Name:

Midterm 2
Math 53, Summer 2009
July 31, 2009
Brown

Problem	Score
1	$/ 10$
2	$/ 10$
3	$/ 10$
4	$/ 10$
5	$/ 5$
6	$/ 5$
Total	$/ 50$

1. (10 pt) Let $\mathbf{F}(x, y, z)=y^{2} z \mathbf{i}+z^{2} x \mathbf{j}+z \mathbf{k}$
a) $(3 \mathrm{pt})$ Compute $\nabla \times \mathbf{F}$
(b) $(3 \mathrm{pt})$ Compute $\nabla \cdot \mathbf{F}$
c)(4 pt) Let \mathcal{S} be the hemisphere $z \geq 0, x^{2}+y^{2}+z^{2}=1$. Compute $\iint_{\mathcal{S}} \mathbf{F} \cdot \mathbf{n} d S$.
2. $(10 \mathrm{pt})$ Consider the function
$f(x, y)=x^{2}-2 x+1-y^{2}+2 y-1+x y-y-x+1$. Find the absolute maximum and minimum of f on the rectangle with vertices $(0,0),(0,2),(2,0),(2,2)$ as well as at which points the maximum and minimum are attained.
3. (10 pt) Let R be the rectangle in the plane with vertices $(1,0),(3,2),(2,3),(0,1)$ Compute $\iint_{R}(x-y)^{4} d A$.
4. (10 pt) Let \mathcal{C} be the triangle $(2,0,0),(0,1,0),(0,0,1)$ oriented so that the points are traversed in the order they are given above. Let $\mathbf{F}=\left\langle e^{x^{2}}, x+y^{2}+z, y+\sin z\right\rangle$. Compute $\int_{\mathcal{C}} \mathbf{F} \cdot d \mathbf{r}$.
5. (5 pt) Mike and Ivan are going to a bar after a long week. They both plan to arrive at 5 , but Ivan has a habit of being late. Mike arrives sometime between 5 and 5:30, with constant probability density $f(x)=1 / 30$. Ivan arrives sometime after 5 , with probability density $f(y)=(1 / 60) e^{-y / 60}$. What is the probability that Ivan arrives before Mike?
6. (5 pt) Let $\mathbf{F}=\left\langle\frac{-y}{x^{2}+y^{2}}, \frac{x}{x^{2}+y^{2}}\right\rangle$. Let \mathcal{C} be the curve parametrized by $\mathbf{r}(t)=\langle 10 \cos 2 t+$ $\sin 5 t, 10 \sin 2 t+\cos t\rangle, 0 \leq t \leq 2 \pi$. Compute $\int_{\mathcal{C}} \mathbf{F} \cdot d \mathbf{r}$.
