1. (54 points, 9 points apiece) Find the following. If an expression is undefined, say so.
(a) $d y / d x$, where $x=2 \sin \left(e^{t}\right), y=5 \cos \left(e^{t}\right)$. Express your answer as a function of t.
(b) The length of the space curve given by the parametric equations $x=2 e^{t}, y=e^{2 t}$, $z=t(-1 \leq t \leq+1)$.
(c) $\lim _{(x, y) \rightarrow(0,0)}(|x|+2) /(|y|+7)$.
(d) The cquation of the plane tangent to the surface $z=\left(x^{2}+y\right)^{1 / 2}$ at the point where $x=3, y=7$.
(e) $\frac{\partial^{2}}{\partial x \partial y} f\left(x y^{2}\right.$) where \int is a differentiable function. (Express your answer in terms of f and its derivatives.)
(f) $\int_{0}^{1}\left(t^{2} \times\left(t^{2} \mathbf{i}+e^{-t^{2}} \mathbf{j}+(\tan t) \mathbf{k}\right)\right) d t$ (where \mathbf{i}, \mathbf{j} and \mathbf{k} are the standard basis vectors in \mathbb{R}^{3}).
2. (34 points) (a) (20 points) Let f be a positive continuous real-valued function on the interval $[-\pi / 4, \pi / 4]$. Let A denote the area between the curve whose expression in polar coordinates is $r=f(\theta)(-\pi / 4 \leq \theta \leq \pi / 4)$ and the two lines $\theta=-\pi / 4$ and $\theta=\pi / 4$. Let B denote the area between the curve whose expression in polar coordinates is $r=f(\theta / 2)(-\pi / 2 \leq \theta \leq \pi / 2)$ and the vertical axis $\theta= \pm \pi / 2$. Show that $B=2 A$. You may assume area formulas given in Stewart.
(b) (14 points) Find the area between the y-axis and the curve whose expression in polar coordinates is $r=\sec \theta / 2$. You may use the result of part (a) whether or not you have proved $i t$; or you may use any other method that gives the correct answer.
3. (12 points) Find equations in Cartesian (i.e., (x, y, z)) and spherical coordinates for the surface described in cylindrical coordinates by the equation $r^{2}=z^{2}+1$.
