Mathematics 53.2, Fall 2008 Final Examination, 20 December 114points total

NAME: _____

ID: _____

GSI: _____

INSTRUCTIONS:

The examination has TWO PARTS, of 90 minutes each.

Part I (54 pts) is **MULTIPLE CHOICE** and no justification is necessary. Record your answers by circling the appropriate letters on the **ANSWER SHEET** (last page). Detach it from the exam paper, **WRITE DOWN YOUR NAME, ID AND GSI** on it and pass it on towards the aisle when so instructed. The answer sheets will be collected 90 minutes into the exam.

In **Part II** (60 pts), you must **justify your answers**. All the work for a question must be on the respective sheet. You may start work on Part II before the 90 minutes for Part I elapse (but it is unwise to do so before you finish Part I). You need not turn in the last sheet for rough work. **Part I:** 18 questions in three groups. 3 points for correct answers, 1 point penalty for wrong answers. However, you will not receive a negative total on any group.

- 1. A (continuously differentiable) parametric curve C is given by $t \mapsto (r(t), \theta(t))$, in polar coordinates, with $0 \le t \le 1$. A formula for the arc length of C is
 - (a) $\int_0^1 \sqrt{r'(t)^2 + \theta'(t)^2} dt$ (b) $\int_0^1 \sqrt{r'(t)^2 + r(t)^2 \cdot \theta'(t)^2} dt$ (c) $\int_0^1 \sqrt{r(t)^2 + r'(t)^2 \cdot \theta(t)^2} dt$ (d) $\frac{1}{2} \int_0^1 r^2(t) dt$
- 2. If the parametric curve $t \mapsto \mathbf{r}(t), a \leq t \leq b$, satisfies $\mathbf{r}(t) \cdot \mathbf{r}'(t) > 0$, it follows that
 - (a) $|\mathbf{r}(t)|$ is constant (b) $|\mathbf{r}'(t)|$ is increasing
 - (c) $|\mathbf{r}(t)|$ is increasing (d) None of the above.
- 3. The parametric curve (x, y) = (f(t), g(t)) must have a horizontal tangent at $(f(t_0), g(t_0))$ if
 - (a) $f'(t_0) = 0$ (b) $g'(t_0) = 0$
 - (c) $f'(t_0) = 0$ and $g'(t_0) \neq 0$ (d) $f'(t_0) \neq 0$ and $g'(t_0) = 0$
- 4. If the three vectors $\mathbf{u}, \mathbf{v}, \mathbf{w}$ in \mathbf{R}^3 satisfy $\mathbf{u} \times \mathbf{v} \neq 0$ and $\mathbf{u} \times \mathbf{w} \neq 0$, but $(\mathbf{u} \times \mathbf{v}) \cdot (\mathbf{u} \times \mathbf{w}) = 0$, then it follows that
 - (a) The plane spanned by $\{\mathbf{u}, \mathbf{v}\}$ is orthogonal to that spanned by $\{\mathbf{u}, \mathbf{w}\}$.
 - (b) $\mathbf{v} \perp \mathbf{w}$.
 - (c) $\mathbf{u} \perp \mathbf{v}$ and $\mathbf{u} \perp \mathbf{w}$.
 - (d) \mathbf{u}, \mathbf{v} and \mathbf{w} lie in the same plane.
- 5. If $f(x,y) = x^2 + y^3 + z^4$, then the tangent plane to the level surface f(x, y, z) = 3 at the point (1,1,1) is given by the equation
 - (a) 2x + 3y + 4z = 0 (b) 2x + 3y + 4z = 9
 - (c) $2\mathbf{i} + 3\mathbf{j} + 4\mathbf{k} = 9$ (d) $2x + 3y^2 + 4z^3 = 0$.

6. The function defined on \mathbf{R}^2 by $f(x, y) = \frac{x^2 + xy + y^2}{x^2 + y^2}$ if $(x, y) \neq (0, 0)$ and f(0, 0) = 1

- (a) Is differentiable everywhere
- (b) Is continuous everywhere, but not differentiable at (0,0)
- (c) Has well-defined partial derivatives everywhere
- (d) Has well-defined and continuous partial derivatives everywhere
- 7. The function $f(x, y) = x^2 + 3xy + y^2 + y^4$
 - (a) Has a global minimum at (0,0)
 - (b) Has a local minimum at (0,0), but not a global minimum
 - (c) Has a local maximum at (0,0)
 - (d) Has a saddle point at (0,0)

- 8. If F and G are differentiable functions of (x, y, z), G(P) = 0 at some point P and ∇G does not vanish at P, then, subject to the constraint G = 0:
 - (a) if F has a local extremum at P, then $\nabla F = \lambda \nabla G$ at P, for some λ .
 - (b) if F has a local extremum at P, then $\nabla F \perp \nabla G$ at P.
 - (c) we can be sure that F has a local extremum at P, if $\nabla F = \lambda \nabla G$ for some λ .
 - (d) we can be sure that F has a local extremum at P, if $\nabla F \perp \nabla G$ at P.
- 9. If f is a differentiable function of x, y, which in turn are differentiable functions of u, v, then:
 - (b) $f_u = f_x \cdot x_u + f_y \cdot y_u$ (a) $f_u = f_x \cdot x_u + f_y \cdot y_u + f_v \cdot v_u$

(c)
$$f_u = f_x \cdot u_x + f_y \cdot u_y$$
 (d) $f_u = f_x \cdot x_u + f_y \cdot y_y$

- 10. The angle between the tangent plane to the surface $x^2 + y^2 + 2z^2 = 4$ at the point (1, 1, 1)and the xy-plane is
 - (c) $\arccos(\sqrt{2/3})$ (d) $\arctan(\sqrt{2/3})$ (b) $\arcsin(\sqrt{2/3})$ (a) $\pi/3$
- 11. Let f be a continuous 2-variable function on the disk D of radius 1 centered at (0, 1). Which of the following expresses $\iint_D f(x, y) dA$?
 - (a) $\int_{-\pi/2}^{\pi/2} \int_{0}^{2\sin\theta} f(r,\theta) r dr d\theta$ (b) $\int_0^{\pi} \int_0^{2\cos\theta} f(r\cos\theta, r\sin\theta) r dr d\theta$ (c) $\int_{-\pi/2}^{\pi/2} \int_{0}^{2\sin\theta} f(r\cos\theta, r\sin\theta) r dr d\theta$ (d) $\int_{0}^{2} \int_{-\sqrt{2y-y^2}}^{\sqrt{2y-y^2}} f(x,y) dx dy$
- 12. Let R be the rectangle in \mathbb{R}^2 defined by $0 \le x \le \sqrt{3}, 0 \le y \le 1$. In polar coordinates, the integral $\iint_B f \, dA$ of the continuous function f may be correctly written as:
 - (a) $\int_{0}^{\pi/2} \int_{0}^{\sqrt{3}/\cos\theta} f \cdot r \, dr d\theta$ (b) $\int_0^{\pi/3} \int_0^{\sqrt{3}/\cos\theta} f \cdot r \, dr d\theta + \int_{\pi/3}^{\pi/2} \int_0^{1/\sin\theta} f \cdot r \, dr d\theta$ (c) $\int_0^{\pi/4} \int_0^{1/\cos\theta} f \cdot r \, dr d\theta + \int_{\pi/4}^{\pi/2} \int_0^{1/\sin\theta} f \cdot r \, dr d\theta$ (d) $\int_0^{\pi/6} \int_0^{\sqrt{3}/\cos\theta} f \cdot r \, dr d\theta + \int_{\pi/6}^{\pi/2} \int_0^{1/\sin\theta} f \cdot r \, dr d\theta$
- 13. Which of the following apply to vector field $\mathbf{F} = (x^2 y^2)\mathbf{i} 2xy\mathbf{j} + z^2\mathbf{k}$?
 - (a) Its divergence vanishes
 - (b) It is conservative and its curl vanishes
 - (c) It is conservative, but its curl does not vanish
 - (d) Its curl vanishes, but it is not conservative
- 14. Green's theorem for a plane region D enclosed by a simple, closed, positively oriented differentiable curve C, and a differentiable vector field $\mathbf{F} = P\mathbf{i} + Q\mathbf{j}$ on D, asserts that

 - (a) $\iint_D (P_x + Q_y) dx dy = \oint_C \mathbf{F} \cdot d\mathbf{r}$ (b) $\iint_D (P_y + Q_x) dx dy = \oint_C \mathbf{F} \cdot \mathbf{n} \, ds$ (c) $\iint_D (Q_x P_y) dx dy = \oint_C \mathbf{F} \cdot d\mathbf{r}$ (d) $\iint_D (Q_x P_y) dx dy = \oint_C \mathbf{F} \cdot \mathbf{n} \, ds$
 - In (b) and (d), \mathbf{n} is the outside normal vector and s the arc length parameter on C.

15. Let F be a continuous 2-component map, $(x, y) \mapsto (u, v) = F(x, y)$ taking the region D in \mathbb{R}^2 to some other region F(D) in \mathbb{R}^2 . The following formula for change of coordinates from (u, v) to (x, y) in the double integral of the continuous function f on F(D),

$$\iint_{F(D)} f(u,v) \, du dv = \iint_D f\left(u(x,y), v(x,y)\right) \cdot \left(u_x v_y - u_y v_x\right) \, dx dy$$

- (a) Applies to any F, f as described
- (b) Applies whenever F is bijective and continuously differentiable
- (c) As in (b), provided that, in addition, f is positive
- (d) As in (b), provided that, in addition, $u_x v_y u_y v_x$ is positive
- 16. Let **F** be a continuously differentiable vector field defined near the smooth surface S in \mathbb{R}^3 , which is parametrised by $(u, v) \mapsto \mathbf{r}(u, v), (u, v) \in D$, and is bounded by the piecewise smooth boundary curve C, oriented by the right-hand rule. Stokes' theorem asserts that:
 - (a) $\iint_{D} (\operatorname{curl} \mathbf{F}) \cdot (\mathbf{r}_{u} \times \mathbf{r}_{v}) du dv = \oint_{C} \mathbf{F} \cdot d\mathbf{r}.$
 - (b) $\iint_{D} (\operatorname{curl} \mathbf{F}) || \mathbf{r}_{u} \times \mathbf{r}_{v} || \, du \, dv = \oint_{C} \mathbf{F} \cdot d\mathbf{r}.$
 - (c) $\iint_D \operatorname{curl} \mathbf{F} \cdot (\mathbf{r}_u \times \mathbf{r}_v) \, du \, dv = 0.$

(d) $\iint_{D}(\operatorname{curl} \mathbf{F}) \cdot (\mathbf{r}_{u} \times \mathbf{r}_{v}) du dv = \oint_{C} \mathbf{F} \cdot \mathbf{n} ds$, where **n** is the normal vector to C and s the arc-length parameter on C.

- 17. Let S_+, S_- be the upper and lower unit hemispheres in \mathbf{R}^3 . The fluxes of the vector field $\mathbf{F} = y^2 z^2 \mathbf{i} + x^2 z^2 \mathbf{j} + x^2 y^2 \mathbf{k}$ across S_+ and S_- are equal:
 - (a) if S_+ and S_- are both oriented using the normal pointing outside the unit sphere;
 - (b) if S_+ and S_- are both oriented using the upward normal;
 - (c) For the orientation determined by choosing θ first and ϕ second in spherical coordinates;
 - (d) for no choice of orientations.
- 18. For a continuously differentiable vector field **F** in an open region $D \subset \mathbf{R}^2$:
 - (a) $\operatorname{curl} \mathbf{F} = 0 \Rightarrow \mathbf{F}$ is conservative
 - (b) As in (a), but only under the additional assumption that $\operatorname{div} \mathbf{F} = 0$ as well
 - (c) As in (a), under the additional assumption that **D** is simply connected
 - (d) No statement above is correct.

Part II

Question 2 (15 pts)

Using Lagrange multipliers, find the maximum and minimum values for the function $f(z, y, z) = x^2 + y^2 + z^2$, when subject to the constraint $x^4 + y^4 + z^4 = 3$. Caution: Mind the possible divisions by zero. Question 3 (15 pts)

Draw a credible sketch of the polar curve C defined by $r(\theta) = \theta/2\pi$, for the range $0 \le \theta \le 6\pi$. Write a parametric equation for the tangent line to C at the point (1,0).

Find the area of the region in the first quadrant bounded by the x-axis, the y-axis and the two arcs of C swept out as $2\pi \le \theta \le 2\pi + \pi/2$ and $4\pi \le \theta \le 4\pi + \pi/2$.

Question 4 (15 pts)

The *helicoid* is the surface in \mathbb{R}^3 parametrised by $(u, v) \mapsto u \cos v \mathbf{i} + u \sin v \mathbf{j} + v \mathbf{k}, u \ge 0, v \in \mathbb{R}$. (Picture a spiral ramp winding upwards around the z-axis.) Consider the portion S of the helicoid given by $0 \le u \le 1, \alpha \le v \le \beta$.

- (a) Express the surface area of S as a one-variable integral. (You need not solve the integral.)
- (b) With $\alpha = 0, \beta = \pi$, compute $\iint_S \sqrt{x^2 + y^2} \, dA$.
- (c) Bonus, 5 points: Evaluate the integral in Part (a). [Only if you have solved (a) and (b)]

Question 5 (15 pts)

- (a) State the divergence theorem in \mathbb{R}^3 , spelling out the assumptions and explaining the meaning of the terms in the formula.
- (b) Compute the flux of the vector field

$$\mathbf{F} = (x + z^2 \arctan^2(y))\mathbf{i} - (y + \log(x^2 + 1)\sin z)\mathbf{j} + (z + 1)\mathbf{k}$$

across the hemisphere S given by $z = \sqrt{1 - x^2 - y^2}$, oriented upwards. *Hint:* Compute div **F** and find a good way to use the divergence theorem.

THIS PAGE IS FOR ROUGH WORK (not graded)

.

ANSWER SHEET FOR PART I

NAME:			<u></u>	ID:		
				GSI:		
1.	a	b	с	d		
2.	a	b	с	d		
3.	a	b	с	d		
4.	a	b	с	d		
5.	a	b	с	d		
6.	a	b	с	d		
7.	a	b	С	d		
8.	a	b	с	d		
9.	a	b	С	d		
10.	a	b	С	d		
11.	a	b	с	d		
12.	a	b	с	d		
				1		
13.	a	b	С	d		
14.	a	b	С	d		
15.	a	b	с	d		
16.	a	b	с	d		
17.	a	b	с	d		
18.	a	b	с	d		