and for every pair of critical points
andg, the unstable manifoltd’ of p is transverse to the stable manifdid; of q.
Moreover,Smalediscovered that this transversal requirement holds for a generic
Riemannian metric ofi/.

For any pair of critical point® andq, we define dlow line from p to ¢ to
be a mapy : R — M such thaty' (t) = —Vf(y(t)) andlim,_,_. y(t) = p,
lim; ., v(t) = ¢. There is a naturaR action on the set of flow lines fromto ¢
by precomposition with translations &. Let M(p, ¢) denote the moduli space
of flow lines fromp to ¢, moduloR action. Then actually we havw#1(p,q) =
(W N W;2)/R. We know dim{¥;")=ind(p) and dim{¥)=n-ind(g). Because of
the transversality condition, when# ¢, one can easily deduce that:

dim(Wy " W) = dim(W,") +dim(W,") —n
= ind(p) + (n —ind(q)) — n
= ind(p) — ind(q)

Whenind(p) — ind(¢) = 1, the moduli space has dimension zero. We want to
count how many flow lines there are fromto q. Before we can proceed, we



first need to choose orientations on the moduli space and secondly show that the
moduli spaces are compact.

Orientations can be selected as follows [6]. Choose an orientation of the
unstable manifoldV,* for each critical poinp. At any point on the flow line, we
have a canonical isomorphism:

12

TWY ~ T(W'NW:) @ (TM/TWY)

~ T,M(p,q) T, & T,W;. (1)

The first isomorphism comes from the Morse-Smale transversality condition. The
isomorphismil’ (W, " W) ~ T, M(p, q) ® T, holds becauséim(W; N W) =
ind(p) —ind(q). By translating the subspa@gW;* C T;, M alongy while keeping

it complementary td'W; we get the isomorphisti M /TW; ~ T,W . The ori-
entation onM (p, ¢) is chosen such that isomorphism (1) is orientation-preserving.

For compactness, there is a theorem says that one can get the closure of
M(p, q) by adding some “broken” flow lines, i.e. flow lines that “pass” other
critical points before reaching target. And, in fact, any such “broken” flow line
lies in the boundary of the moduli spagé(p, q).

Theorem 2.11If M is closed and f, g) is Morse-Smale, then for any two
critical pointsp andg, the moduli spacé(p, ¢) has a natural compactification to
a smooth manifold with cornetd1(p, ¢) whose codimensioh stratum is

M(p,q)r = U M(p,r1) x M(r,19) X+ - X M(rp_1,Th—2) X M(7%, q)

71, rEECrit(f)

wherep, rq, - - -, ri, g are distinct. Whert: = 1, as oriented manifolds we have

OM(p.q) = U (=@t (p,r) x M(r,q).
reCrit(f),r#p,r#q

Where asmooth manifold with cornersis a second countable Hausdorff space
such that each point has a neighborhood with a chosen homeomorphism with
R"* x [0, 00)* for somek < n, and the transition maps are smooth.

Finally we can define thBlorse complex Let Critx(f) be the set of index
critical points of f. The chain groug’,(f) is a free Abelian group generated by
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Crity(f):
' Ck(f) = ZCrltk(f), k= 0, e, n.

And the boundary operatal, : Cy(f) — Cr_1(f) is defined by counting the
algebraic number of flow lines connectip@ndg:
Op= Y. #M(p,q) q

q€Crity_1(f)

The sign of each flow line is decided by comparing the natural orientation on the
flow line induced by th& action with the orientation aM (p, ).

To getd? = 0 we observe a special case of theorgm Whenind(p) =
ind(q) + 2, we have

OM(p,q) = U (=)@ (p 1) x M(r,q)
reCrit(f) ,r#p,r#q

= U M(p,r) x M(r,q).

recritind(p) -1 (f)

The above union is over indexd(p) — 1 critical points only because otherwise
M(p,r) = 0 or M(r,q) = 0. Now if p € Crity(f) andg € Crit;_o(f), then
0?p = 0,_10,p counts 2-broken” flow lines connecting andq. These flowlines
are on the boundary of thedimensional moduli spac#1(p, ¢). Since the alge-
braic sum of the boundary points of a compact orieritaianifold is zero, we get
the identityd? = 0. More precisely, we have [6]:

(@p.a) = D (O} (Orq)

reCritg_1(f)

- # U M) x Mg

reCrity_1(f)

= #IM(p,q) = 0.

The Morse homologyis defined to be the homology of this chain complex
(C.(f), ). This algebraic formulation is due #hom, Smale, andMilnor. The
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most fundamental theorem in Morse theory is that the Morse homology defined
above is canonically isomorphic to the singular homology of the underlying com-
pact manifold. This immediately verifies the Morse inequality (Theorem 1.4).

3 Witten’s alternative approach

In his wonderful paper [11]\Vitten rediscovered the way of computing the co-
homology group of a manifold in terms of the critical points of a Morse function.
His approach is along different lines with the classical approadayn, Smale,
andM:ilnor. Before givingWWitten's idea, let’s recall a little bit of Hodge theory.

Let M be ann-dimensional oriented smooth manifold. For@lK k& < n,
we haveA’“T;M ~ A”—’fT;M because as vector spaces they have the same di-
mension. An explicit isomorphism is given as follows. There is a natural isomor-
phismT M ~ T*M induced by the Riemannian metigc So the inner product
in 7'M will induce an inner product if™*M. Let{e,---, ek, exr1, -, e,} be
a positively oriented orthonormal basis fof /. Then we get a natural linear
isomorphism:

«: AMTEM — AP M
by setting
k(ep Ao ANeg) =epr1 Ao Aep.

This operator is called thdodge star. Varyingp € M gives a linear isomorphism
w1 QF (M) — QF(M).

whereQ* (M) (resp.Q"*(M)) is the vector space of all-forms (resp. ¢ — k)-
forms) onM.

We define a linear operator

S = (_1)k *—1 ds = (_l)n(k+1)+1 % dx



by requiring the following diagram to be commutative:

*

O (M) — Qv (M)

i K

Qk_l(M) Qn—k—i—l(M)
(=1)ks

Now the operaton\ defined by
A =ds+od: QM) — QM)

is called theLaplacian. A form w € Q*(M) such thatAw = 0 is called a
harmonic form. A necessary and sufficient condition foto be harmonic is that
dw = 0 andéw = 0. This in particular means that every harmonic form is closed.

Denote byH* (M) the set of all harmonié-forms oni/, i.e.
H(M) = {w € Q*(M)|Aw = 0}
Since every harmonic form is closed, we get a linear map
H"(M) — Hpp(M)

by taking the de Rham cohomology class. The De Rham theorem says that
H% (M) is isomorphic toH*(M,R). The Hodge theorem tells us that the lin-
ear map fronH* to H% , is actually an isomorphism.

Theorem3.1(Hodge theorem) An arbitrary de Rham cohomology class of
an oriented compact Riemannian manifold can be represented by a unique har-
monic form. In other words, the natural m&p (M) — H% (M) is an isomor-
phism.

Now let’'s start from the manifold//, Morse functionf, and Riemannian
metric g as before. Consider the de Rham compleX/af

QR N gL O L)
We decompos@F into the direct sum of finite-dimensional eigenspaces according

to LaplacianA:
o — D}
A
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whereQ} = {w € OF|Aw = M\w}. The Hodge theory implies that
OF ~ H* ~ HY (M) ~ H*(M, R).

From the definition ofA we see that
Ad = déd + §d* = dod + d*6 = dA.

So we can restriaf to Q} = @, _, ©%,denoted byl,, and get the following exact
sequence:

dx dx da

0 0 ol ap 0
The reason of exactness is as follows. Forany Q%, if w is in the kernel ofi,,
thend,w = 0, and we have

1 1 1 1 1
w= X)\w = XAw = X(dé + dd)w = Xd&u = d(X&u).
SinceA commutes with botll andd, we getd(;dw) € Q5~', which means the

above sequence is exact. Based on the above facts, one can easily conclude that
the complexes); = P, ., {23 haveH* (1) as their cohomology for any > 0.

Here comedVitten’s idea [1]. Conjugating/ by multiplication with es/,
s € R, gives an operataf, = e~/ o d o 5/ which satisfiegd,)? = 0. Because
all we do is conjugation, it's easy to see that this co-boundary operator yields a
co-homology grouf: (M) which is again isomorphic.

H (M) = ker(d,) /Tm(d,) ~ Hpp(M) ~ H*(M, R)

We can also computEI(M/) using Hodge theory. This time let's consider the
operatorA, = d.0, + d;d, and the decompositiof?*(s) = @, Q2;(s), where
25 (s) is just the eigenspace df, as before. We also define complexeys) =
D, -, 2 (s) spanned by all eigenforms df, with eigenvalues\ < a.

This curve of chain compleg(s) is the essence dfiitten’s version of
Morse homology. He stated thatdfis large enough, the dimension of this chain
complexes will be independent ef so denoted by’ (co). And also one has:

1. dim(Q*(00))= # of critical points of index
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2. the boundary operator induced Byn (o) is carried by the connecting
orbits from the critical points of indek to those of index + 1.

This gives us a direct link between the homology of the underlying manifold
and Hodge theory. See [1] for an intuitive idea of why the above statements might
be true. However}itten did not prove, using strict mathematical arguments, the
above assertion in his great paper [11]. For a complete profaten’s idea,
see Helffer and $strand [7].
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