 NORMAL BUNDLES FOR CODIVENSION 2
LOCALLY FLAT IMBEDDINGS
BY .
R, C. KIRBY AND L. C. SIEBENMANN-.

INTRODUCT LON o | |
_ THEOREM A, Zet M" and {"* be ToP (= topological metrizable) manifolds
'without:'bounﬁary, m # 2, cnd suppose that M is q locally flat submanifold ‘of Q.
- Then M. admits a normal macroburdle v, and the germ of v about M is unique up
to ambient isotopy fixing M poznthse If we are ngen a normal mtcrobundle v,
over a -neighborhood of a closed set C of M, then we may choose vV =V over a'
: smaller ne%ghborhood of .C. Also gzven two normal mzcrobundleo v and v' that
agrée near C .we. can Jind an ambient taotopy ht’ <% 5_1, of id | Q_f}xing M
and a neighborhood of-_C so that h,v' coincides with v - near M. Further this
'isotopyfcan be ‘as emall as we please: fbr.exdmple_if U <5 a prescribbd_opén cov-
1-ering of 8§ we can choose h, so that for each point x € ¢, there exists some
U€ U such that h, (z) €U for aZZ t e {0,1]. ' '

Various statements can be deduced if- 8M £ ¢ and/or 3Q # ¢ wherc 9 indi-
cates boundary. Here is one: The theorem holds true with boundaries allowed, 1in
case MO\ 3Q =M and ‘m# 2, 3. The procf follows the usual pattern; i.e. ; apply
the ofiginal theorem to the boundary pair. (9Q, BM),_extcnd over a SUthbl pairwise
collar of this boundary, ‘then aﬂnly the relative. theorem to the 1ntnr101

Recall that by Kister's theorcm [Klbter], microbundlea contain locally trivial
Vbundlos with fiber euclidean 5pace, and thése are unigue up to fiber preserving iso-
- topy fixing the zero section; this result of course has a relative version.  Locally
- trivial topological bundles with fiber R" and zero-scction can be described us
 Stcenrod bundles with proup TOP(nj, the homcomorphLSms of R" fixing the origin.
(TOP(n) is given the compact 0ﬁbn't0po]u~y.)

Recall - [Kneser]  [Friberp) [Kob,, Essay V end of 55] that our structural group
TOP(2)  deformation COLTACtS to 0(2), which is homcomorphic to sY v s,

These two - facts - just reczlled permit one to.QGducé existence and unigqueness

1 Im+2

theorens for closed normal ?-disc bundles te M 'in Q. V£ 2, exactly analogous

Do




to the tubular neighborhood existence and uniqueneSS'theorems of differential topol-

ogy, or the still better known closed ‘collar vxistence and unigueness theorems. T

Qur theorem was asserted without the restriction m # 2 - in [K,], but the proof

contained -en error {page 419, Stenr 2) found by Bjorn Friberg. The gap remains, but
a preof- along the lines ettempted in {K,] remains an attractiﬁe and very diffieult
problem; ore 'wan:s; a pfoof ~that works in all dimensions and is elementary in its
- prerequisites as is the proof of the parallel codimension 1 result of M. Brown, see
[K-S,, Essay I, Appendix A]. ' | o

The proof glven here goes back to spring 1969 it reduces quite rapidly to the
codimension 2 Hauptvermutung result announced in [K»Sl]. We'adopt the differentiable
category as a tool in this article, but this is just a question of minor conve-
nience. Our proof uses handlebedy'theory together with torus gepmetry_(see [Kl] or
[X-s,, Essay I, §3]) and the furling (or gluing) ‘device- from [Si,, 8§5]. We do not
“use.surgery znd there is really no temptation to do s0. | _
| Our proof as given for high dimensions applles to ambient dlmen51on 3 =m+ 2.
However, to avoid packing along too many cases we summarize r&ght,here the modifica-
tions necessary, and- mention dimension 3 = m + 2 no more. An essential point is
that every smooth 3-manifold appearing in Dlagram 4-a below must be known to contain
“no fake 3-disk (= compact contractible S—man;fold that is not diffeomorphic to B,).
This follows from the uniquenees theorem for smooth structures in dimension 3; but

n+ .
?  that lies

g it can be assurcd trivialiy by starting (as we may) in 4.1 wlth a Q
._in a coordinate chart, where Alexander's theorem excludes fake 3-disks. The neces-
sary results of S—diménsional‘handlebody theory, analogous to those cited in §2, but
excluding fake 3-disc, are proved in [E. M. Brown], [Huseh and Price] and
[Stallinge] Finally, when engulfing ':. called for,.ie is to be done using the

splitting theorem perdllel to 2.1, proved using [Husch and Prlce}

Bjorn Frlberg has (according to a private communlcatlon) obtained the result'

t2

that the group TOP 6f homeomorphisms of R™ fixing R™ p01ntw1se satisfies

m, (TOP

/02)-= 0 for i<m=-.2, even if m= 2.  Here 0, is the subgroup of
o _ )

m+2,m n _
1bometr1es of R" fixing R~ pointwise,.

Immersion thcory reveals that our Theorem A implies:

THEOREM B, m; rTOPmM o 30,0 =0 for i<m# 2.

- ProoF oF B FROM A, To an element x€ T, (TOP 02) immersion theery

- m+z ,m’ & _
o . . +2 2 : . ik
‘associates an  immersion £ R L equal to the identity on ™" and DIFF

Trhere 1s one  point that needs attention in following this analogy. 1f one disc
Cbundle T, is included in fiber preserving fashion in the interior of a second. T,
it should be possible to isotop Ty onto T, in a fiber prcserV1n£ iaghjon. It
is enou5h to know that the group of homcoworphisms of the annulus 2B° - B* respec-
ting 98" is (weakly) homotopy equivalent to the subgroup respecting every circle
JOABY, and there are proofs of this, sce [Hamstrom] and [$ LDLtJ
¥ iy therefore an imbedding near R,




near 9B, such that the micro-bundle map germ df | : T(Rm)|Bi - T(Rm)[Bi repre-

sents X in the naturally  isomorvhic.  group T, (TOPn'H-z m DIFFI;H‘2 m) where .

CATl;l+2 o is the (semi-simplicial) group of .germs at the origin of CAT automor-
m+2 . s m . . -

phisms of R fixing 1 pointwise. ' Theorem A and the subsequent comments (or

~more directly the Handle Lemma 4.1 below) let one find a regular homotopy of £,

fixing _Rm ' and fixing a nezghborhood of 9B%, to an immersion £' that is DIFF.

: 1
near B,  The deformation of microbundle naps correspondlng to this regular homo-

topy reveéls that = x = 0., (For this us=z qf immersion theory see [K- SD], and more

| ‘specifically [Haefliger] and [Rourke-Sanderson].

In 52 we fix some conventions and recall some facts ‘about splitting and fiber-
ihg. In §3 we discuss the furling (or g‘ulng) device of [Sl , 85] without which a
proof of Theorem A might not be so elementary In 84 we reduce Theorem A to a han-
dle problem. In §5 the handle problem is reduced to a torus problem using'torus
methods involving engulfing and furlingQ In §6 this torus problem is solved by dint

“of furling, splitting, fibering and s-cobording.

2, STANDARD PRELI‘MINAR‘IES- CAT 1is an adjec;ive th.atAa.ccordingr to the
‘context means DIFF (= differentiable) or PL (= piecewise linear) or TOP (= topo-

logiéal). _

R" is the n-fold product of the reals, with the convention that Rk is the
.subéet of R© ‘defined by Xppg = oee =% =0, ‘The n-torus Tn will be Rn/SZn.
The n-ball of radius T’ is called an;rnOte that 28" is an obvious subset of Tn;
so also is ™, S | a B

The 1nter10r of a subset A Qf a space B is denoted A (=8 -Cl(B - Aj).
- The formal interior of a manlfold M is denoted intM. We do have equality
intB" = 8" (in R™). " The boundary of a manifold ‘M is denoted 9M; one has M =
M - intM. | 7
| The words “rel C" mean "fﬂxlng the restriction to a nelghborhood of C",

We ‘shall use DIFF ‘engulfing; one can readily ‘convert PL cngulflnE methods
‘ (see [Hudson]) using - Whitehead c! triangulations of the manifolds in question,
since any smeothly embedded simpléx is linear in a suitable DIFF coordinate chart.
Alternatively use the chart.by chart engulfing technidpe'of [Newman] . '

From handlebody theory we shall require the chobordism theorem and two more

~ results (for  CAT = DIFF).

- SpLITTING THEOREM 2,1, {1 [Kervaire] Let N n>6, be a CAT n-mani-
fold that is proper homotopy equivalent to K X R for some-connected finite complex
X. Suppose given a CAT disomorphism h' : N =+ L' X R where L' isa possibly
empty compact CAT menifold. fThen L' is the boundary of a compact Cn—J)wmanifold

TThe isomorphism  comes from a poirwise version of Kister's theorem and  an
elementary arpument with differentials. ' :




L, and there exists a CAT zsomorphtsm h:W+LxR extending  h', provided an
obstruction is zerc in the rrojective class group K zim N}, O

FIBERING THEOREM ? 2 © [Farrell] et f : N" + K xS be a homotopy equi-
valence where X 1is a “inite complex and N is a CAT n—mantfbld n > 6, Suppose
that pf | 3% 4s a CAT loeally trivial bundle map oN -+ S'. Then p,f is homo-
topte rel O  to a CAT. locally trivial bundle map N> 8, provided an obstruc-

. tion ig. zero in the: Whmtehead group Wh(m, (N)) O

In all our applications the funcamental group will be that of a torus, (i e.,
free abelian), in Wthh case the p*o:ectlve class group and the Whitehead. group are
'zero [Bass, Heller, and Swan}]. Thus the obstruct1ons above always vanish.

The spl tting theorem follows from the S~ cobordlsm theorem and the maln result
of [8] for putting a boureary L on N, extendlng L'. The basic ingredients of

the « fibering theorem (for - M ~ free abelian at any rate) are the same plus some

1mag1nat;ve geometry [Farrell].

3, UNFURLING AND FURLING. An UNFURLING of a compact connected manifold M
is a connected -é-cyclic covering M of M, or equivalently a prineipal Z-bundle
~over M. The quotient map R -+ T' is a universal principal Z-bundle; hence there
is- a map M > T! unique up to homotopy covered. by a ZJequivarient map E_: M > R,
‘under which the two ends # @ of R correspohd to the two ends of M.

Furling (celled gluing in [S,, §5]) T+ reverses the passage from M to M in
'. some important special cases. Given a manlfold N" having two ends € and €

_ - +
(specified in this order) we assume there ex;st'arbltrarily.small neighborhoods U_

and U of these ends and homcomorphisms e, U 7N, homotoplc to '1d|UJ_r fixing

smaller neighborhoods of the ends. 1In caSc u_n U = ¢, we may glue together the

- ends of N by wl‘w_ to obtuin the FURLING

'-l'Thls is a compact manifold.

Fle_,e,) = N/Ax = vt (x),xeu}

For example, if "N = Rl, let -U_ % (-w, -3}, . U* = (+3, +=} and let Pyt U -+ R.

. be diffeomorphisms fixing  neighborhoods of the ends * ® and translating a rnclgh—
'}borhood of *4 so thatrwtct4} = 0. Then F(v_, v ) 1is canonically diffeomorphic, to

RY/8Z = T!. | . S ,

1f there_ is a homeomorphism h : N - X, then h(U ) h(U ), hy h"l, serve to

- _furl X, and Flo,, ¢ _)  will be canonlcally homeomorphlc to P(hw h . hp+h'1).
~The latter is said *0 be the furling induced by h on X,

' Typically we construct our V., ¥ by engulflng when n >'5, or by splitting N

“into some Phulx R- and using the furling of R above. ' :

.;TWe avoid the full generality of the treatment in [S,» §5].
“#Compare & roughly equivalent process ln [K-$, Essay 11, §1].




CAT UNrqueness THEOREM 3.1, [S,, Theorem 5.2) 4ny two furlings of n,
say Fly_, w+)-=and Fle?, wi), ere homeomorphie. ‘Furthermore, the homeomorphism as
congtructed will be the ideniity on the common subset N < (U_u U+ v Uf U Ui).

- The proof is a pleasant exercise that the reader should probably pause to do.
© Hint: In case ¥ = ¢_ the result is obvious since we can just threw away a neigh-
borhood of € in N containing all images of points where v, 'and wj disagree.

'Slmllarly w1ta roles of + and -  interchanged. Thls.sufflces. 0

The furling construction and the proef of uniqueness are so simple that a num-
ber of observatlons can be made with no further effort. However the reader will be
better motlvated if he postpones readlng these observatlons untll they are ‘used in
§S  and 56. ‘

PAIRW?SE UNIQUENESS THEOREM 3.2, If W' isa submanifo’ld of N elosed

in . N, and throughout the entire discussion all  the v, mentioned respect
N', then the quotient of . N' in any furling is a compact submanifold, and the homeo-
morphisms of uniqueness F(p 2 vy ) > Fle?, w*) znduce a homeomorphism of the quo-
tients of N, 0 '

_COMPLEMENT 3.2,1, If N' is CAT andall the v, are CAT on N, then

.f_*he Quotients of N' are CAT and the homeomorphisms of uniqueness give CAT <so- .

" morphisms of the respectzve quoteents of N'.. (We do not exclude N =N'!) 0O
. ‘ 1

COMPLEMENT 3.2,2, If ‘N has a CAT structure near N' and all the v,

. are CAT near W', then each furling inherits a CAT structure near the quotient

of N'; and the homeomorphzvms of uniqueness are CAT  imbeddings near the respec-
- tive quoteents of N'. 0O '

COMPLEMENT 3 2, 3 Suppese N has a structure ej' product with R .;pccif'zied
near W', given by an open zmbeddeng of a nezghborhood of N' into a product. A X k
'carryeng N'  onto a set Ny x R. And suppose all ¢, are a product with =~ 4d|a
near N’ Then near the quoteent of N, any furltng inherits a produat structure
“given by an open imbedding into A x T* carrying the quotient of N' onto N'x T,
Any homeomorphesm of uniquencss will be a product with Ced]A) near the reepec—

- tive cuotients of N'. O - - . ' o !

- Any furling Flg _, ¢,) has a preferred unfurling F(w Y ) namely the quo-
‘tient of Z x N Dby identification of (m,x) € m X U+ to (mn+l, ¢ Yo (x)) € (mvl)xu ;
- whenever  me 2 and x € U+. The canonical covering_transldtlon T 0 F T sends
co{m,x)  to  (m+l,x). ‘

N In any case of interest to us,.thc unfurling E(9,’ ¢+) is isomorphic to any
“m X N by an engulfing process that sends positive-end to positive cnd. (We shall

~ not use this fact.) _ ' ‘ o _ o ' .
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It is clear from the construction of the uniquenéss homeomorphism
| 0 : Fly_, v,) > Fle¥, ¢¥) |
'by reduction to special. cqses~ where eit&er' p_=v9* or v, = w:, that € is
covered by a homeomorphism € : F(¢_, ¢+) + F(p*, w:) commuting with the canonical:
covering translatlons '
Regarding these m-cycllc coverlngs as pr1n01pal Z- bundles, and c1a551fy1ng by

maps to B, = T' we obtain

APROPOSITION 3,3, Every furling F(tp s @ ) has a preferr'ed homatapy class of
maps  to .T‘, and the homeomorphisms of unzqueness f?om 3. 1 respeet these prefbrred
homotopy cZaeses ) '

Let N+ N be a locally trivial bundle. Since v, s homotopic to id|u,
fixing a smaller neighborhood of € it is clear how the furling construction ex-:
" tends to produce a furled locally trivial bundle ?(@ s @_._) over F(@_, &P+)A. Also
any isomorphism of uniqueness 9 By , ¥ ) * F(P*’ ¢*) is naturally covered by an
- isomorphism of bundles a : CP s ¢ S bﬂp* wj)._ Applying this'to 1oéa11y trivial

principal. Z-bundles and classifying we get:

PROPOSITION 3.4, If a preferred homotopy clasé of maps N = I ie given

there 18 a preferred homotopy class of maps Ffle , o ) + T coinciding up. to homo-

. topy with the first on N - (U v U+). The 1somqrphzsm3 of uniQuenesa respect this
prefbrred class. O '

Ll REDUCTION OF THEOREM A 70 A HANDLE LEMMA, The existence part of the

theorem follows easi ly from the relative uniqueness part o’ the theorem. This in

: - _ n
-turn  follows by an induction over coordlnate ‘charts from the case where M = R°.

-"{This case in turn follows by induction on handles in R" from the HANDLEWISE_VERSION

OF UNIQUENESS, where - M = R" = Rk x R and the ambient ‘isotopy ht' of id|Q

K'x 8" in Q, and instead of being small, h_ is

yields hv' = v only near CU B
required to have compact support. These kinds of reductions are becomning standaxrd,
and we merely refer here to [K -S,] where several are carried out, see [K-5, Essay 1
§4] for example. : |
We now deal with the HANDLEWISE VERSION. As M is contractible the micreobun-

dles v and v' admit trivializations g : M x R? 4_Q and g' : M x R? + Q. Cer-
. aihly we can choose g and g' so that g'(M x R?) € g(M x'R?) and g'(y x R¥) C
gly » R’) for all vy e M near C. Using the theorems of Kister and Knescr mentioned
©in the 1nt1oductlon we can arrange further that for all y near C in M, g'(y % R? ) =

__g(y x R?*) and g 'g' | yx k® is in the orthogonul group 0(2). Using a DIFF
 '_upproximutEun of thc'rcsulting map of a ncighborhood of C to 0(2); we furthermore
arrange that the imbedding ' 7 |

: g-1g, 3'Rm-x_R?‘+_R¢'x"RF




. : 2 : A . , :

is a DIFF imbedding near € X R . Note now that if h =g lg were a- DIFF im-
bedding n'eu- Rm % 0 we could get our result froim the relatlve uniqueness theorem
for DIFF tubular nnghborhoods Tort remains tihen to arrange this by dint of an

admissible isotopy according to the following.

ConIMENSION 2 'HANDLE LEMMA 8,1, Consider a pairwise épén imbedd'iing
BB x @R s (A, me ke m toa DIFE pair, so that h is a DIFF
tmbedding on =% B and near ¢ = (R B ) % Rn+2 R
 Provided that m+ 2 % 4, there exists a pairsise zﬂotopy hy, 05 t<s, of
o S0 that , o :

1) the isotopy fixes h on Rm,_hear C and outside a qompdct'set.
2) 'h, is a DIFF imbedding on a neighborhood of Rm;_r

" h=h

| 5. THE Tower-D1A6RAM FOR SOLVING THE HANDLE PROBLEM, :'To prove the
.  handle lemma '4.1, we’constructrthe following Diagram 5-a. i '

e e o g
(B x (R RJ)Z*——BX(R Y

B .
RFEE Ts
g

@ x @ ,R))*—*ka GRS
1 ) ¢ex

- v g . o
@ x @, 10 ))*----Bk x CT“*Z ™

(B* x (23“*2, 28 ))<~*(B <, ™),
G* x (™, ™y

(B X (TIH'I

n*l
xR

) * Ry,
B

K Yo h 2

’ +

@ % @™ R (@, WD
DIAGRAM S-g

-.It has had muny prccufsor?, particularly [K-Sz, Essay I, § 3]; so of those parts

~ that are familiar we shall be content with a brief descrlptlon

Trhis is qglckly done by hand as follows. et T. be a DIFF homotopy of 1d]R fix-
o ing R°- B and 0 to a map v mapping % B to 0. For small £ > 0 consider the DIFF

- howotopy- he {x,¥) = (h{ (,¥),h"(x,¥)), (x;¥) € R x R®,  which deforms only the R®
component h' of h, by the formula hé(x y) = h'{x, srt(y/e)) One verifies that if ¢
:-15 su{ficiently small he remains nonbln"ulaz and arbitrarily C°® close to h; then- ht
ods necessarily a diffeotopy with compact support in B xR and fixing RN x 0; it
Soaryives at g DTER

cuhedding R, which, near R 'x 0, respects projection to-RM, ,i_ll-“*~*?-l?“ i

e A




LS By J

I is the DIFF structure pulled back by 'h, so that in the diagram h is a
DIFF  isomorphism.  This I is standard ncar the bound4ry 3 and on g x g By
'restrlctlon we get the- DIFF structure bX on Bk X (25 n+2‘ 2B ). .

The str :ctures L o’ z EEERE E are to be- chosen ‘stan: ard near the boundary

and- such that the commutatlve trlangles of canonical 1n3ect10ns on the left w111 all

. be DIFF 1mbedd1ngs near Bk X 2B Bear this in mind even when it is not expll—

citly stated . : _
' - By induction on n one forms a DIFF- 1mbedd1ng la Nov1kov

(Tn+1 ' n+2 .on

") xR (R » R7)

n+s

- that ~ is the identity on [-2, 2} Producting with id|Bk- we get the inbodding

i in the diagram. The structure 'Zﬁ_ is the pull-back of £ by i.
The first new device is the construction of T Ifrom Za' ' :

(a) One forms a DIFF pairwise furling of (BX x (r"+1

DIFF  engulfing respecting Bk x o1

) X R)Z using
x R.- This requires m + 2 > 5. T The nelgh—
- borhoods U_  and U+ involved are chosen d15301nt from Bk X ZBM2 T
(b)  One regards Bk % (Tn+2, ™ ) as the furling of B X (Tn+1 r“’l)-x R
derived from the standard furllng above of R yleldlng y |

(c) Then one applies the. uniqueness result. - for _furlihgs that respect
ka.Tn 1
standard structures) This -provides a pairwise homeomorphibm of the first furling

“onto the second, thereby endovlng the second with a DIFF structure (BX x(1"*2, '1“))F

that is standard on Bk x T" and near. the boundary, and equals I near Bk x 28"

x R, are DIFF on it, and simultaneously are DIFF near the boundary (for the

‘ ‘An auxlllary struCture I* is formed from ~ L, Dby unfurling the first circle
factor complementary to T s gettlng (B x " X_R]e _say, then furling again by

DIFF engulflng_ using neighborhoeds of % = disjoint from .Bk x

x 2B'. Near
rfhéjboundary this furling process is to coincide with ;hat from the standard furling
of R. Thié construcﬁion is a little _;impIEr than the'construction of L, from Zo
as it is not pairwise; the‘submanifold Bk x In' is never touched since the cir-
cle T in question is complementary té_ T rather than part of it.. Thus we get
_(B X (Tn+2, Tn))r* standard near the boyndary and equal L, on Bk x'T"+l'x.2§1.

By precisely‘the same'procedure of unfurling and refurling applied to I*, this
time. along the second T factor complementary to. Tn, one_derives the structure z,
from T*. ' . - . _ -

Let T ° be the standard finite covering R /s82% of T2 = R2/82% for some

sufficiently large positive integer s to be determined later (in §6). Let

Trhe engulfing diffcomorphisms arc built up from two sorts: thosg obtained by the
epnulfing theorem ond- having support in the complement of B x ™71 x R; and those
that slide a smooth tubular ncxghborhood of B X 1""1 x R over itsclf in a stan-
dard fashlon ' : :




~

E; : T2 » Tt be the quotieﬁt map-and- let e
duct of id | (B x T%) with G,. |
- The pairwise diffeomorphism. g will be homotoplc to the 1dent1ty, and equal to

P be the pro-

~'the identity near the boundqry, and on Tnj As one might expect g is trlcky to -
obtaln, and we postpone this "torus ‘problem" to a section of its own, §6.

e, &, and g arise by passage to the' standard universal coverlng of
the dlffeomo*phlsm g. As g :.id; the diffeomorphism § is BOUNDED; 1i.e.,
sup{]g(k) - Kl, Xxe xR} cw, - :

k+n+2 k+n+2 s ey . s
Let J : > - be a radial homeomorphism that is the identity on

4Bk+n+2 5 Bk 2Bn+2

and £ = id . on the bounda1y, it follows that jgj-1 can be extended by the identity
2w ois 6 | 8% x R“+2

that H is a diffeomorphism. Note that Le = I near Bk x 28"*

3 and let b be the restriction of J. Since g 1is bounded

to a homeomorphism G of all of R L, is choseri S0

5

DIFF embeddlng near. Bk x B because B, fixes Bk,X'Rn and %, = I near Bk X 2B

The Alexander 1sotopy G of G to the 1dent1ty, namely G (x) X if t=0
and G (\) = tG(\/t) 1f t E (0, 1], restricts to an isotopy- H ] (B X R ) :
of H to id | B x . ¢ ‘has compact support in Bk x R" nezt and fixes BX x R f
pointwise. ‘ _ ' ' i
‘We define ht = th. ‘Then h, - obviously satisfies 1), and h, is a i

| 6. SoLuTION OF THF TORUS PROBLEM, - Given I, and z, “we seek some stan-
': dard flnlte covering’ Z of I, and a dlffeomorphism | | |

Al

k. 2 +
T =N z’ Tn))z
, 3

g BT x (T ) + (B X (T

" equal to the identity on BX x Tn' and near the boundary, and homotopic to the iden-

"tity.
Initially we exclude the cagses m =3 and m = 4. These in fact follow from
“the case m > 5 as we will explain at the very last. A

ASSERTION 1. For m # 3, 4, there exists a diffeomorphien

£V xra (B x 7,

2

that ie a product with 7* near the baund&ry and admits a Lifting

P xR o (B x 7 x R
. that is a product with R? near the boundary. Here "L, it the natural covering of
) . z ] N . B ) . " .

2

PROOF OF ASSERTION ]_. We retrace (hut do not rcdo) the COllthUC‘LlO!] of I,

from I, via . I¥,




319
First split by 2.1 to obtain a diffeomorphism Hﬁﬁq X R + (Bk SRR R)G
that is a product. with R near the boﬁndary Recalllng that Wm+1 x Tt iS'the

: : . +1 -
standard - furling of W@ X R, we apply the uniqueness theorem for furlings to ob-
tain a diffeomorphism ' |

x ;. W2 jx'Tl -+ (Bk X T““)z,,
-that is a produét with- id | T' near the boundary by Complement'3.2.3. (This comﬁé
lement initially provides an f£* that is merely a product with some orientation
preserving diffeomorphism 7t T!; but an isotopy quitkly makes it idITl;)

“Unfurling source and target of f£* along the other ' factor complemeﬁtary

to TV 'andrsplitting again, we get a diffeomorphism
vVt x R x TV 5 (Bk x T" x R x'Tl)e*

'that is a preduct with R x Tl_.near the boundary.
Thus applying the unlqueness theorem once more we get a dlffeomorphlsm
f:meTz'—*(B x Tt

s,

_that is a product wlth 7* near the boundary, by Complement 3.2.3 again.
" The. map f 1lifts to a dlffeomorphlsm £ with qf = fq, where q slmply arises
from the quotlent map P - T , if and only if the induced map f, of fundamental

groups réspects the projections to ﬂl(Tz)-- z?. This is dictated by the behavior

of £ on  the boundary if it is nonempty; i.e., if k 7 1. (What is more f, is

then evidently a produst with idl(ﬂl(Tz)).) 1f % = 0, one ‘can still see easily
enough that £, respects'the. projections to the last =wo factors -nl(Tl) by using
prdpdsitions 3.3 and 3.4, and retracing the construction of ¢ just pgiven. This
i means that f, respects the projections-to ﬂl(ng as.required.. Here is the one
spot 3.3 and 3.4 are used. PR .

The argument here is subtlc As an aid in understanding it, consider s' x R

and a homeomorphism h which gives one end a full twist, as pictured

e R
R

- The reader should convince himself that the two furlings, one standard and the other

induced from the standard furling by h, are canonically homeomorphic by a. homcomor-

¢ phisnm which does not have 4 twist in it,

If k> I, we seleet that 1ift f of f which'is a prdﬂuct with ilez. near
~a base-point b of the bbundary. Since f is a product with idl™* - near the

_bquuQary,_;ﬁisiis possible and £ will forcibly be a product with . id|R? near the
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connected component of the boundary containing b. This is the whole boundary if

k>2. If k= 1, then, near the other component of boundary, %' is a product with
. . 2 ' 2 <. s

translation in R by an element of 8Z ; but it is clear how to rechoose f al-

tering it near the second boundary component so that the identity translation

. appears.

This completes the proof of Assertion 1 in all cases, O

 ASSERTION 2, There exists a DIFF _automorphism v of (8% x 1 x %)z )3,
fixing points outszdé some compactum |¢| in 3 x 7" x R?, such ‘that ¢ f(Vm X 0) =

VBk 7" % 0.

PRrROOF OF ASSERTI.ON 2, To simplify notation, from this point we will suppose
k =0; i.e., m = n. The adjustments for the general case are easily summarized at

- the end of the proof.

Choose _a' constant A so. large the tubular neighofhéod NV f(Vm x AB%) of

%(vm) contains T" x 0. Then choose a smooth tubular nelghborhood N.. of Tm X0

in (Tm X RZ)E so small that N, C N See Flgure 6-a.
_ _ " _

T

T v’

Figure 6-a o
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- . 5
Now f [.(y x T2) followed by orOJectlon to T is homotoplc to the 1dent1ty

: . i
for each point y € V'. Therefore £ | (y » R?) -ollowed by projection to R? is
degree "1, and it follows that the projection to R - 0 restricted to the circle

bundle ﬂv is - degrée ‘1 on each fiber. Slnce the fibers of N link T" simply,
one can-also verify that projection to R - 0 is of degree 1 on each fiber of N

; Hence, in each case the projection provides a homotopy trivialization of the c1rcle
bundle. Now G(2)/O(2) is. contractlble where G(2) 1is the space of degree 1
hOmotopy equivalences of the circle. As G(2)/0(2) classmfles homotopy trivialized
v -and NT to R - 0 can be
. deformed to smooth orthogonal circle bundle tr1v1allzat10ns, in partlcular to smooth

circle bundles we conclude that the projections of N

fibrations over the c1rc1e st ¢ R? - 0.

The cobordism W = NV - NT is ea51ly seen to be an h-cobordism; we leave this
as an exercise. ' .

Thus the: prOJectlon W (R - 0) once deformed as above so that W =+ (R%- 0)

is a fibration over s?, is susceptible to Farrell's fibering theorenm.

Applylng it, we get a further deformatlon of the projection W -+ (R* -°0) to

become a fibration of W over S . Any fiber Fw necessar;ly prov1des an h-cobor-
dism from a flber_ Fp of NT + gt to'a fiber Fy of ﬁv'+ s, The s-cobordism
theorem says that F 1is differentiably a product cobordism,

We how, have smocthly imbedded product cobordisms in (T X Rz)z running
-f(V )= V = Fp = ", as 1nd1ca*ed in Figure 6- a. -These quickly yield three auto-
morphisms whose composmtlon Y completes the proof of Assertion 2 for k=0, 0O

In case k_> 0, the above argument produces an automorphlsm 4 provided all
constructions near the boundary are kept standard. Although none of the three auto-
- morphisms composing t are the 1dent1ty near the boundary, their composition 1is

‘easily made to fix the boundary. - D

'CONSTRUCTION OF 9 (FOR M # 3, 4)  Choosc the integer s deternining the
_covering e, : T2+ T? so that the compactum || in (B x 1" x Rz)y is cntlrely
in a fundamental domain Bk x TV x (—45; 4s]2 Then ¢ determines a unlque 8sz? -
- equxvarlmnt automorphism ¢ of (B x TV x R )Z s that c01nc1des with ] on this

' funddmontal domain.

This y covors an automorphism Yy of (Bk.x ™ % TQ)T such that if
oy x 1 X T" o Bk X 1 covers f for 'ez, then yf maps v x 0 on-
to Bk x T x 0. We use this to identify v to Bk x " thus producing the  dif-
feomornhism . o

O ¢ BN x T2, (n "“”)E

equal to the identity near the boundary and on k x T" x 0,
If k>1, we set g= Pf. This g is homotopic to the identity as it fixes

~ the boundary.

e T
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If k = 0, it is not clear that wf is homotopic to the 1dent1ty (equivalently
o fi*es T 1)+« It does fix ST ™ and does respect progectlon to HITQ. The inverse
of the _matrix of the T, -map 1nduced by ¢f is a linear automorphism « of ™2
(here identified_ canonically to ¢l ), that fixes T" and respects projection to

—2 )
.T . We can now define

g=Ufaw
completing the construction of g in the last case k =0. O

CONSTRUCTION OF 9 FC2 M = 3 AND 4, The constructlon for m >5 of I,

23, and g, starting from the structure 21 applles to any structure

T+ 2

G @™, 1y |

that is standard on BN x T and standard near the bounddry It makes no differeﬁce
where L, comes from. ' R '
If mzk+nz3 0% 4 we can apply - it to I, % T2 with m and n each
increased by 2. The two structures produced may as well be the structures Zz‘x T?
and Z X T?, (Recall that E : and L, wers defined even for m=3 and '4.) _We

' thereby obtain a dlffeomorphlsm

g" ;8K x cT“f ™ x %> 35 x (T“*z, T“))z x T2
_ 3 _
© ‘that is the identity on B x ™ x T2 and near the boundary. We unfurl this along

' the last c1rc1e factor and apply the (relatlve and pairwise) s- cobord;sm theorem: in

dimension m + 4 to obtain a pairwise dlffeomorphlsm

k 2

(T -—n+2 Il

g' ST % T e B X 72, x !

)
that is agaih the identity on BN x ™ x TJ__and near the'Bdundaryg Repeating this

process once more yields the diffeomorphism g -required. O

The proof of the handle lemma 4.1, and of our pr1nc1pa1 Tesult Theorem A is now
complete. [ ' ' '

- | | PAvIS
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