10/04/2001 THU 16:14 FAX 6434330	MOFFITT LIBRARY	2 001
George M. Bergman	Spring 2001, Math 53M	23 February, 2001
959 Evans	First Midterm – Make-up Exam	10:10-11:00 AM

1. (54 points, 9 points apiece) Find the following. If an expression is undefined, say so.

(a) dy/dx, where $x = 2\sin(e^t)$, $y = 5\cos(e^t)$. Express your answer as a function of t.

(b) The length of the space curve given by the parametric equations $x = 2e^t$, $y = e^{2t}$, z = t $(-1 \le t \le +1)$.

(c) $\lim_{(x,y)\to(0,0)} (|x|+2)/(|y|+7).$

(d) The equation of the plane tangent to the surface $z = (x^2 + y)^{1/2}$ at the point where x = 3, y = 7.

(e) $\frac{\partial^2}{\partial x \partial y} f(xy^2)$ where f is a differentiable function. (Express your answer in terms of f and its derivatives.)

(f) $\int_0^1 (t^2 \times (t^2 \mathbf{i} + e^{-t^2} \mathbf{j} + (\tan t) \mathbf{k})) dt$ (where \mathbf{i} , \mathbf{j} and \mathbf{k} are the standard basis vectors in \mathbb{R}^3).

2. (34 points) (a) (20 points) Let f be a positive continuous real-valued function on the interval $[-\pi/4, \pi/4]$. Let A denote the area between the curve whose expression in polar coordinates is $r = f(\theta)$ $(-\pi/4 \le \theta \le \pi/4)$ and the two lines $\theta = -\pi/4$ and $\theta = \pi/4$. Let B denote the area between the curve whose expression in polar coordinates is $r = f(\theta/2)$ $(-\pi/2 \le \theta \le \pi/2)$ and the vertical axis $\theta = \pm \pi/2$. Show that B = 2A. You may assume area formulas given in Stewart.

(b) (14 points) Find the area between the y-axis and the curve whose expression in polar coordinates is $r = \sec \theta/2$. You may use the result of part (a) whether or not you have proved it; or you may use any other method that gives the correct answer.

3. (12 points) Find equations in *Cartesian* (i.e., (x, y, z)) and spherical coordinates for the surface described in cylindrical coordinates by the equation $r^2 = z^2 + 1$.