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PREFACE

In the late 1970%s, Mike Freedman and I sketched an argument using immersion theory
for showing that 25 = Z. In 1982-83, lain Aitchison and I worked out new proofs
and a reorganization of ﬂipi“ = Z, p1 = 30, and Rohlin’s theorem. In the last 5 years,
further simplifications including a yet easier proof of Qipi“ = Z have been found.

A first draft of Chapters XII and XIII was written at IMPA in Rio de Janeiro in fall
1982 and other bits at the University of Maryland in spring 1983, but the bulk of the
writing was done at S.-8. Chern’s suggestion at the Nankai Institute of Mathematics
in May 1987. I was very ably assisted by Bao—zhen Yu, who found some gaps and
corrected many errors, not all minor. I am indebted to Charles Livingston and the
topology seminar at Indiana who found further gaffes in Fall 1987, and to Berkeley
students, particularly Chris Herald, for checking the final version.

Recent work with Larry Taylor on Pin structures and non-orientable generalizations
of Rohlin’s Theorem has fed back into some further sharpenings of Chapter IV and the
proof of Rohlin’s Theorem.

Thanks to my collaborators, to IMPA, Maryland, and especially Nankai for their
warm hospitality, to Faye Yeager for an excellent TeX manuscript, and to Deb Craig
for help with the many figures.
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INTRODUCTION

When I began to think about 4-manifolds in 1973, the basic theorems included the
Whitehead—Milnor theorem on homotopy type [Wh], [Milnorl], Rohlin’s Theorem
[Rohlin], Q5° = Z, QP'" = Z, the Hirzebruch index theorem p; = 3¢, and Wall’s the-
orems on diffeomorphisms and h-cobordism {Walll] and [Wall2]. These theorems were
untranslated ([Rohlin]) or unreadable ([Wh]), or were special cases of big machines in
algebraic topology (25° = Z, Q™ = Z, p, = 30), or, even though accessible, could,
with hindsight, use streamlining (Wall’s theorems).

In the early 1970’s, Casson and Rohlin independently gave geometric proofs of Rohlin’s
Theorem and improvements followed ([F-K] and Y. Matsumoto and Guillou and Marin
in [G-M]). Rohlin’s proof of 27° = Z was translated [G-M] and lectured on by Mor-
gan and others, with the latest version in [Melvin]. But a geometric, low dimensional
proof of Qipi“ was missing. The algebraic topological proofs are powerful, and beau-
tiful mathematics in their own right, but there ought to be proofs of the fundamental
4-manifold theorems which belong to the field of 4-dimensions (or less), and prepare the
student in the geometric side of the theory.

We give a geometric proof of 25 = Z starting with an immersion of M * into R%; it is
different but not necessarily better than the proofs mentioned in the previous paragraph.
It’s unique virtue was that Iain Aitchison and I were able to make it work for Q3", but
not without some difficulties. Recently, a simple proof of Q5P® = Z turned up, which
only uses the fact (not the method of proof) that M* bounds if p; (M) = 0. This work
led to an improved proof of Rohlin’s theorem using spin structures. These proofs are
first presented here. Handlebody theory is also exploited to streamline some proofs,
e.g., Wall’s theorems, and a few new wrinkles are included here and there.

Chapters XII-XIII give a sketch of Casson’s and Freedman’s work on topologic han-
dles and 4-manifolds. These chapters might profitably be read as an introduction to
Freedman’s fundamental paper [Freedman1] or concurrently with Casson’s 1974 notes
in [G-M]. Chapter XIV contains constructions of exotic smooth structures on R*, a
countable number which do not imbed in S* and one that does imbed in S*.

A reader needs a good, intuitive understanding of smooth manifolds and bundles,
knowledge of the simplest form of the immersion theorem (perhaps best read in [H-P)),
and a decent understanding of characteristic classes as applied to low dimensions using
the obstruction theory definition [M-S, chapter 12].

Framed links are used as the basic way of describing 4-manifolds; Chapter I covers
this material. Homotopy type, intersection forms, characteristic classes and the index
fall in Chapter II. Chapter III states classification theorems as of July 1987.

Spin structures are tricky fellows, especially over S! and surfaces, and they are pre-
sented carefully, I hope, in Chapter IV, with a fundamental example in V. Chapters VI-
IX focus on the proofs that 252 = Z, Q%™ = Z, and p; = 30, beginning with the study
of immersions and singular sets in VI. The remaining chapter titles are self explanatory.



I1.3.1 refers to Theorem or Lemma 1 in §3 of Chapter II; 3.1 refers to Theorem or
Lemma 1 in §3 of the same chapter. Similarly with figures. I marks the end of a proof.



I. HANDLEBODIES AND FRAMED LINKS

§1. Handlebodies.

A handlebody decomposition of a compact manifold M™ is a sequence B™ = M, C
My C M; C --- C My = M where M; is obtained from M;_; by adding a k;-handle,
that is, M; = M;_, }J Bk x B™—*i where f; : 3B% x B™~% — 8M;_, is an imbedding

which is called the attaching map (Figure 1.1). My = B™ = B® x B™ is a zero-handle
and there may be others. Handlebody decompositions exist for the categories TOP, PL
and DIFF except for the case of 4-dimensional topological manifolds which are handle-
bodies iff they are smoothable (see [K-S] and [Quinn]). We are only interested in the
smooth case where f; has to be a smooth imbedding. Then M; has “corners” where the
k;-handle was attached (Figure 1.1), but the phrase “corners can be smoothed” has
been a phrase that I have heard for 30 years, and this is not the place to explain it.

Figure 1.1

Smooth handlebody decompositions (handlebodies for short) correspond to Morse
functions h : M — R (which have non-degenerate critical points at different levels). A
critical point of h corresponds to 0 x 0 € B¥ x B™~ % and B¥ x 0 is the descending
manifold and 0 x B™~*i is the ascending manifold.

According to [Cerfl], any two Morse functions hg, h; are homotopic by an arc hy of
functions, ¢ € {0,1], which are Morse functions for all but finitely many ¢, at which h,
either has two critical points at the same level or a birth or a death occurs.

A death corresponds to a pair of handles cancelling and a birth to the creation of a
pair, as is shown in Figure 1.2.
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Thus, as we homotop hgo to hj, the k¢ move through Morse functions, which corre-
spond to isotopy of the attaching maps f;, and whenever a birth or death is passed, a
pair of handles are either created or cancelled.

We can summarize this by

THEOREM 1.1. Any two smooth handlebody decompositions of M™ are related by
isotopy of the attaching maps and creation or cancellation of handle pairs.

It should be noted that handles can always be attached in the order of their indices.
Forif a (k+1)-handle B¥+! x B™— %=1 {5 attached first and then a k-handle B* x B™~F,
then by transversality the attaching sphere of the k-handle, S*—! x 0 misses the cosphere
of the (k + 1)-handle, 0 x S™*~2, (since k—1 + m—k—2 < m—1) and hence can be
isotoped off of the (k + 1)-handle and added first. Moreover, the same argument shows
that two k-handles can be attached in either order.

§2. Framed Links.

In dimension 4 we will visualize handlebodies by drawing their attaching maps, when
possible, in 8M, = 8B* = S°.

A 1-handle s attached by S° x B3, so we draw a pair of 3-balls in S? as in Figure 2.1.
Often it will be convenient to denote a 1-handle by an unknotted circle with a “dot”
on it. The circle bounds an obvious disk, and if we push that disk into B* (so that
(B?,5') — (B*,S3%) is a proper imbedding) and remove a neighborhood of it, then the
remainder is S! X B3, the result of adding a 1-handle to B*. Thus arcs that go over the
1-handle should be drawn so as to go through the dotted circle.
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Figure 2.1

We draw the attaching map of a 2-handle, f(S* x B?), by drawing f(S* x0), a knot in
53, and labeling the knot with an integer, its framing. Let F? be a surface in B* which
f(S! x 0) bounds. Then f(S! x B?) corresponds to the zero framing of f(S! x 0) if it is
the trivialization of the normal bundle of f(S? x 0) which extends to the normal bundle
of F? in B%. Equivalently, let F? be a Seifert surface for f(S* x 0) in S3; then the
zero-framing is the one for which f(S?! x (1,0)) is tangent to F2. Framing k means that
f(S* x B?) differs from the zero framing by ¥ full twists around f(S? x 0) (right-handed
for k& > 0, left for k£ < 0), that is, by k € Z = m(SO(2)).

Figure 2.2 gives some examples where we have drawn f(S! x 0) and f(S! x ¢;) for
e1 = (1,0) € B2

k full
@ @ @ @twnts
framing 0 framing 1 framing -1 framing k

@ @)
f(s'x0) framing 0
Figure 2.2

Sometimes the attaching circle of a 2-handle goes over a 1-handle; it is drawn as in
Figure 2.3.



w O
k
k k
Figure 2.3

Then the attaching circle does not bound a Seifert surface in B*, so to describe the
framing we could draw f(S! x e;). However, it is more convenient to fix a dotted line
joining the two feet of the 1-handle and then to assume that f(S?! x 0) goes parallel to
the dotted line rather than over the 1-handle; now f(S! x 0) has a Seifert surface and
a well defined zero framing. One has to be careful, when isotoping attaching maps, not
to cross the dotted line, for that changes the zero-framing just as it would if we changed
a crossing in f(S?! x 0) (see Figure 2.4).

Y

. 0

Ve

W

Figure 2.4

If f(S* x 0) goes algebraically zero times over the 1-handle, then it has a Seifert
surface and the framing is defined without the use of a dotted line.

When we switch notation for the 1-handle to the circle with a dot, then we place the
dotted circle so as to link the dotted line, and draw all the 2-handle attaching circles
parallel to the dotted line through the dotted circle (Figure 2.3).

Adding a 1-handle to B* results in S! x B® with boundary S* x S2. Adding a 2-handle
to an unknot with zero framing gives S? x B?, also with boundary S* x S2. Handles
which are attached later cannot tell what the S* x S2 is the boundary of. Switching
the 1-handle to the 2-handle is the same as doing surgery on the obvious S?! defined by



the 1-handle with the trivial framing. The next lemma follows as an exercise from this
discussion.

LEMMA 2.1. Surgery on the S? defined by a 1-handle corresponds to removing the
dot from the dotted circle and replacing it with a zero (if the trivial framing of the
normal bundle of S' was used for surgery).

If there are no 1-handles, then there is an obvious linking matrix A associated with
the 2-handles: a;; is the linking number of the i** and j** attaching circles which are
oriented by the standard counterclockwise orientation of 8B2. a;; is just the framing of
the ¢** handle. A is symmetric, and later will be seen to be the intersection matrix on
the second homology of the 4-manifold (II, §1).

If there are 1-handles, we can draw them as dotted circles (oriented arbitrarily) and
form an extended linking matrix A’ where a;; for a dotted circle is defined to be zero
(as if surgery on the 1-handle was performed) and a;; for a 1- and 2-handle is just the
algebraic number of times the 2-handle goes over the 1-handle (or the linking between
the dotted circle and the attaching circle). Two 1-handles must always be geometrically
unlinked. So the extended linking matrix A’ has the form

1-handles { ( 0 | = )—A'
2-handles { x | o« )7

3-handles are attached by an imbedding f : $? x B! — 8M;. The framing is uninter-
esting, but 2-spheres are hard to draw, especially non-trivial ones. (A complicated one
is drawn in [H-K-K], §4.)

However, the 3-handles and 4-handle of a closed M* together are diffeomorphic to

k k

§S! x B® (a 0-handle and k 1-handles), with boundary }§S?* x S2. So the 3- and 4-handles
k

are attached by a diffeomorphism of §(S* x S?). But any such diffeomorphism extends

k
over §(S* x B3) [L.-P], so it makes no difference how the 3- and 4-handles are attached.
For the case 3M # 0, [Trace2] gives useful information on attaching 2-handles.
Given a framed link L, perhaps containing dotted circles, let M} denote the
4-manifold obtained by adding handles to the link L. This is a smooth 4-manifold

k
with boundary M. However, if My is S% or §S! x S2?, then we can close up My,
by adding a 4-handle and perhaps 3-handles. In this case M 1, may refer to either the
manifold with boundary or the closed 4-manifold, according to context.

Given L, it is useful to know how to describe the double of M along M. In this
case, the O-handle generates a 4-handle, and 1-handles generate 3-handles, and each
2-handle generates another 2-handle which is added to the co-circle, 0 x 8B 2, of the
generating 2-handle. This co-circle gets a framing from its neighboring co-circles * x 3B 2
which do not link 8B2, so the framing is zero. Thus we have shown

LEMMA 2.2. Given My, the framed link for the double DM}, is obtained by adding
unknotted circles, linking each 2-handle geometrically once, with framing zero as in
Figure 2.5.



0 0
n
n, ? e
Figure 2.5
§3. Examples.
Q) O O
$2xS? §2%S? +(p? Ey
Figure 3.1

The 4-sphere is the empty link and S? x S2, S? X S? and +CP? are drawn in
Figure 3.1. To see these more clearly, note that the B2-bundle £ over S? with Euler
class k (actually k times the generator of H2(S%;Z)) can be described by adding a
2-handle B2 x B? to an unknot in B* (thought of as 8B2 x 0 in B? x B? = B*) with
framing k; the S? is B? x 0U B2 x 0 and the framing gives the twist in £x. Then +CP?is
+¢, = €4 with a 4-handle attached to 8¢ = S®. The non-trivial S2-bundle over S?,

s % S2, has a fiber with trivial normal bundle and a section with non-trivial normal
bundle (the left and right components of the link).
For a really non-trivial example of a 1-connected, closed M, (it is trivial to draw non-

closed examples—any link will do—but rarely is the boundary equal to ;S 1 x §?%), we
must turn to the Kummer surface. It is a complex surface with many definitions of the
underlying 4-manifold, e.g., any nonsingular quartic in CP3, say z* + y* + z* + w* =
0, (see [H-K-K]). Figure 3.2 shows a framed link for it with no 1- or 3-handles. It
consists of a trefoil knot with framing zero and a small linking circle with framing —2.
“On” a Seifert surface for the trefoil knot, draw twenty circles, weaving as drawn, all
with framing —2. These twenty-two 2-handles, with a 0- and a 4-handle, describe the
Kummer surface.

Our examples do not require 1- and 3-handles. It is not known whether a simply
connected, closed 4-manifold needs 1 and /or 3-handles, but the Dolgachev surface ([H-
K-K] §§3,4 and [Don3)) is a good candidate for needing them.

If M # 0, then simply connected 4-manifolds may require 1 or 3-handles; for ex-
ample any contractible 4-manifold other than B* must have 1 or 3-handles. Casson
gave a construction that produces contractible 4-manifolds that need 1-handles specif-
ically ([Kirby2] Problem 4.18). Suppose that a contractible M* can be made without
1-handles. Then, inverting the Morse function, M* can be constructed from M by
adding the same number of 1-handles and 2-handles, and one 4-handle. It follows that
71, (8M) can be killed by adding the same number of generators and relations. But a
theorem of Gerstenhaber and Rothaus [G-R] states that a finitely presented group with
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a representation into a linear group cannot be killed with an equal number of generators
and relations. So any contractible M* whose 71 (8M) has such a representation requires
1-handles. For a specific example, choose a Brieskorn homology 3-sphere which bounds
a contractible 4-manifold, e.g. 3°(2,3,13) (see [A-K4]) or 3 _(p,ps—1,ps+1) for peven,
8 odd (see [C-H] for other collections); note that n1(3 (p,¢,7)) is a discrete subgroup
of a compact, connected Lie group [Milnor4].

§4. Handle Slides.

According to Theorem 1,1 any two handle decompositions for M* are related by
isotopy of attaching maps and births and deaths. In the language of framed links, a
birth of a 1-2 handle pair or 2-3 pair is shown in Figure 4.1 by the sudden appearance,
away from the rest of the link, of the indicated links. A death (or cancellation) is their
disappearance.
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An isotopy of an attaching map becomes interesting when it goes “over” another
handle rather than just moving about in S3 = 8(0-handle). The reader should picture
an attaching circle which goes over the top of another 2-handle intersecting the critical
point (the north pole) of the second 2-handle. If the attaching map is perturbed “left”,
it falls down to one side of the second attaching circle, if “right”, then to the other side,
Figure 4.2.

<:;:::,£i?:zzzz:> y 7\ N 7\
oA 4"

&%_/\_

Fight dim 2

Figure 4.2

Thus the process of sliding one 2-handle over another (of going from “left to right”),
is to take the band-connected sum of the first attaching map with a push-off of the
second attaching map, using the framing to determine the push-off (Figure 4.3).

The band-connected sum can be done along any band, which is allowed to have any
number of right or left half twists in it. The attaching circles should be oriented and
then the band-connected sum will either “add” or “subtract” the push-off from the first
circle.

The new framing can be computed from the linking matrix by the same process as
a change of basis; if a slides over 3, then the new basis should be a + # and A with
framing and linking as in Figure 4.4. In Figure 4.3, m = 0. The reader can verify this
by drawing f(S* x 0) and f(S! x e;) for each handle, doing the band-connected sum,
and computing the new linkings.
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The same thing works if we “slide a 2-handle over a 1-handle”; we are thinking of the
1-handle as a dotted circle with a “framing” zero, and sliding a 2-handle over it (Figure
4.5) is the same as isotoping the attaching map of the 2-handle between the feet of the
1-handle (Figure 2.4). Note that the framing changes according to the change in the
linking matrix when a 1-handle is added to a 2-handle, which corresponds to crossing
the dotted line in Figure 2.4.

It is possible to make sense of sliding a 1-handle (dotted circle) over a 2-handle whose
attaching circle is a slice knot ([A-K3], pg. 376); the knotted, dotted circle means
remove the slice disk from B*. But we won’t pursue this notion, and from now on rule
out the possibility of sliding a 1-handle over a 2-handle.

At this point there are a number of elementary examples that should be understood.

LEMMA 4.1. An unknotted S! with framing +1 can always be moved away from the
rest of the link L with the effect of giving all arcs going through S! a full F1 twist and
changing the framings by adding F1 to each arc, assuming the arcs represent different
components of L (in general they change according to change of basis in the linking
matrix). See Figure 4.6.

PrOOF: First do the case for one arc, k = 1, by sliding the arc once over the circle;
we add if the linking between the oriented arc and circle is 1 compared to +1, and
subtract otherwise. In general slide all arcs over the circle once. O

COROLLARY 4.2. §? X §? = CP2}— G P2,

PROOF: (pq = O O ]

-1 1
COROLLARY 4.3. (S? x §?) § CP? = CP? § (~CP?)} CP.

PROOF: (l)oo\? = Cl'_\(;jl) = (139(13 O
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Figure 4.6

LEMMA 4.4. ZkCQ_)O = OOC_)O ZkEQDO = b&)o

ProOOF: Each time the left circle is slid over the right (with the proper band-connected
sum), the framing changes by +2. O

LEMMA 4.5. Ifin L (with no 1-handles) a component L is an unknot with framing
zero which links only one other component L, geometrically once, then Lo UL, may be
moved away from the rest of L without changing framings. Then L, can be unknotted
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and its framing changes to 0 or 1.

PROOF: If a strand of L; crosses L1, Lo can be used to change the crossing without
changing framings (Figure 4.7). An iteration of this move proves the first statement.
The same move changes crossings of L, itself, thereby unknotting L; and changing its
framing by an even integer. An application of Lemma 4.4 changes the framing of L, to

Qorl. O
| \
— . ~ -~
\ I = AP
/ ) L, \L.; / L, wﬂ'
Figure 4.7

COROLLARY 4.6. If L (no 1-handles) has a component L; whose framing is odd, the
My} S?xS?=MptS? % S2.

PROOF: As in Figure 4.8, slide L, over L;, giving L, an odd framing. Then use L, as
in Lemma 4.5 to free L, from L, unknot L, and change its framing to one. O

Figure 4.8

Now we re-examine the cancellation of a 1-2-handle pair. These should cancel if the
2-handle goes over the 1-handle geometrically once. If so, what happens to the other
2-handles that go over the 1-handle? Slide these 2-handles over the cancelling 2-handle
so that they are free from the 1-handle (framings can change). Then isotope the can-
celling pair away and erase them. The isotopy is obvious if the 1-handles are drawn with
feet (S° x B?), for isotope one foot along the attaching map of the cancelling 2-handle;
in the dotted circle notation, slide other 2-handles over the dotted circle to free the
cancelling pair, as was done in Lemma 4.5,
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§5. OM*.

Every orientable 3-manifold N® can be obtained by surgery on a framed link L in
S? [Lickorish] which is the same as saying that N3 = M. We show later that N
bounds a spin 4-manifold M* (Theorem VII.3); the 1-handles of M* can be traded for
2-handles (Lemma 2.1) and (inverting M) the 3-handles can be traded for 2-handles.
Because M is spin, the framings on the 2-handles are all even (see II §4), so we see this
way that N3 = 8My, for L with even framings (compare [Kaplan]).

THEOREM 1.5.1 [Kirby1]. Suppose 8My, = 8My, for links L, and L,. Then L,
can be changed to L, by a series of the following moves:

1) Slide one 2-handle over another (this does not change My ).
2) Add or remove an isolated copy of an unknotted circle with framing +1 (this
changes My, to My § + CP? or vice versa).

There are few applications of Theorem 5.1 other than this: if N} and N? are suspected
to be diffeomorphic, then Theorem 5.1 encourages one to prove it by moves (1) and (2).
A reduction to one move is given in [F-R)].

The phrase “blowing down” (it comes from algebraic geometry) refers to identifying
an unknotted circle in L with framing +1, using Lemma 4.1 to move it away from the
rest of L, and then using move (2) to delete the circle. “Blowing up” is the reverse
procedure.

EXAMPLE 5.2: Using Lemmas 4.1-4.5, we see that OMy, = My, = S3 for all the links
in Figure 5.1.

empty 1 0o« ' ‘
I ) «© A 0
Lo L, L, Ls Ly
Figure 5.1

EXAMPLE 5.3: The 3-torus T can be described as the boundary of either of the links
in Figure 5.2.

0

Figure 5.2
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ExaMPLE 5.4: Both links in Figure 5.3 describe the Poincaré homology 3-sphere.

ProOOF: The trefoil knot with framing 1 can be used as the definition of the Poincaré
homology sphere (for others see [K-Sh]). To see that the second link has the same
boundary, introduce three unknots with framing —1 and slide the endmost circles over
them (Figure 5.4a). Now apply Lemma 4.1 to the three circles with framing 1 to get
Figure 5.4b.

QD QAU
’ 000 -~
a) b)

Figure 5.4

Iterate this process, discarding unknotted, unlinked components, to obtain Figure 5.5a.
Apply Lemma 4.1 to a succession of unknots with —1 framing to finish the argument.

a) b) c) d)

Figure 5.5

Theorem 5.1 does not seem to be useful for classifying 3-manifolds, for there has been
little progress on any of the following questions: Given an arbitrary oriented 3-manifold
N3,

a) Find a “canonical” or “minimal” link L so that 8M 1 = N3.
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b) If N3 = 8My, = 8M}, find an algorithm for moving from L, to L, using moves
(1) and (2).

c) Solve (b) at the level of linking matrices using the algebraic analogue of moves
(1) and (2).

d) Solve any of (a), (b) or (c) for interesting classes of 3-manifolds. (For Brieskorn
bomology 3-spheres, and more generally Seifert manifolds, there are interesting
resolutions or graphs describing them; these have framed link analogues. See, for
example, Walter Neumann’s papers or [N-R].)

Our occasional use of moves (1) and (2) in Theorem 5.1 will be to check that M is

k
either S or §S* x S? so as to be able to construct a closed 4-manifold.

§6. A Homotopy 4-Sphere.

As a final illustration of handlebody and framed link techniques, we construct an
interesting homotopy 4-sphere [A-K 2] [A-K3].

The framed link L in Figure 6.1 describes a contractible 4-manifold Eg =Mr(m =0
is shown below). To see that My, = S3, surger the dotted circles to 2-handles with
O-framing (Lemma 2.1), shrink the circles with +1 framings so that they are small
unknots and apply Lemma 4.1, and untangle the mess to obtain the unlink of four
components with +1 framings, i.e. S3.

Figure 6.1

Thus 3°* = 577 U4-handle is a homotopy 4-sphere. It was not created out of thin air,
but is the double cover of an exotic smooth structure on RP* ([C-S] and [Freedman2]).

It is easy to construct “bushel baskets” of homotopy 4-spheres via the “Gluck con-
struction” [Gluck]. Given a smoothly kaotted 2-sphere © in S*%, remove its tubular
neighborhood S2 x B? and glue it back in by the only interesting diffeomorphism of
S! x S?, namely the one derived from the non-trivial element in 7;(SO(3)) = Z/2.
The result Q*(0©) is easily seen to be a homotopy 4-sphere, but is not known to be
diffeomorphic to S* except in a few cases. I know of no reason to guess whether an
arbitrary Q*(©) is S* or not, but because the My, of Figure 6.1 comes from a “fake
RP*” it might also be a fake. In fact, M can also be described as Q*(©) (see [A-K3],



Figure 16) where © is constructed from two different ribbon disks for the 8¢ knot drawn
in Figure 6.2 (the two different ribbon moves are indicated by dotted lines). Notice the
symmetry (rotation by = and reflection in plane of the paper) which takes one ribbon
move to the other.

Figure 6.2

3>* is homeomorphic to $* by Freedman’s Theorem (I1I §1 and [Freedmanl]), but
more is easily shown. If we add two 2-handles to Zg = Mj as shown in Figure 6.3,
then it is not hard to show, sliding the old 2-handles over the new ones in the obvious
way, that the new manifold is diffeomorphic to S2 x B% § S? x B%. Then we can add
two 3-handles and a 4-handle to get S*.

Figure 6.3 (Figure 29 of [AK1])

Thus 3, C S* and $* = 33 is a smoothly imbedded 3-sphere in S*. By the
topological Schoenflies theorem ([Mazur], [Brown]), 3, is then homeomorphic to B*.
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This raises the question of the piecewise linear (PL) and smooth Schoenflies Conjectures:
A smooth (PL) imbedding of S*~! in S™ bounds two smooth (PL) n-balls. The PL
version is true in dimensions other than 4. The smooth version fails in higher dimensions
because of exotic smooth structures on spheres. But in dimension 4, the PL and smooth
categories are essentially equivalent [Cerf2]. So the smooth 4-dimensional Schoenflies
conjecture (does every smooth 3-sphere in S bound a smooth 4-ball?) is wide open.

Scharlemann [Sch] has shown that it is true in the genus two case where S* has
genus n if there is a Morse function on S* with two critical points which restricts to a
Morse function on S? with & o-handles and n + &k — 1 1-handles. In the above example,
S% = 8%, can be arranged to have genus 4 (W. Eaton and R. Gompf).

There is one more old conjecture related to 24, the Andrews—Curtis conjecture. It
is a purely group theoretic conjecture, but we motivate it as follows. From Figure 6.1,
we can read off a presentation of the fundamental group of ) ; starting at the arrows
on the 2-handles we get generators z and y and relations

1=yz *yzy 2z(zy~'z7") (1)
and
1=yz lyzy2z(y 'z ly) (2)
50
sy lzl =yl y (3)
or
TYT = YTY. (4)

Using (3) and (4), we obtain from (1),

1=yz Y(yz)u~ 2 (y 'z ") (5)
=y(yz)y *(y =7ty

= :z:_s(y:c):c“ly3
= o5yt

This presentation {z,y | zyz = yzy,z® = y*} is interesting. It is the trivial group since
(4) implies that y = (yz) 'z(yz), so ¥* = (yz) 'z°(yz) = (yz) 'y*(yz) = z7'ytz =
z %z =2 =y*soy=1and z = 1.

The reduction of the original presentation to the trivial one may suggest how to slide
handles in Figure 6.1 to change My to the 4-ball. Indeed, the steps that obtained
identities (3), (4) and (5) can be carried out by handle slides. Since it is not clear
which bands to use in the band connected sums of the handle slides, we can up the
dimension by 1 and consider 3, xI where attaching circles are unknotted and unlinked
in S* = 8(B%) = §(0-handle).

However, the reduction of {z,y | zyz = yzy,z° = y*} cannot be carried out because
we need extra 2-handles to “remember” relations. If relation r, is substituted in r3, then
handle r; is slid over handle r; and no longer exists as the handle r5. But of course the
relation r; is still valid and may be used later.



19

So the Andrews—Curtis Conjecture ([A-C], [Kirby2] Problem 5.2) states that a pre-
sentation of the trivial group can be moved to the trivial presentation by the usual
Tietze moves except that one is not allowed to remember relations.

The presentations {z,y | zyz = yzy,z"*! = y"} may be the simplest class not known
to satisfy the conjecture. {a,b|a='b%a = b°,b7'a%b = a®} is another.

If a homotopy 4-ball B (with 8B = S*) is described as a handlebody with no
3-handles, and its presentation of the trivial group satisfies the Conjecture, then handle
slides can be carried out in B x I to show that B x I = B5. Then 8B is a smooth
3-sphere in 8B = S*, so we are back to the smooth Schoenflies Conjecture; at least B
is homeomorphic to B*,

One can “remember” a 2-handle at the cost of adding a cancelling 2-3 handle pair.
Then the 2-handle is slid over the 2-handle which is to be remembered, making a second
copy to be saved. If this is done on the homotopy 4-ball itself there are usually geometric
problems. If it is done on B x I to avoid unwanted linking, then the original 1- and
2-handles will be cancelled (following the algebra) but there will be 2- and 3-handles
left which may not cancel; the 2-handles are added to trivial circles, but the 3-handles
are complicated.

The questions and conjectures raised in this section are important but hard. There
is some progress, e.g. [Quinn2], but not much.

(Added February 1988; Gompf has shown that Y, is diffeomorphic to B*; the argu-
ment involves handle slides and begins with a clever introduction of a 2-3 handle pair
where the 2-handle is attached to a non-trivial circle which is in fact trivial in 83 .
The smooth Schoenflies conjecture is then settled in this particular case.)






II. INTERSECTION FORMS

§1. Intersection Forms.

Let M* be closed and oriented. If 7,(M) = 0, then H2(M;Z) and H*(M; Z) are free
Z-modules of rank equal to the second Betti number. If (M) # 0 then Hy(M;Z)/T
and H%(M;Z)/T are free Z-modules where T is the torsion subgroup of the appropri-
ate group. There are two isomorphisms H2(M;Z)/T — H?(M;Z)/T, one given by
Poincaré duality and denoted by “ = ”, as in a — &, and a second given by Hom and
denoted by “ * 7, asin a — a*.

THEOREM 1.1. Let M be closed, oriented and smooth. Any element a € Hy(M;Z)
is represented by a smoothly imbedded, oriented surface F. Another such surface F,
representing a is joined by a smoothly imbedded oriented 3-manifold Y * in M* x I with
8Y = F!, — F,.

(Note that if M = Mp, for a framed link L with no 1-handles, then a basis can be
represented by surfaces made up of cores of 2-handles union Seifert surfaces for their
attaching circles.)

PRrOOF: There is an isomorphism
H*(M;Z)~[M,K(Z,2)] = [M,CP>]

where brackets denote homotopy classes of maps. So & € H?(M;Z) corresponds to a
homotopy class of maps {f} : M — CP*. Since dimM = 4, [M,CP>] = [M,CP?.
Make f smoothly transverse to CP!; f~}(CP') = F2 will be an oriented surface rep-
resenting a. F!, will define a map f' : M — CP? with (f')"1(CP!) = F! and the
homotopy f; : M x I — CP? between f and f', made transverse to C P!, will provide
Y3. g

Note that the normal bundle for F, or Y2 is the pull back under f or f, of the
normal bundle of CP! in CP2. The latter has Euler class 1 times the generator of
H?(CP';Z) = H¥(S?;Z) = Z, so if the Euler class of the normal bundle to Fy, v, is
n (times a generator), it follows that the map f : F, ~+ C P! must have degree n since
ve, = f*(vop) and £*(x(vop)) = X(v, -

Also note there is a natural version of this theorem for manifolds with boundary,
properly imbedded surfaces, and relative classes.

Furthermore, this theorem works for topological manifolds, but the full work of Freed-
man and Quinn is needed to establish the necessary transversality theorems [Quinn1].

In the case with Z/2-coefficients, a 2-dimensional homology class can be represented
by a smoothly imbedded, unoriented 2-manifold, but two such cannot always be joined
by a smooth, unoriented 3-manifold, even only immersed ([F-K], Theorem 3).
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There is a pairing

H*(M;2)]T @ H*(M;2)]T — 2

given by a®8 — (&UB)[M] € Z where [M] is the fundamental class of M in Hy(M;Z).
Since in this dimension, ¢ U 8 = U &, the pairing is symmetric. Note that this pairing
is defined on torsion elements, but is zero. It defines an integral, symmetric, bilinear
form on H2(M;Z)/T.

In the smooth case we can understand this pairing as the intersection form on
Hy(M;Z)/T. Using Theorem 1.1, represent the Poincaré duals @ and 8 to & and
B by smoothly imbedded, oriented surfaces F, and Fg. Perturb either one so that F,
meets Fg transversely in n points, p1,...,p,. Each point p; can be assigned a + or —1,
e(pi) = 1, according to whether T, |p; ® T, |p; has the same or opposite orientation

n

as Tar|p;. Then define the intersection a - S by a-g = Ze(p,-), the algebraic number
of points of intersection. This can be seen to be indepen(ierllt of the various choices by a
bordism argument involving Y, and F, and F'.. By Poincaré duality, a-8 = (aUB)[M].

(Long ago I heard the dictum, “Think with intersections, prove with cup products.”
Being geometrically minded, I will go reasonably far (perhaps beyond?) with geometric
arguments, but occasionally homotopy theoretic proofs are appropriate, as with Theo-
rem 2.1 below.)

Given a basis a1,...,ap for Ho(M;Z), then the intersection form determines the
intersection matrix (a; - ;).

If M* = My, where L has only 2-handle components L1,..., L, then the intersection
form with basis a;,...,a determined by L,,..., Ly is represented by the linking matrix
for L. If one 2-handle is slid over another, say “L;” over “L;”, then the homology basis
changes by sending a; to a; + a; and the matrix changes by adding the j** row to the
i** row and then the j** column to the i** column.

The intersection pairing is unimodular, that is, given a linear map A : H,(M;2) — Z,
there exists an element @ € Hy(M;Z) such that A(8) = a - 8 for all B (see §2 below).
For X defines an element & € H%(M;Z) and its Poincaré dual a satisfies A\(8) = a - 8.
An equivalent definition is that the intersection matrix has determinant +1.

If M # 0, then the intersection form is still well defined on H2(M;Z). In fact, if
dM 1is a homology 3-sphere, then the above discussion goes through unchanged, since
M U (cone M) looks to homology like a closed manifold. But for general M, the
intersection form is no longer unimodular; for example, let £ ; be the B?-bundle over S?
with x(€x) = k # £1, and then the intersection form is represented by the 1 x 1 matrix

k).

Note that if a = i(a'), ¢ : H2(8M;Z) — Hy(M;Z) then o+ = 0 for all A. Then the
intersection form is non-singular on H2(M; Z)/(T + i(H2(8M; Z))) and is unimodular
with field coefficients.

EXAMPLES: H,(S? x S%;Z) = Z ® Z with generators a = S? x pand f = ¢ x S, so
with appropriate orientations a8 = e(p,q) = 1 and a-a =e(S?xpNSxp') = (@) =0

. 0 1
so the form is (1 0).
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Ho(CP?%* Z) = Z with generator CP! = S2. As we have seen, the normal bundle of
C P! is the Hopf bundle with first Chern class ¢; = 1 = Euler class, so $? .52 =1 and
the form is just (1). The form for CP? with the opposite orientation, —C P2, is (—1).
(Note that C P? has a preferred orientation, as do all complex manifolds.)

Hy(M* § N%Z) = Hp(M) § Ho(N) and the form decomposes as a direct sum

q
(fol‘mM | 0 ) so the form for § CP? it (—C-Pz) is

0 | formpn
1
. 0
1
-1
0 .
-1
e W/
4 q

The framed link in Figure 1.5.3 has Mz = Poincaré homology sphere, so its inter-
section matrix has determinant 1 and is

+2 1
1 42 1
1 42 1
1 42 1
142 1 0 1
1 +2 1 O
0 1 +2 O
1 0 0 42

§2. Homotopy Type.

THEOREM 2.1 [Wh], [Milnorl], [M-H]. If M and M' are simply connected, closed,
oriented 4-manifolds, then they are homotopy equivalent iff their intersection forms are
isomorphic.

Later, Lemma IX.4, we show that the homotopy equivalence is a tangential homotopy
equivalence, i.e. it is covered by a bundle map from Ty to T},.

PRrROOF: The proof on pages 104-105 of [M-H] is short and readable; we follow the
outline here but make the end more geometric. Let M, be M minus the interior
of a 4-ball. Then H;(Mo;Z) = 0 except for Ho(Mo;Z) = Z and Hy(Mo;Z) =
Z7. Since mi(M) = m(Mo) = 0, it follows that m(My) = Hy(Mo;Z) = Z7, so
there exists a map f : S2 V.7,V §2 — M, which induces a homology isomorphism
fr s H(S?V.r.v 5% 2) = H,(My; Z). If M, is a CW-complex, then f is a homotopy
equivalence; in the smooth case, M, is a CW-complex, and in the topological case, M,

is an absolute neighborhood retract and hence the homotopy type of a CW-complex
which suffices.
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Now M is obtained from M, by attaching a 4-cell, so M has the homotopy type of a
space obtained from the r-fold wedge S2V ..V S? by attaching a 4-cell by an attaching
map g : S® — $?2V.7.VS2. So the homotopy type of M is determined by the homotopy
class of g in 73(S? V.7.V §?),

We show that an element of m3(S%V.7,V S?) is determined by a certain linking matrix
which coincides with the intersection form for M. Let p; € S? be a point (other than
the base point) on the i** 2-sphere of S2 V...V S2. Make g transverse to p;, ¢ = 1,...,r,
and let L; = g~ *(p:;). Then each L; is an oriented (using the orientations of M*, S3,
S?) framed link with framing on a component L;; equal to the difference between the
O-framing and the framing pulled back by g from a normal disk to p; in SZ. L; then
has a linking matrix {a;;} as in I, §2. If we homotope g so that g—!(p;) has just one
component, i.e. if we band connect sum the components of L;, then the framing of the
one component, A;, is Zajk = sum of the entries of {a;x}.

ik

Now L = UL; = U)\,' is itself a framed link with a linking matrix A. The proof is
i=1 i=1
finished with the following two assertions:

Assertion I: A is isomorphic to the intersection form on H2 (M} Z).

Assertion 2: There is a one-to-one correspondence between symmetric r X r matrices
A and elements of m3(S? V.T.V S?).

PROOF OF ASSERTION 1: If we let each A; bound a surface F; in the 4-cell B, then F;
in $2Vv...v 52U, B4, defined by F;/3F; where g(8F;) = g(\;) = p; is a closed surface.
The F;, i =1,...,r, generate Hy(S? V...V S2 U, B*;Z) = H,(M;Z) and clearly the
intersection matrix of F'; both represents the intersection form on H»(M;Z) and is A.

PROOF OF ASSERTION 2: We have already constructed a map fromg : S3 — §?v...v§?
to a matrix A via the Thom-Pontragin construction; the same methods show that
homotopic maps give framed bordant links and hence the same matrix A. It is easy to
construct a framed link (hence a map g) which gives a prescribed matrix A. We leave
to the reader the task of showing that if two framed links have the same linking matrix,
then they are framed bordant.

This proof is more round-about than that in [M-H], but it makes the geometric
connection between homotopy type and intersection forms clear.

§3. Symmetric Bilinear Forms.

In this section we collect some examples and results about integral, symmetric, uni-
modular bilinear forms.

We have already met the forms whose matrices (in terms of a suitable basis) are (1),

01 .4 . sy .
(-1), (1 0 and their direct sums. Another example is T'*F which is the lattice in R**

generated by e; +e; and 1/2(e; + €2 +- - -+ e4x) where e; ... e4x is the usual orthonormal
basis for R** and the form is the restriction of the usual Euclidean inner product on
R*. Thus (ei + ej)2 =2 and (1/2(e; + -+ + e4x))? = k. I'** is positive definite.

For k = 2, I'® is isomorphic to a well known form which is often called Ej (since it
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arises from the Dynkin diagram for the Lie group E3); one choice of matrix for Eg is

21
! )

- N
b
N

= O
O N
OO
- O

which comes from the weighted tree (compare the last example in §1),

One more example is the form L arising from the Leech lattice. In R?® choose the
24

metric (+9+9 +’-"9+’_)9 that is, (zla-"7$25) : (yl""’y25) = Zziyi — T25Y25. Let

i=1
L be the orthogonal complement of the vector A = (3,5,7,9,...,43,45,47,51). Since
A-X = -1, L = ) is positive definite. Furthermore, z-z > 4 and z -z = 0(2) for all z.
Formally, an integral bilinear form consists of a free Z-module X and a bilinear form

o,
xex -z

It is symmetric if ¢(z1,22) = @(z2,21). It is unimodular if for a basis z1,...,zs,
det(¢(zi,z;)) = 1, or equivalently, if A : X — Z is linear, then there exists a unique
yo € X such that A(z) = ¢(z,y) = ¢(yo,z), or equivalently, given a basis z;,...,zx,
there exists a dual basis yy,...,yx with ¢(zi,y;) = 8ij. It is positive (negative) definite
ifz.-x > 0(<0) for all z € X. It is indefinite otherwise. Often we write ¢(z,y) =z -y
and think of X as Ho(M;Z).

We assume throughout these notes that ¢ is symmetric, unimodular and integral
unless otherwise stated.

There are three invariants of ¢:

1) rank ¢ = dimension of X as a free Z-module.

2) type ¢, which is even if z -z = 0(2) for all z € X, and odd if 3z such that
z-r=1(2).

3) signature ¢, which is the number of positive entries minus the number of negative
entries if we diagonalize over the rationals. (Note that this definition makes
sense without unimodularity, i.e. in the case of H,(M;Z) when 8M # 0.) In the
indefinite case, these invariants determine the form ([M-H], Theorem I1.5.3).

First we quote a lemma of Meyer ([M-H], p. 22).
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LEMMA 3.1. If ¢ is indefinite, then there exists * € X such thatz -z = 0. Clearly =
can be chosen indivisible, i.e. not a multiple of another element.

Then in the odd case we have:

THEOREM 3.2. If ¢ is odd and indefinite, then ¢ decomposes as a direct sum ¢ =
q
& (1) & (-1).

PRroOOF: Choose an indivisible z with z -z = 0 and y’ with z -3y’ = 1 and let Y be the
orthogonal complement of the subspace generated by z and y’. If ¥ -y is even, then
Y is odd, so we can choose an odd element y" € Y and then (y' + y")? is odd. So we
0 1

1 odd
have y— k; ((1) i) Then * ~ (yy__k:z) (_01 2) Choose either z — (y — kz) or
y — kz so that its orthogonal complement is indefinite, and repeat the argument until
¢ is decomposed as desired. O

DErFINITION: Call w € X characteristicif w .z =z -z(2) for all z € X.

(If X = Hy(M*;Z), then w is an integral dual to the second Steifel -Whitney class of
M?*, as we see later.)

can choose z and y with matrix e ) For the correct choice of k € Z, we

LEMMA 3.3. There exists a characteristic element w with w - w well defined modulo
8.

PROOF: Let X(3) be the mod 2 reduction of X and let T = z(;). We have a homomor-
phism
X@y = Z/2
T — T-T.
&(2) is an inner product on the vector space X(3), so the linear map h is given by inner
product with a fixed element @ € X(3),i.e. T-T = @+ . Then let w be any element in
X which reduces mod 2 to @. Clearly w -z = z - (2). Furthermore, if w' is another

such, then ' = w + 2z, 0w . w' = (wW+22) (W+2z) =w-w+ 4w -z+ 4z -2 =
w w4+ 4(even) = w - w mod(8). o

LEMMA 3.4. signature ¢ = w -w (8).
PROOF: Since every odd, indefinite form ¢ is isomorphic to é (1) é (-1), sign ¢ =

P — ¢ = w-w since we can choose w to be the sum of the generators of the factors. In
general, consider X & (1) @ (—1) which is odd and indefinite. Then

sign X = sign(X (1) @ (=1)) 2 s+ a+0) - (s + & +8) = ws - w,

where w; is characteristic for X and a and 8 generate (1) and (—1). O

In the even case we can choose w = 0 and thus sign ¢ = 0(8). Furthermore, rank ¢
and sign ¢ are even, since as long as ¢ is indefinite, we can split off direct summands
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;) é ; the remaining definite form has rank = index = even. We can then represent

all possible ranks and signatures by the forms
r 8 0 1
+ @ Es (1 0) .

It is a fact ([M-H], Theorem I1.5.3) that in the indefinite case two forms are isomor-
phic if they have the same rank, type, and signature, so these are the only forms.
We summarize our information in a table

indefinite definite
1
. p P
! , ] '1 + & (1), represented by § + CP?,
odd ‘ &) (-1)= 1 and many other forms, e.g.
1 Es @ (1) and I2k+1)
-1
p+g= rank
p— g= signature
p q
represented by § CP? { (—CP?)
r >0
+®E ® (‘1) (1)) rank | 8 16 24 32 40
[ 8425 = rank fof T 2 24 >107 >10M
| 8 = signature forms
even i (2 (1)) is represented by $2 x §? By = Tye A A
Fs Eg 23] Eg L *
- 3 (0 .
EsoEs @ (1 (1)) is represented by
the Kummer surface.

We have only listed examples of definite forms and some estimates of their numbers
(only finitely many of given rank). Also we have indicated which odd forms are known
to be represented by simply connected, smooth, closed 4-manifolds and the simplest
even form represented by such.

Of course, any form can be represented by a 4-manifold with boundary. Just take
any framed link L in §% whose linking matrix represents the form; then M} is a simply
connected, smooth 4-manifold whose boundary is a homology 3-sphere if the form is
unimodular. (Freedman has shown [Freedman1] that each homology 3-sphere bounds
a contractible topological 4-manifold, so each form is represented by a simply connected,
closed, topological 4-manifold.)
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§4. Characteristic Classes.

The Stiefel-Whitney classes of Tar, wx(Tas) € HF(M*; Z/2) are obstructions to find-
ing a field of 4 — k + 1 frames over the k-skeleton, ([M-S], §12). In the case k = 1, w;
is the only obstruction and hence M is orientable iff wy = 0. Again, if k = 2, w3 is the
only obstruction to finding a field of 3-frames, hence 4-frames (using the orientation to
choose a fourth vector over the 2-skeleton). A trivialization of Ths over the 2-skeleton
is called a spin structure on M (see Chapter IV). Note that when wa # 0, Tas can
still be trivialized on M — F? where F? is a surface dual to wy. ws is always zero since
72(S0O(4)) = 0, so a spin 4-manifold has a trivialization of Tas over the 3-skeleton, hence
on M*-point. Such a manifold is called almost parallelizable.

wy is not the only obstruction to extending the trivialization of T over the last point;
both the first Pontrjagin class (or the index) and the Euler class of M must be zero (see
Chapter VI).

We will usually work with oriented 4-manifolds, so w; = 0 and w, will be the inter-
esting characteristic class.

According to Wu’s formula ([M-H], p. 136), on a closed, smooth, connected, oriented
4-manifold w; is characterized by w, Uz =z U z for all z € H2(M;Z/2).

As above, a characteristic element for the intersection form is w € H(M;Z) where
w-z =z-2(2) for all z € Hy(M;Z). When H;(M;Z) = 0, then the relation bet ween w
and w is simple: w is an integral Poincaré dual to w,. That is, w; is the mod 2 reduction
of &. For Hi(M;Z) = 0 implies that H%(M; Z) — H*(M;Z/2) is onto, so that w, has
an integral lift ® and G U % = £ U #(2) for all £ € H?>(M; Z), thus w-z = z -2(2). Thus:

LEMMA 4.1. If H;(M;Z) = 0 then w; = 0 iff the intersection form is even.

However, when H;(M; Z) # 0, wo = 0 implies that the intersection form is even, but
the converse is not necessarily true. If w; comes from an integral class @, then its dual
satisfies w -z = z - 2(2). But if w, does not lift to an integral class, then it may happen
that ws # 0 but the intersection form on H,(M; Z) is even.

An example from [Habegger] is M = S? x S?/Z/2 where Z/2 acts on S? x S? by
sending (z,y) — (—z,—y). Therank of H2(M; Z) is zero because rank (H?(M; Z)+2 =
x(M) =1/2x(S? x S?) = 2. Furthermore, the diagonal S2 in S$? x S? becomes an RP?
in M with self-intersection 1, so its dual z € Hz(M; Z[2) forcesl =z Uz =wy Uz so
Wy ?é 0.

A framed link description of M is the double DN, of the 4-manifold N in Figure 4.1.
(For doubles, see I, §2.) It is easy to check by surgering the 1-handle that the boundary
of DN is S x S? so that a 3- and 4-handle can be added. The long 2-handle gives the
RP? by letting its attaching circle bound a Mobius band which of course goes over the
1-handle. With the basis from the 2-handles, H,(M; Z/2) = Z/26® Z /2 with intersection

form ((1) g) where RP? . RP?2 =1 and &5 - &, = 0. To take the double cover of M
via framed links is an interesting exercise; for some help, consult [A-K1].

§5. The Index.

The indez of an arbitrary oriented 4-manifold M*, o(M) or index M, is the signature
of its intersection form. Note that if we change the orientation of M, we change the sign
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Figure 4.1

of index M, i.e. index(—M) = —index M. Complex surfaces have preferred orienta-
tions coming from their complex structures ((1,y1,%2,y2) gives the same orientation as
(z2,¥2,21,y1) where (21, 22) are local coordinates and z; = z; +1y;) so index(CP?) =1
and index(—C P?) = —1.

LEMMA 5.1. Suppose an r+ 8 manifold V"** bounds an oriented r+s+1 manifold W.
Assume rational coeflicients and let i, : H.(V) + H.(W) be induced by the inclusion
map.
1) fz € H(V) and y € Hy(V) and i.(z) =0 =i,(y) thenz -y = 0.
2) Ifx € H (V) and i.(z) = 0, then for any y € H,(V) with -y # 0 it follows that
i.(y) # 0.
3) Ifz € H(V) and i.(z) # 0, then there exists a y € H,(V) withz -y =1 and
i*(y) =0.

PROOF: 1) Since = and y are rational classes, multiples of them, pz and gy, are integral;
then pz and qy are represented by oriented, transverse surfaces in V' which bound
oriented, transverse, 3-manifolds in W. These 3-manifolds intersect in arcs whose end
points have opposite sign in V and therefore sum equal to zero,so 0 = pz -qy =1z - y.
2) This is a equivalent to 1).
3) Since 0 # i.(z) € H. (W), there is a non-zero dual y' to i.(z) in H,41(W,8). Let
y = 9(y') and observe that z -y = i.(z) -y =1 and 0 = i.(y) = i.8(y') by exactness.

THEOREM 5.2. If M* bounds an orientable 5-manifold W3, then o(M) = 0.

Proor: If x € Hy(M; Q) bounds in W, i.e. i,z = 0, then choose a dual y € H,(M;Q).
The intersection form on the subspace {z,y} spanned by z and y is ; ((1) 1) (since

z -z = 0 by 1) in Lemma 5.1) which has index equal to 0. Continue this process on
the orthogonal complement to {z,y} so as to split off another 2-dimensional subspace,
and then another, and so on until H;(M; Q) is exhausted. Because of 3) in Lemma 5.1,
if there are any elements left in the orthogonal complement at any stage, then there
must be an element which bounds in W. Thus H,(M;Q) splits as a direct sum of
2-dimensional subspaces on which the intersection form has index zero; thus ¢ (M) = 0.

O

Clearly index(M; § M,) = index M; + index M,. This equation still holds if M;
and M have the same boundary and we glue them together along 8M;.
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THEOREM 5.3 (Novikov). If 8M; = —3M; as oriented manifolds, and M = (M, U
M,)/8M, ~ —8M;, then index M = index M, + index M,.

First, here’s the idea behind the proof. Let N3? (unoriented) denote the manifolds
8M;i, 8M; and the submanifold of M equal to the identification of 83M; with 3M,. Now
let y be an element of Hy(M) and intersect y with N. If the 1-cycle yN N bounds in N,
then y splits as a sum of elements in Hp(M;) and Ha(M;). But if yN N does not bound
in N then it represents a non-zero class in H;(N) which has a dual z € Hy(N;Q). The
intersection form on the subspace generated by z and y is : (1) 1) with index zero
(z -z = 0 because = can be pushed off itself using a normal vector field to N in M).
Here are the details

PROOF: We use rational coefficients throughout the proof. The Mayer—Vietoris se-
quence for M = M; UM, is

(f1,—i3) j1+ J2
% Hy(My) © Ho(My) —2 Hy(M) -2 Hy(N) — .

Then Hy(M) = (Ha(M1) @ Hy(M,))/image(iy,—i2) & image 8. In the vector space
H3(N), let 1; and 7, be the subspaces of elements which bound in M, and M, respec-
tively; i.e. 1; = ker(Ha(8M;) — Hy(M})), 1 =1,2.
It is not hard to check that the following sequence is exact:
(i1,12) . .
0 — 1+ 12 — Ho(N) = Hy(My) @ Ha(My) /image(ir, —iz) —
(Hy(M:)/H3(8My)) & (Ho(Mz)/H2 (8Mz)) — O.

(1) if z € my, then (i1(z),12(z)) = (0,%2(z)) = (0,—i2(—)) = (21(—2), —i2(—z)) which
is zero in Ha(M;) & Ha (M) /image(iy, —12); (2) if (31(2),12(2)) = (1(w), —i2(w)) then
11(z —w) = 0 = i3(2 + w) so write z = 2w 4 i’;—"l; (3) A(31(2),%2(2)) is obviously zero;
(4) if A(z,y) = 0, then z and y separately come from H,(N), so (z + 2y — y;_z) =
(242, 242) is in the image of (iy,4).) Thus

Hy(M) = Hy(N)/(m1 + n2) ® Ha(M1)/H2(8My) ® Ho(M)/Hz(8Mz) © image 8.

M1+ 72 is precisely the kernel of 7, : Hy(N) — Hp(M), for if z € Hy(N) and i.(z) =0,
then let ¢ be a 3-chain in M which z bounds. We can choose ¢ so that a neighborhood
of z in ¢ is a collar of z in either M; or M>, and so that ¢ is transverse to N. Then let
c1 = closure(c N int M;) and ¢, = closure(c N int M) and note that z = 8¢y + 8cz
lies in 73 + 772.

Let y = 87 € image 8 and let = € Hy(N) be dual to y; it follows that i.(z) -y =1,
s0 i,(z) is dual to 7 in Hy(M), so i.(z) # 0 and = does not belong to 71 + 72. So image
8 is dual to a subspace 13 of Hy(N) with 53 N7 4 12 = 0. Furthermore, 7; + 72 and 73
span Hz(N) since if € Hy(N) does not belong to n; + 72, then i.(z) # 0, and i.(z)
has a dual ¥ € Ha(M) and then z is dual to 7. Thus dimn; = dim(image 8) and
Hy(N)/(m + n2) 2 13 = image 8.

Now let z;,...,zx be a basis for 7; and y1,...,yx a dual basis for image 8 with
yi = 0(F;) so that i,(z;) -Y; = &ij. Then the intersection form on H,(M) restricts to a
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form with index zero on a subspace isomorphic to H3(N)/(m +712)® image 8 with basis
z.;; (1) 1 . Thus the index of M is the
index of the form on H,(M;)/H,(8M;)®H,(M;)/H2(3M,;) whichindex M; + index M.
a
Novikov's additivity theorem easily fails if M; and M, are glued together along only
part of their boundaries. The Hopf disk bundle M has boundary equal to $3% and
form equal to (1) and index = 1, yet it is the union of the disk bundle over the two
hemispheres, each of which is a 4-ball with index = 0.
However, the additivity formula can be corrected when M = M, UM2 and N = 8MN

1 T1se .3 LeZh, Yps-- -5 Yo siice the form is

: N
8M, is only part of IM;. The ideais to form the manifold Mo = (8M; X IUpxo(8Ma xI)
and compute its index, which depends on how Hy(8N;Z) dies under the inclusion of
ON in N, 8M; — N, and 8M; — N. (In particular, if 8N = S? then index(Mo) = 0.)
Then

index M = index My + index M; + index M,

as is easily seen from Figure 5.1 and the above Theorem 5.3. Details can be found in

[Wall5].

Figure 5.1






III. CLASSIFICATION THEOREMS

The classification problem for simply connected, closed 4-manifolds asks which homo-
topy types, that is, which forms (symmetric, integral, unimodular) can be represented
by such manifolds and, if so, by how many.

§1. Rohlin’s Theorem.
In the smooth case, the classical theorem is Rohlin’s ([Rohlin], [G-M], [F-K]) which
we prove in Chapter XL

THEOREM 1.1. If M* is closed, smooth andw; = w; = 0 (equivalently spin, or almost
parallelizable, but even form is not sufficient [Habegger]), then index M = 0(16).

Thus, “half” the even forms cannot be represented by a simply connected, smooth
closed 4-manifold (see (2.6)). Rohlin’s theorem can easily be generalized ((K-M], [F-K],
Corollary XI.6) to

THEOREM 1.2. If M* is closed, smooth, simply connected and if w € Hy(M;Z) is
an integral dual to the second Stiefel-Whitney class w,, then w can be represented by
an imbedded 2-sphere which is smooth except at one point which is the cone on a knot
K, and we have the congruence,

index M —w-w
8

= Arf invariant(K') modulo 2.

The theorem does not eliminate any more forms, but does limit the 2-spheres repre-
senting w.

£82. Freedman’s Work.

In 1981 Freedman completely answered the classification problem in the topological
case,

THEOREM 2.1 [Freedmanl]. Given an even (odd) form, there exists exactly one
(two) simply connected, closed, topological 4-manifold(s) representing that form.

In the odd case, the two manifolds are distinguished by their Kirby-Siebenmann trian-
gulation invariants [K-S]. One has non-zero invariant and cannot be smooth
(= piecewise linear in dim4) and the other has zero invariant but still might not be
smooth for other reasons, e.g. Ez & 1.

Freedman shows that every homology 3-sphere bounds a contractible 4-manifold.
Thus, given a form ¢, choose a framed link L with linking matrix ¢, add 2-handles to
B* to form M}, and then cap off by adding Freedman’s contractible 4-manifold to M .

The form (1) is represented by(Q! = CP? and also by &)1 whose boundary is the
Poincaré homology 3-sphere which is then capped.
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It is worth noting that Freedman’s theorem extends to the non-simply connected case
when the fundamental group does not grow too fast; in particular it holds [Freedman2]
for the class of fundamental groups which

1) contains Z and finite groups, and
2) is closed under the operations: subgroup, quotient, extension, and (infinite)
nested union.

£3. Donaldson’s Work.
A few months after Freedman’s surprise, Donaldson proved an equally startling the-
orem about smooth 4-manifolds.

THEOREM 3.1 [Donaldsonl]. If a definite form is represented by a smooth, simply
connected, closed 4-manifold M, then the form is ié(l) (and by Freedman’s Theorem,

P
M is then homeomorphic to §(£C P?)).

Thus all definite forms, with this exception, are represented by non-smoothable topo-
logical manifolds.

With a bit of further work, using ideas of Casson [G-M], it was shown that R* has
more than one smooth structure (see XIV); eventually [Taubes] a continuum of smooth
structures on R* was found.

2r 8
In later work, Donaldson showed that if & Fs & 0

1 0
closed, smooth simply connected 4-manifold, then s > 3 [Donaldson2]; in particular
the Kummer surface could not split off an $2 x §2.

Then he showed [Donaldson3] that the form (1) é (—1) is represented not only

9
by CP? § (—CP?) but also by the Dolgachev surface ([Dolgachev], [H-K-K]) which
is obtained from the rational, elliptic surface by logarithmic transforms of multiplicity
2 and 3. Later Friedman and Morgan [F-M1] and Okonek and Van den Ven [O-V]
showed that there are countably many, smoothly different, complex surfaces, obtained
by logarithmic transforms of relatively prime multiplicities, with the homotopy type of

9
(1) & (—1) and hence homeomorphic to CP? § (—~CP?).

A corollary to these examples is that the smooth h-cobordism “theorem” fails since
these manifolds are smoothly h-cobordant ([Walll] and Theorem X.1 in these notes).
(The topological version is true as proved in [Freedman1].)

I cannot bring the reader up to date in “Donaldson theory™ for new results appear fre-
quently, especially concerning complex surfaces (see [F-M2]). But Fintushel and Stern’s
variations [F-S1] on Donaldson’s first theorem and their work concerning whether ho-
mology 3-spheres bound smooth acyclic 4-manifolds [F-$2] should be mentioned; the
old problem of which elements of H,(S? x 5?;Z) are represented by smooth imbedded
2-spheres was settled in [Kugal.

was represented by a



IV. SPIN STRUCTURES

Let £ be an n-plane bundle over a CW-complex X. One attractive definition of a spin
structure [Milnor2] on £ is the one analogous to an orientation on §: ¢ is orientable
if £ has a trivialization over the O-skeleton which extends over the 1-skeleton, and an
orientation is a specific homotopy class of trivializations; similarly £ can be given a spin
structure if £ has a trivialization over the 1-skeleton which extends over the 2-skeleton,
and a spin structure is a homotopy class of such trivializations. However, this definition
is only correct for n > 3 (the tangent bundle of an orientable 2-manifold has a spin
structure, but is trivial only for the 2-torus). We can overcome the difficulty when
n < 2 by stabilizing £. Recall that a trivialized sub k-plane bundle of a trivialized
(n + k)-plane bundle determines a trivialization of the orthogonal n-plane bundle over
the (n — 1)-skeleton of the base space. Thus the trivializations of {* @ ¢* naturally
correspond to trivializations of £™ over the 2-skeleton when n > 3 and ¢F is a trivialized
bundle.

So we can extend the above definition: ¢ kas a spin structure if £ © e* has a trivial-
ization over the 1-skeleton which eztends over the 2-skeleton, and a spin structure is a
homotopy class of such trivializations, where €* is a triviakized bundle.

In practice, we do not stabilize for n > 3, add ¢! for » = 2, and either add ¢? for
n =1 or just add ! and work “mod 2” with trivializations.

We can try a different analogy and let ¢ be a principle O(n)-bundle. Then ¢ is ori-
entable if £ can be reduced to an SO(n)-bundle, and an orientation is a given reduction.
An orientation reduces the group to a connected one, SO(n). To make the group simply

connected, let Spin(n) 2, S0O(n) be the double cover of SO(n); in particular, Spin(2)
is the connected double cover of the circle SO(2), and Spin(1) is Z/2, the only double
cover of the point, SO(1). Then ¢ is spinnable if { can be covered by a Spin(n)-bundle,
and a spin structure is such a covering. This can be made more precise by saying that
a spin structure on { is a cohomology class ¢ € H(E(§); Z/2) whose restriction to
each fiber is a generator of H!(SO(n); Z/2); (note that the last proviso disappears for
S0O(1)). The point is that o determines a 2-fold covering of E(£) and the restriction
requires that the fiber SO(n) be covered by its (unique if » > 2) double cover Spin(n).
This definition is summarized by the commutative diagram:

Spin(n) action

E(¢) x Spin(n)

Y 2-fold /
P covering P

B(E) x SO(n) 500 action” )

E(©)
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The O(n)-bundle ¢ can be oriented iff the first Stiefel-Whitney class w, € H*(X;7Z/2)
is zero, and then the orientations corresponds to H°(X;Z/2). Similarly, the SO(n)-
bundle ¢ can be given a spin structure iff the second Stiefel-Whitney class w, €
H?(X;Z/2) is zero, and then the spin structures correspond to H!(X;Z/2).

The exact sequence

0 — H'(X;2/2) ™5 HY(E(€); 2/2) = H(SO(n); 2/2) - H*(X;2/2)
22

can be derived from a spectral sequence; wz = §(1). Thus wy = 0 iff there exists a spin
structure ¢ € H'(E(); Z/2) with i*(¢) = 1, and then spin structures are classified by
{o € H(E(£); Z/2) | i*(o) = 1} which is isomorphic as a set to H!(X;Z/2). The spin
structures are not naturally a group nor do they naturally contain a zero or preferred
spin structure; however a Lie group has a natural trivialization of its tangent bundle
which then gives a preferred spin structure.

That the two definitions of existence of spin structures are equivalent follows because
each is equivalent to w; = O (the first by the standard interpretation of characteristic
classes as obstructions to existence of cross-sections). A trivialization of ¢ (or its as-
sociated principal bundle) over the 2-skeleton Xy of X naturally determines a spin
structure o € HY(E(£);Z/2). Forif ¢ : E(§ | X(2)) — X(2) X SO(n) is a homeomor-
phism, and if o9 = (0,1) € HY(X(2);Z/2) ® Z/2 = H'(X(2y x SO(n); Z/2) then let

o= p*ay.

PROPOSITION 1. Suppose that £ has a spin structure ¢. Suppose that Y is a
subset of X for which H'(X;Z/2) — H'(Y;Z/2) is an isomorphism (e.g. a basis for
H,(X;Z/2)). Then a spin structure on ¢ is determined by the choice of a spin structure
Tonf|Y.

PROOF: Define a 1-cochain ¢ on Y with values in n,(SO(n)) = Z/2 by letting ¢ be 0
(respectively 1) on a loop £ if the spin structures ¢ and 7 on § and £ | Y agree (resp.
disagree) over £. Then ¢ determines a cohomology class ¥y € H(Y;Z/2) = HY(X;Z/2)
and ¢ + <y determines a spin structure on ¢ which equals 7 over Y. a

Yet another definition (in a sense the best) of a spin structure on { is a homotopy
class of lifts of the classifying map f¢ of £ to BSpin(n), i.e.

BSpin(n)
/i
X-—BSO(n).

fe

Then w; is the obstruction to lifting f¢, and it lies in H2(X ;7 (SO(n)/Spin(n)) =
H?(X;Z/2); lifts of f¢ are classified by H}(X;7;(SO(n)/Spin(n)) = H'(X; Z/2), where
S50(n)/Spin(n) is the fiber of = above.

A manifold has orientations and spin structures according to those on T'as or on its
bundle of tangent frames, Fis.
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EXAMPLES: An orientable 4-manifold M* has a spin structure if w; = 0; when M is
simply connected, this is equivalent to having an even intersection form (recall II, §4).
If M* is a complex surface, then w, is the mod 2 reduction of the first Chern class c;.

An orientable 3-manifold always has a spin structure because the tangent bundle is
trivial ([M-S], exercise 12.B, and VII, Theorem 2). An orientable 2-manifold always
has a spin structure because wj is the mod 2 reduction of the Euler class which is even.

A circle has two spin structures; one is the trivial Z/2-bundle covering the triv-
ial SO(1)-bundle over S! and the other is the connected Z/2-bundle (the non-trivial
S°-bundle over the circle). The first corresponds (using the only! trivialization of T's:)
to 0 = 0 and the second to ¢ # 0 in H'(E(§);Z2/2) = H(S';2/2) = Z/2.

This can also be seen by considering T's: & €!; this bundle is naturally trivialized by
using the orientation of the circle to trivialize T's:1, and this corresponds to ¢ = 0 and
is called the Lie group spin structure. If we change this trivialization E(Tgs: & ') —
S! x R? by rotating R? once as S! is traversed, then we obtain the other spin structure
corresponding to ¢ = 1.

One analyzes the spin structures on the torus, T2, or other surfaces in the same way.

For questions of bordism, we must relate spin structures on &M and spin structures on
M. Given a trivialization of Tpps|2-skeleton, we can extend it to a trivialization of Ths
on the 2-skeleton of OM, (9M)(,), by addingas “last vector” the inward pointing normal
vector to OM. This coincides with the usual orientations for B2, {(1,0),(0,1)}, and S?
(counterclockwise), for example. Conversely, a trivialization of Tar | M, restricts to
give a trivialization of Toar @ €' | OM(3) (Where ¢! is trivialized as the inward pointing
normal vectors) which is a spin structure on &M according to the “stable” definition.

Alternately, consider spin structures as 2-fold covers of the total space of the frame
bundle, E(Far). Fa|OM has a subbundle Vgps consisting of frames of Far whose last
vector points inward. Then a 2-fold cover of E(Fas) naturally gives one for E(Vapr) =
E(Fsnm) and hence a spin structure on M.

Now we say that a spin manifold M™ is a spin boundary of a spin manifold W ™+1
if M is diffeomorphic to 8W ™*! and the diffeomorphism carries the spin structure on
M to the spin structure on W™+ restricted to 8W™+1. And QSPi® is defined to be
equivalence classes of spin m-manifolds, where M[* and MJ" are equivalent if M; and
— M, together spin bound a spin W ™+!,

ExaMpLEs: The circle is a subtle example. Tz: has a unique trivialization, hence spin
structure. This trivialization, when restricted to S = 9B?, gives a trivialization of
Ts: @ €' which differs from the Lie group spin structure on S?, and hence corresponds
to 1 € H(S';Z/2), (see Figure 1)

This argument extends to any orientable, hence spin, 2-manifold with circle boundary.
Thus the non-zero class in H(S; Z/2) is the spin structure that spin bounds and the
zero class does not. So QP = 7/2.

The torus T? has four spin structures corresponding to H 1(T?; Z/2) = Z/2& Z/2. As
in the circle case, the Lie group framing corresponds (under the natural trivialization
for T? = R?/Z?) to (0,0) and this is the spin structure which does not bound. The
others extend over a solid torus S! x B?, where B? is glued onto a circle in T2 on which
the spin cohomology class is 1.
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Lie group spin The bounding spin
structure on §* structure on §!

Figure 1

More generally, a connected sum of tori with non-Lie group framings bounds a com-
patible spin manifold. Also the connected sum of 2k tori with Lie group framings bounds

k
(§ T? — disk) x I and the spin structure can be seen to extend to the Lie group framing.
Thus we see that Q3P™ = Z/2, generated by TZ,.

We can understand this isomorphism using the Arf invariant (sce the Appendix).
For an oriented, spun surface F'2, consider H,(F?; Z/2) with its usual Z/2 intersection
form, and define a quadratic function ¢ : H,(F?;Z/2) — Z/2 as follows: represent
z € H1(F?;Z/2) by an imbedded circle and let g(z) = O if the spin structure on F?
restricted to the circle is the bounding one, and let g(z) =1 if not. Thus ¢ = 1 on both
generators of T¢;,. Then Arf(H,(F; Z/2),q) € Z/2 gives the isomorphism Q5™ A Z/2.

Q;pin = 0. This can be shown in various ways, including a handlebody argument in
[Kaplan] and Theorem 3 of Chapter VII.

Notice that if we take the connected double cover of the circle, then both spin struc-
tures on S! lift to the Lie group spin structure on S? since the double cover induces the
zero map H!(S';Z/2) = HY(S';Z/2). Corresponding remarks hold for 2*-fold covers
of spin structures on T'* which correspond to elements (m1,m,,...,myn) € H(T"; Z/2)
with k£ non-zero entries.

Our study of spin structures on M and 8M generalize to:
PROPOSITION 2. Let N be a codimension one submanifold of M and suppose that
M, N and the normal line bundle are orientable and oriented consistently. Then there

is a natural one-to-one correspondence between spin structures on Tpr | N and N, given
by using the canonical spin structure on the normal line bundle.

For other codimensions, the following can be shown:



37

PROPOSITION 3. Iff = £, ®¢&;, then orientations on two of the bundles determine an
orientation on the third, and similarly, spin structures on two of the bundles determine
a spin structure on the third.

Proposition 3 applies to a case that is of relevance later. Suppose F'2 is an orientable
surface smoothly imbedded with a trivial normal bundle in a spin 4-manifold M %. The
trivializations of the normal bundle are classified by H!(F?;Z), so we may obtain any
spin structure on F'? from the spin structure on N* and the right choice of trivialization
of the normal bundle.






9
V. T2, AND CP? } (—CF?)

The 3-torus T has 8 different spin structures corresponding to H }(T%; Z/2) = (Z/2)3.
(0,0,0) is the Lie group spin structure, T2,.. The other spin structures all spin bound
either T? x B? or S* x B x S! or B? x T? with an appropriate spin structure on T'?
crossed with the unique structure on B2. Since Q¥ = 0, we know that TP, also spin
bounds and we describe such a spin 4-manifold in three ways.

Let @ = 3ap+ a1 + az + -+ ag € Hp(CP? 3 (=CP?);Z) = Z'° where a; is the
generator corresponding to the i** + CP2. a; is represented by a 2-sphere, CP?, and
3ay is known to be represented by a torus, so a is represented by the connected sum
which is also a torus T'2.

(Here is a quick proof that 3a, is represented by a torus. From projective geometry,
3ay is represented by three complex lines, three C P1’s, which can be chosen generically
to meet at three points p;, ps, and ps in CP2. A 4-ball neighborhood around p;
intersects the two CP!’s in a pair of transverse 2-balls meeting only at p,. If we cut
out the interiors of these 2-balls and glue in an annulus, we have removed the singular
point and taken the connected sum of the two CP’s (see Figure 1). Doing the same at
ps gives us an immersed 2-sphere with one double point at p3. One more surgery at ps3

gives an imbedded torus.)

annulus

Figure 1
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Our torus T has a trivial normal bundle, T'? x B?, since a-a = 0. Since a-z = z-z(2)
9
for all z € H,(CP? § (—~CP?);Z), it follows that T? represents an integral dual to w,.

9

Thus the complement of T2 is parallelizable (see §2.6). So N* = (CP? § —CP?)—(T?x
int B?) is spin with 9N = T%. We know that the spin structure induced on T'3 is the Lie
group one, because if not, we could extend the spin structure on N* over some T? x B?
added to 8N to make a closed, smooth, spin manifold of index 8! This contradicts
Rohlin’s theorem (III, §1 and XI). But we wish to use this construction in work leading
to our proof of Rohlin’s theorem in Chapter XI, so we give another description of N*
related to complex elliptic surfaces.

We will describe X = CP? 3 (—CPF?) as a complex elliptic surface, which, for our
purposes, is a complex analytic projection X —— C P! which is a smooth fiber bundle
with fiber T? (an elliptic curve) except for a finite number of singular fibers. In our case
we can take these singular fibers to be immersed 2-spheres with one transverse double
point, and there will be 12 of them over p1,pz,...,p12 € CP!. (See the schematic
diagram in Figure 2.)

wC|=p| P AN
e P ks
2l

sp e p . . . oD
2 y 12 2 1
.pl .pa L - L L]

Figure 2

If we begin with the trivial bundle over B} C CP!, T? x B2, then as the 2-ball B2
expands, a fiber T? moves closer and closer to the singular fiber # ~!(p;) and we see
a loop A in T? shrink smaller and smaller until it pinches to a point (the transverse
double point) in #~(p,). The loop A is called a “vanishing cycle” because it vanishes
homologically in X. Figure 3 shows how that might happen except that the double
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point is not transverse. As B2 expands, reaching one p; after another, different loops
can vanish; in our case for odd p; a meridian vanishes and for even p; a longitude
vanishes. This picture motivates the following construction.

immersed §2

Figure 3

We begin with a handlebody description of T'? x B2, which is just the usual 0, two
1’s, and a 2-handle for T'? fattened by B? (see Figure 4). To this we add a 2-handle to
a meridian, say the horizontal 1-handle, with framing —1. The core of the 2-handle is
the vanishing cycle for the meridian, as adding the 2-handle is the same as enlarging
B? to include p;. This manifold ought to be equal to a fattened singular fiber, which
can be seen by cancelling the horizontal 1- and 2-handles as in Figure 4.

0 0
0 regular
-1

) - neighborhood
- of singular
fiber

Figure 4

We continue to enlarge B2, adding twelve 2-handles, all with framing —1, alternately
to meridians and longitudes (see Figure 5). The last step is to fill in the final T2 x B2,
which is done by adding a 2-handle, two 3-handles, and a 4-handle. The 2-handle is
added, say, in the lower left corner, again with framing —1; the 3- and 4-handles are
not drawn as usual.

We can ignore the heuristic motivation, but several things need to be checked for this
construction to work. By the usual handle slides, cancellations, and isotopies, it can be
shown that the boundary in Figure 5, 8My,_, is ° () ® whichis S* x S? § S x 2, to
which it is obvious how to add two 3-handles and a 4-handle. It is somewhat harder,
but a reasonable exercise (see [H-K-K|) to show that My_ is diffeomorphic to X*.

But our main aim is to show that the complement of T2 x B%, N*, is a spin manifold
whose spin boundary is T,,. We need to verify that the Lie group spin structure extends
over all the 2-handles; the 3- and 4-handles are not relevant to the 2-skeleton. All the
2-handles are attached to one of S! x # x % or # x S! x % or # x * x S1, so it suffices
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Figure 5

to examine one case, say, ¥ X * X S! = % x * x B2 which is the 2-handle in the lower
left-hand corner of Figure 5. The Lie group framing of T'x over this S! is given by
the tangent vector to S!, the inward pointing normal to B2 in B2, and the “trivial
framing” from T? (see Figure 6).

Figure 6

When we add B? x B? along 8B? x B? to 8B? we need to change the Lie group framing
on 8B2 to the one which extends over B2 x 0 in the 2-handle. This can be done by adding
the 2-handle with an odd framing instead of an even one; —1 works best in order to be
able to add the 3- and 4-handles to cap off. The reader might reconsider Proposition 3
and the remark at the end of Chapter IV on spin structures. To restate the issue, a
spin structure will extend across a 2-handle if the spin structure on the attaching circle
spin bounds and thus extends across B2 x O, and the attaching framing is even, or (as
in this case) if the spin structure on the attaching circle is the non-bounding one and
we add the 2-handle with odd framing.

So we have constructed our spin manifold N* with spin boundary T,,, a second time.

A third description of N is this: T3 results from surgery on the Borromean rings
with O-framings. (To see this take our picture of T2 x B? in Figure 4, and change the
notation for 1-handles by replacing the dots with zeros (see Chapter I, §2).) The three
linking circles to the Borromean rings are the generating circles in T'3; to them we add
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three 2-handles with framing +1, odd so that, as before, the Lie group spin structure
extends over the 2-handles. We have a spin manifold N consisting of T® x I union three
2-handles, with boundary T, and the Poincaré homology 3-sphere. To prove the latter,
blow down the three +1 circles to get the Borromean rings with —1 framings; blow down
two of these to obtain the left-handed trefoil knot with —1 framing which describes the
Poincaré homology 3-sphere with the orientation which bounds the —FEg 4-manifold
with index —8 (see Chapter I, §5). The spin manifold —Ej has a spin boundary which
must coincide with the one on Ny because the Poincaré homology sphere has a unique
spin structure (H; = 0). Thus N* = Ny U(—FE;s). (Of course we leave to the reader the
proof that the three descriptions of N* actually give the same manifold.)






V1. IMMERSING 4-MANIFOLDS IN RS

Let M* be a closed, smooth, oriented, 4-manifold. If f ;: M* — R® is a smooth
immersion, then the normal bundle v satisfies 757 @ v = £°. Conversely, if we can find
a 2-dimensional inverse bundle v to 75z, then there is a bundle map 7as ® v — €® and
by the immersion theorem [Hirsch1] there is an immersion f : M * — RS.

We construct v as follows: over the 1-skeleton of M*, Tas is trivial so we let v be
trivial also. wz(7ar) € H*(M;m1(SO(4))) is the obstruction to trivializing Tas over the
2-skeleton. If wy(7ar) is the reduction of an integral class x € H2(M;Z), then since
Z = m(SO(2)) maps onto m; (SO(4)) = Z/2 we can extend v over the 2-skeleton of M so
that its Euler classis x(v) = x € H2(M;m1(SO(2))). Since m3(S0O(2)) = m3(SO(2)) =0
there is no obstruction to a (unique) extension of v over the rest of M.

Is 7 @ v trivial? Since w2(T ®v) = wa(7) U1+ 1 Uwa(r) = wa(7) + x(2) = 0 and
72(SO(6)) = 0, T ® v is trivial on M*-point. The obstruction to trivializing 7 & v over
the last point is an element of 73(SO(6)) which is measured by pi, as we shall see.

From the exact sequences for the fiber bundles SO(4) — SO(5) — S* and SO(5) —
SO(6) — S°, and from an argument below, we see that

13(SO(4)) °° 13(SO(5)) = m3(SO(6)) = Z.
That w3(SO(4)) = Z & Z follows from the bundle SO(3) — SO(4) — S*® which has a
cross-section given by viewing S3 as the unit quaternions; define o : S® — SO(4) by
a(9)(¢) = q¢'- Thus SO(4) = S* x SO(3), and o and p generate 73(S?) and w3{SO(3))
respectively where p : S3 — SO(3) is defined by p(q)(¢') = ¢q'q™!, interpreted as an
orthogonal map of the quaternions which fixes the real quaternions and rotates the
complementary imaginary quaternions, a copy of R® spanned by 7, j and k.

We may think of ¢ and p as determining principal SO(4) bundles or associated R* or
S bundles over S*. (Note that o + p determines a 3-sphere bundle whose total space is
homeomorphic but not diffeomorphic to S7 [Milnor3], and in fact gives the generator
of the group of homotopy 7-spheres I'y = Z/28.)

o : 5% - H(1) C SO(4) determines the quaternionic Hopf bundle over S* just as
S' — U(1) determines the complex Hopf bundle over S? and S°® — O(1) determines
the real Hopf bundle over S!; all of these have Euler class y = 1, because each involves
“one twist” in the fiber as one traverses the equator. Then c2(0) = x(¢) = 1 and
ci(o) € H2(S*,Z) = 0 so p1(0) = (¢} — 2¢2)(0) = —2.

On the other hand, the tangent bundle of S*, 754, is 20 — p (see [Steenrod], §23.6).
Since p1(7s4) = p1(75s®B¢’) = p1(e®) = 0 and x(75¢) = 2, we can calculate that x(p) =0
and p;(p) = —4. This means that bundles over S* are determined by their Euler class
and Pontrjagin class because these give an isomorphism

75(SO(4)) (x, ~(pr+2x)/4) 262




44

which sends ¢ to (1,0) and p to (0,1).

In the sequence my(S%) — w3(SO(4)) - m3(SO(5)), 1 € ms(S*) hits 20 — p =
Tss € m3(SO(4)), so it follows that the stabilization of p, p & €', is twice the stabi-
lization of o, o @ €', in m3(SO(5)). Thus o @ €' generates m3(SO(5)); then o & &2
generates 73(SO(6)) and an isomorphism with Z is given by —p,,.

Returning to 7ar & v we calculate p1 (7 ® v) = p1(7) + p1(v) = p1(7) + x*(v)  (here
() =—c(vr®C)=—x(r®C) = —x(-vov)=x*(v) M-S, pg. 179]), soT @ v is
trivial if x2(v) = —p1(7a). We have shown

LEMMA 1. A smooth, closed, orientable 4-manifold M * immerses in R® iff there exists
a characteristic class x € H?(M*;Z) such that x(3 = —wa(7ar) and x? = —p1(7ar).
Then the normal bundle v of the immersion is determined by x(v) = x.

COROLLARY 2. If M* is spin and p,(7ar) = 0, then M immerses in R® with trivial
normal bundle (i.e. x = 0).

Note that M actually immerses in R® with trivial normal bundle since 737 @ €' is also
trivial because wy(7ar) = p1(7ar) = 0.

COROLLARY 3. If m(M*) = 0, index(M*) = 0 and p,(7ar) = 0, then M immerses
in RS.

PROOF: We need an integral characteristic class with square zero. The intersection
form is indefinite and we may assume, because Corollary 2 covers the even case, that it

k k
is odd. Since the index is zero, the form is & (1) & {—1), so our characteristic class can
be chosen to be the sum of the generators of the form. a

Note that we have not yet proven the index theorem (Chapter IX), so we assume
both index M =0 and p,(7ar) = 0.

Next we show that the number of triple points of an immersion f : M* — RS,
counted algebraically, is —p;(M)/3, (see [Herbert], pg. xiii, Coro. 6). Let A? be the
set of double points of f, i.e., let A2 = {z € M* | 3y € M* with f(z) = f(y)};
A? is an immersed, oriented 2-manifold in M which double covers its image f(A). The
orientation of A is determined by the orientation of M, which orients the normal bundle
of M, which orients the normal bundle to A in M, which orients A.

LEMMA 4. The homology class [A] € Hy(M;Z) is the Poincaré dual to —x(v) and
an integral dual to wy(Tar).

PrOOF: This is just intersection theory; perturb f(M) to M’ transverse to f(M). Then
[f(M)] = 0 € Hy(R%;Z), implies that [f(M)N M'] = 0 € H2(M;Z) (since a 5-chain
with boundary f(M) intersected with M’ gives a 3-chain with boundary f(M) N M').
Then it follows that 0 = [f(M) N M'] = [A] + P.D.(x(v)) where the second equality is
obtained by counting the contributions from f(A), namely [A], and from the twisting in
the normal bundle, namely the Poincaré dual to x(v) (see Figure 1 for a low dimensional
example). O

Let §M be the algebraic number of triple points of f(M) in R®. (Each occurs with
a plus or minus sign according to whether the three oriented normal planes combine to



45

P.D. X{v)

£(4)

Figure 1

give the orientation of R® or not.) Let §A be the algebraic number of double points of
Ain M. Clearly A = 3{M.

In the case that M* is spin (and p;(M*) = 0), then M immerses in R®, and the
2-spine of M imbeds in R®. Assuming that M has no 3-handles (M is bordant to such
a manifold), we can push the interior of the 4-handle off R® into R® so that A lies
in the 4-handle. Therefore [A] = 0 and the normal bundle of A in M is trivial, so
A =0 =M. A bit more sophisticated argument proves

LEMMA 5. —p;(M) = [A] - [A] = x(va)[A] + 2§A = 3§4M where va is the normal
bundle of A in M*.

PROOF: The first equality follows from applying
—p1(t:m) = x(v)? = —P.D.[A]U —P.D.[A]

to the fundamental class of M. The second equality is just intersection theory again,
as in the proof of Lemma 4. (Note that we have 2§A because §A counts the points in
the image of the double point set of A.) The third equality follows from the fact that
under H*(M;Z) — H*(A, Z), we have x(vam) — x(va), so

x(va)A] = x([A] = (~P.DJAN[A] = —[A] - [A].

Thus [A] - [A] equals both —x(va)}[A] and x(va)[A] + 244, so x(va)[A] = —§A and
that implies that x(va)[A] + 2A = A = 3§ M. a






VII. 3-MANIFOLDS; A DIGRESSION

The methods used in the next section, to show that a spin 4-manifold with index zero
spin bounds a spin 5-manifold, also show with much less trouble that Q3 = Q50 = 0.
We need a few of these facts later so we give a brief treatment of the triviality of
the tangent bundle of an orientable 3-manifold, the nullity of bordism, and an easy
application to imbedding orientable 3-manifolds in R®.

THEOREM 1. Every orientable 3-manifold M3 is spin and hence parallelizable.

PROOF: First, let M3 be compact. We can assume that M? is closed (otherwise dou-
ble M). Assume w32(M) # 0 and let C be a circle in M which is Poincaré dual to
w2(M) € H3(M?3;Z/2). Then M® — C has a spin structure o which does not extend
over C. There is a dual surface F'2, perhaps non-orientable, in M® which intersects C

transversally at one point p. The total spacc of the normal B*-bundle to F2, F % B!,
is equal to the total space of the normal B!-bundle to an immersion of F in R*® (which

always exists). Therefore F/ X B' hasa spin structure. The spin structures on F X B
are classified by H!(F'; Z/2) which equals H(F —p; Z/2) which classifies spin structures
on (F —p) x B!. Then o gives a spin structure to (F —p) x B! which must agree with
one on F' x B!. Thus o extends across C, contradicting w,(M) # 0. Hence M is spin.
Since m2(SO(3)) = 0, M is parallelizable.

Suppose M3 is non-compact. If Ths is non-trivial, then it is non-trivial on some
compact piece of M3, contradicting the above case. O

THEOREM 2. Every orientable 3-manifold M ® bounds an orientable 4-manifold W*.
If M3 is connected, W* can be assumed to have only one 0-handle and some 2-handles.

PRrROOF: Lickorish’s proof [Lickorish] via Dehn twists and Heegaard splittings is a
useful one; more recently Rourke’s argument [Rourke] is short and elementary. The
proof we sketch here is fairly easy if one has already understood the similar (but harder)
proof in the next section that an orientable 4-manifold that immerses in R® bounds an

orientable 5-manifold; or this proof can be considered as a warm up for the proof in the
next section.

Since M3 is parallelizable, it immerses in R® with a trival normal bundle v. The
double point set is a collection of circles in M® which double cover their images by either
connected or disconnected double covers. These circles have trivial normal bundles in
M3, which are also the restriction of v to the circles. Then the normal B* bundle v¢
to each circle C in R?® is locally split as a Whitney sum of the two trivial B2 bundles.

Consider the case of a disconnected double cover, i.e. two circles C; and C; whose
image is C in R®; then, choosing trivializations C; x B? for v;, the normal bundle of
C; in M3, i = 1,2, we get a trivialization C x B* for vc where C; x B? contributes
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the first two factors of B* and C; x B? the other two factors. For any point p € C,
we can replace the two copies of p x B? in p x B* by an annulus 4 = S! x [1,2] where
S! x 1 is attached to p x 8B? (in C; x B?) and S* x 2 to p x 8B? (in C; x B?) so
that the orientations match up. This annulus A can be chosen in a canonical way (see
the details in the proof of Theorem 1 in Chapter 8) so this construction can be carried
out in C x B*; as a result, C; x B?% union C; x B? is removed from M and replaced
by C x A, giving a new 3-manifold M'. M’ is obviously immersed in R® with one less
double curve. Furthermore, M’ is oriented bordant to M via a bordism consisting of
M x [0,1] with a “handle” [1,2] x (S! x B?) attached by 9[1,2] x (S* x B?) to Cy x B?
union C, x B2,

The case of a connected double cover C; — C can be handled in a similar fashion (it
is done in detail in Theorem VIII). Hence all the double curves can be eliminated and
M is bordant to a 3-manifold which is imbedded in R?%; it has a “Seifert” 4-manifold
(Theorem VIIL.3) and the union of these two 4-manifolds is W *.

If M is connected, W can be assumed connected and all but one 0-handle can be
cancelled by 1-handles; then all remaining 1 and 3-handles can be changed to 2-handles
by the construction preceding Lemma 2.1 in Chapter I.

THEOREM 3. If M® is spin then M?® spin bounds a spin 4-manifold with only
0-handles (one for each component) and 2-handles.

PROOF: Assuming without loss of generality that M3 is connected, we know from the
previous theorem that M3 bounds a W* with one 0-handle and some 2-handles. The
obstruction to extending the spin structure on M over W is a closed surface F? in
W which is dual to w, € H2(W,M;Z/2). We can see F2 by considering W* as a
handlebody built on M 3; 2-handles are added and then a 4-handle. The spin structure
on M? will not extend over some of the 2-handles, which means it will not extend past
the cocores of these 2-handles. These cocores are just the cores of the original 2-handles
of W3 if we let the attaching circles of these cores bound an oriented Seifert surface in
the 0-handle, then the Seifert surface union the cores gives an oriented F'2. Thus we see
that w, could have been assumed integral.

M3 is spin bordant (via W' = W* — B? X F?) to the orientable circle bundle C over
F?; C has a spin structure and choosing an orientation for a normal circle chooses one for
F?, and vice versa. Suppose the Euler characteristic of C is k. By connected summing
W* with k copies of —CP? (meaning —k copies of CP? if k < 0), and connected
summing F'? with the CP'’s, we can arrange that the Euler characteristic of F? is zero,
so that C is the trivial bundle.

Choose a section of C so that we have a homeomorphism C 22 F? x S! and the spin
structure on C descends to a spin structure on F'?, and a spin structure on S! which is
the non-bounding one. Either F'2 spin bounds (the easy case) or F? can be written as
a connected sum of an F; which spin bounds and a T'? which doesn’t (the harder case
which we assume). Let Fy spin bound N? and let T, spin bound Y%, Let W be the
“connected sum” of N3 x S! and Y'* by gluing N? x S! to Y* along the B? x S! in
Fy x S' and the B? x S! in T, where the B?’s in F; and T? were the ones used to
form the connected sum F = F; § T?. Note that the spin structures on the two copies
of B? x S coincide. 8W, is spin homeomorphic to C so M spin bounds W' U¢g W;.
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Since W' U¢ W, is orientable, we can change its 1-handles to 2-handles in the usual
way (see Lemma 1.2.1), and by inverting the 4-manifold and using the same reasoning
we can change 3-handles to 2-handles. 0

k
THEOREM 4 [Hirsch2]. Every orientable 3-manifold M ® imbedsin § S% x $?, hence
in RS.

PROOF: By the previous theorem, M3 bounds a spin manifold W* which has only one
0-handle and 2-handles. W* can be described by a framed link L in S® with even
framings (see II, §4). The double of W, DW, can be described by adding a trivial
linking circle with framing zero to each component of L (see Lemma 1.2.5). It’s not
hard to see, using Lemmas 1.4.4 and 1.4.5 that DW has a framed link consisting of

° o k
copies of OQ, so DW = } 82 x §2, Thus DW imbeds in R®, so M?® also imbeds. a

REMARK: This shows that the given trivialization of 7as over the 2-skeleton of M3
extends to a trivialization of Ty over the 2-skeleton of W* where M? spin bounds
W*. Since m2(SO(3)) = 0, this fact is true for the 3-skeletons of M and W, but a
trivialization of 77 will not necessarily extend to 7w over all of W*.

For n large, 7,43(S™) = Z/24, and non-zero elements are represented by parallelized
3-manifolds which don’t bound parallelized 4-manifolds (with the trivializations agreeing
on the boundary).






VIII. BOUNDING 5-MANIFOLDS

THEOREM 1. Let M* be closed, smooth, connected, and orientable.
(A) If py(M) = index(M) = O, then there exists a smooth 5-manifold W* with
WS = M*.
(B) If M is spin and py (M) = 0, then there exists a smooth, spin W3 and 8W = M
as spin manifolds.

It follows that the 4-dimensional spin bordism group Q5P™ is Z, but the generator
will not be clear until later.

This section is devoted to the proof of Theorem 1. From the hypotheses we see that
M is immersed in RS, f : M — RS®, with algebraically zero triple points, according to
Lemmas VI.1 and VIL.5.

The first step is to cancel the triple points by changing M by a bordism. The second
step is to remove the double points by another bordism so that the new 4-manifold M
is imbedded in R®. Then M bounds a 5-manifold W in R®, and the non-spin case is
finished. For part (B), it is necessary to modify W so that W is spin and M is a spin
boundary. The details follow.

In the proof of Theorem 1 we will need the following theorems which are useful more
generally.

THEOREM 2. If an oriented m-manifold M™ is smoothly imbedded in an oriented
m + 2-dimensional manifold Q™2 and M represents 0 € Hm(Q'"“’z; Z), then it has a
trivial normal bundle v.
E(v)
PROOF: Since the normal bundle | 7 is oriented, it is enough to find a non-zero
M
cross-section; for this it suffices to show that the Euler class, ¥(v), is zero. A classical
construction in complex algebraic geometry concerning divisors is useful here; pull the
normal bundle of M back over itself as in the diagram

E(m*v) — E(v)
s Tl i=
Ewv) 5 M

and observe that 7*v has a section s defined by s(e) = (e, e) for e € E(v). This section
is non-zero on E(v) — M, so the oriented bundle E(n *v) is trivial off M. Then we can
extend m*v to all of Q™*2? by the trivial bundle; call the extension ¢. Of course, the
Euler class of £ restricts to x(v), but x(€) is Poincaré dual to [M] = 0, so x(v) = 0.
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THEOREM 3. If an oriented, connected, m-manifold M™ is smoothly imbedded
in an oriented (m + 2)-manifold Q™*? with [M] = 0 € H,(Q™*';Z) (eg., any
M™ — S™+2) then M™ bounds an oriented “Seifert” manifold W™*! in Q™*2. (If
Q™*? is spin, then W is spin so M is spin, but this spin structure may not agree with
a given spin structure on M.)

PROOF: Let N be an open tubular neighborhood of M in Q. By the previous theo-
rem, M has a trivial normal bundle, so N is diffeomorphic to M x R?. However, the
trivializations of the normal bundle are classified by H!(M; Z).

Let D? be a normal disk to M in Q. If 8D or even a multiple ndD bounds homolog-
ically in @ — N, then {nD union this homology} intersects [M] = 0 non-trivially, which
is impossible. Thus 8D generates Z C H1(Q —N;Z); let a € H'(Q — N; Z) be its dual.
Then the inclusions of 8D? into 8(Q — N) = M x S! into @ — N induce

] -
i J

HY(Q-N;2) HY(8(Q - N); 2) H'(S%;2)
l= . l= L=
[Q _ N; Sl] restriction [3(Q _ N);Sl] restriction [Sl,Sl]

Then B = i*a corresponds to a homotopy class in [3(Q — N);S!] which can be seen to
be represented by a map fz which factors

8(Q—N)i—’ St
R\ /" P2
M x St

where h is a diffeomorphism coming from a trivialization of N. It follows that a is
represented by fo : @ ~ N — S! which restricts to p2h on (Q — N). Make f,
transverse, rel 3, to a point p € S?, and then W™*! = f-1(p) is a smooth, oriented
manifold with SW™+! = M x p = M. u]

PROOF OF THEOREM 1 (A): First we make M 1-connected by adding 2-handles to
M x I along circles 4 x 1 which are constructed from the 1-handles of M. This gives a
bordism W; from M to M,;. If M is spin, its spin structure extends over W, if we add
the 2-handles with the right framing. Notice that M, has no 1-handles and, by the same
construction upside down, no 3-handles From the hypotheses we see that M; can be
immersed in RS, f; : M — R®, with algebraically zero triple points since p;(M;) = 0,
according to Lemmas VI.6.1 and VI.6.5.

We will need the following two lemmas:

LEMMA 5. M, is bordant to M, which is immersed, f, : My — RS, with no triple
points. The bordism W, is formed by adding 1-handles to M, x [0,1].

LEMMA 6. M, is bordant to M3 (via W3) which is imbedded, f;3 : M3 — R®.

Before proving the lemmas, we observe that the proof of Theorem 1 (A), the non-spin
case, is finished since M bounds W, U W, U W3 U W, where W, is the Seifert 5-manifold
for M3 guaranteed by Theorem 3.
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PROOF OF LEMMA 5: M, is immersed in R® with algebraically zero triple points and
double point set A;. To “cancel” two triple points of opposite sign, go and g1, we choose
an arc 7 in f1(M,) connecting ¢o and ¢;. Assume for now that v lies in f1(A;). We
can assume 7 passes through no other triple points since they have codimension 2 in
fi(Ay).

~ has a B® normal bundle in R®. We can choose a basis bg, by, b2, b3, bs for B® at
go so that by is tangent to fi(M;), bg,b1,bs are tangent to the third sheet @3 which is
transverse to 7. See Figure 1. This basis can be extended across the normal bundle
of v, splitting it into subbundles tangent to @, and @, (since 71 N Q2). Then at ¢,
b1, b2, b3, by is a basis for the tangent space to Q4. Since the triple points have opposite
sign, exactly one of the bases for Tg, at go or Tg, at ¢ must not agree with the
orientation on M;.
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Figure 1

Then we construct the first piece of an oriented 5-dimensional bordism W by adding
a 1-handle B! x B* to M; x I. The 1-handle is essentially v x B* where B* is spanned
by b1,b2, b3, bs and it is attached to the 4-ball neighborhoods of g¢ in Q3 and ¢; in Q5.
The new boundary M; — (g0 x B*) — (1 x B*)U v x 9B* is immersed with two less
triple points. We iterate this procedure to remove all triple points.

This process depends on f1(A;) being connected so that we can choose v to lie in
fi(Ay). If not, then first we must connect components of fi(A;). Let A be an arc in
f1(My) joining two components of fi(M1), as in Figure 2, with A = po U p1. A should
lie in one sheet @, of f1(M;) and at &X should meet sheets Q; and Q) transversely.
The normal B3-bundle of A has a basis bg, by, b2,b3,bs at po with by, b;, b, tangent to
Q1, b1,b2 tangent to @y N Q2, and by,b2,bs,bs tangent to Q.. Extend this splitting
across A so that py, b1,b, is tangent to Q1 N Q) and by,bo, b3, by is tangent to Q5 at
P1- b1, b2, by, by should agree with the orientation of M at py and disagree at p;, or vice
versa. If this is not true, then near ¢;, 7 should have been chosen to “go around” Q)
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Figure 2

and approach it from the other side; this is always possible in codimension 2, although
not in the dimension of Figure 2.

Then form a bordism, as above, by adding a 1-handle A x B* to M; x I; this connects
two components of fi(A,).

Thus W, is formed by adding a succession of 1-handles to M x I, first to connect
the components of f1(A;) and second to remove all triple points. O

PROOF OF LEMMA 6: From Lemma 5 we get an immersion f; : M — R® without triple
points, so it follows that the double point set A, is imbedded in M*. From Lemma VL5
we get 0 = 3§M> = §A; = x(va,)[A:] so the normal bundle of A, in M, is trivial if A,
is connected.

The imersion fz2 : Ay — f(A2) is either a connected or disconnected double cover
since f(Aj) is connected; we consider the connected case first, and assume that a
trivialization A, X B? has been chosen for the normal B2-bundle to Az in M,. The
normal B*-bundle to f2(A;) is trivial (because its Whitney sum with the (even Euler
class) tangent bundle to f,(A;) is trivial), and locally it splits as a B? x B? bundle
where the B?’s are given by the two sheets of A; x B? C M, which intersect at f1(A3).
This does not split the B*-bundle globally since the two factors switch after traversing
a circle whose cover is connected.

Pick a point ¢ € f2(A;) and consider its normal fiber B2 x B2. On S® = 8(B? x B?)
we see two oriented linking circles; we want to replace B2 x 0 and 0 x B? in M, by an
annulus A = S! x I, in analogy with the construction in dimension 2 shown in Figure 3.

Think of B* as the unit ball in C2, and the linking circles as (Cx0)NS® and (0xC)NS?3
and parametrize the circles by (ef?,0) and (0,e'?), 8,¢ € [0,27]. Join (e!?,0) to (0,e~%¢)
by the shorter component of the great circle determined by the intersection of S® with
the real 2-plane determined by (0,0), (e*®,0) and (0,e~%). This defines, in a canonical
way, an annulus A embedded in B* which is independent of the order of the factors
B? x 0 and 0 x B2. Thus there is an A-bundle over f3(A;) imbedded in the B*-bundle
over fo(Az). We delete the intersection of M* with the B*-bundle over f2(A;) from
M* and glue in the A-bundle over f2(A;). The resulting 4-manifold is M3 and it is
smoothly (after corners are rounded) imbedded in R® by f; : M3 — RS. M; is clearly
orientable since each annulus A was attached to S! x 0 and 0 x S?! with an orientation
preserving map on one end and reversing on the other.
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Figure 3

Next we must construct the bordism W3 between M, and M;. Assume that A, = T2
and f; = (id x 22) : ST x §! — S! x S! = f1(A2) where 2% denotes the connected
double cover.

At g the bordism is just B' x B? where B!, x B? is attached to B? x 0 and 0 x B2
and the annulus A is just B' x 8B?. But the whole bordism has a twist in it (because
we are in the case of a connected double cover); we add to M, x I a “handle” H which
is

S' x (S' X B') x B' x B".

One annulus A is * X * X B! x 8(B' x B!). The “handle” H is attached to M, x 1
along Ay x B? = T? x B2 by S' x (8! x §°) x B! x B! = T? x B?. The “handle” H
consists of the handles of T? crossed with B! and thickened by B2. Thus there is one
1-handle, two (2¢ in general) 2-handles, and one 3-handle in H.

The case when genus A, > 1 is similar to the case above; the “handle” H is twisted
only over circles in A, which double cover their image, so we have done the prototype
of the hard case and leave the rest to the reader.

Finally, consider the case of the disconnected double cover A, = AL UAY LN f2(Az)
where it is possible that the two components have non-trivial normal bundles in M,
with Euler classes of opposite sign. Choose p € f2(A2) and a neighborhood U, of p,
let Ug = f2(Az) — p, let U, Up, U, and Uy be “lifts” in A} and Aj, and choose
trivializations U/, x B?, Uy x B2, U} x B? and Uj x B? so that the transition functions
9op  Ua NUp — SO(2) and g, : Us NUG — SO(2) satisfy g,4(¢") = —gag(g"”) if
f2(¢’) = f2(¢") where the “minus” means rotation in the opposite direction.

Then the construction above for removing B? X0 and 0 x B? and gluing in an annulus
A using the parameterizations (e*®,0) and (0,e~%%) is invariant under the action by 90s
and g, 4 so the construction is the same over U, N Up no matter which trivializations
are used, U}, x B? and U] x B? or U x B? and Ug x B?. This finishes the proof of
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Theorem 1 (A). O

REMARK: It is necessary to consider the case of an immersion M* — R® in which the
double point set double covers its image by a connected double cover, e.g. the double
cover S! —2+ S1 crossed with S1.

Here is such an example, due to John Hughes (see [Hughes]), of S* — R® with
the torus double covering its image. First consider the immersion of S2? into Ry =
{z € R* | z4 > 0} with one double point, as drawn in Figure 4: we see a collection of
slices of S? obtained by fixing z3 in R%, with the south pole of S? at (0,0,—1,1) and
the north pole at (0,0,1,1) and the double point at (0,0,0,1).

xz
lies in
Xy-X, plane lTies in x,-x, plane

N f\/"\G N

b

= .2 = .1 =
f=-% S~ Xy =0

lies in x;-x, plane

s
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X3=1/’3 X3='2/3
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Figure 4

Next, in R® we rotate R} around the z,,z3,z3-axis to obtain an immersed 52 x S,
but as we rotate, we spin S? in the z;,z, plane by 7 and thus glue S2 x 0 to S? x 2«
by the involution 7 (note that {(S? x [0,2x])/(z,0) ~ (7(z),27)} = S? x S'). Then we
have a circle z3 4+ z2 = 1 of double points in R® and the preimage in S% x S? is a circle.

The S, which is equal to the north pole cross S, has a trivial normal bundle both
in $? x S and R®, so we may surger it to obtain S® and surger the image, using a disk
that (north pole) xS* bounds in R®, to obtain an immersion S3 — R®.

This gives an immersion S x S' — R® x S* C R® which has a double point set a
torus double covering its image. If one wishes, again a circle may be surgered to give
an immersion S* — R® with the same double point data.

PROOF OF THEOREM 1 (B): As in the proof of (A), we can arrange that M* is spin
bordant to a simply connected spin 4-manifold which we still call M. Then M smoothly
immerses in R® and by the oriented case bounds an oriented 5-manifold W,

Suppose that the obstruction to extending the spin structure on M over W, w; €
H?*(W, M;Z/2) is dual to an orientable 3-manifold N* with a trivial normal bundle;
choose a trivialization N x B2. Then M’s spin structure extends over W —(N x int B?)
and restricts to a spin structure on N x S'. This gives a spin structure on N3 which by
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Theorem VII.3 spin bounds a spin 4-manifold Y ¢, Then the spin structure on N x S!
extends over Y* x S, so M* spin bounds W — (N x int BZ)UY* x S'.

So our task is to find N3, which we do by a handlebody argument. Choose a handle-
body structure for W with only one 0-handle and no 5-handles. If we attach a 1-handle
(necessarily oriented) to the O-handle, we get S* x B*; the boundary S* x S% = §% x S!
can also be achieved by adding a 3-handle to the 0-handle. So we replace all 1-handles
by 3-handles, In a similar way, we can replace all 4-handles by 2-handles (since M is
connected).

Now we split W between the 2 and 3-handles into W, and W3, where W» consists
of the 0-handle union the 2-handles and W3 consists of M x I union 2-handles (the
3-handles turned upside down), and 8W, = 8W;. Since (0 —bandle) = S* and M* are
simply connected, the attaching circle of a 2-handle can be isotoped to an unknot in a
coordinate chart; there are two framings for the normal bundle of the circle, so the result
of adding the 2-handle is to boundary connected sum with S2 x B? (trivial framing) or

5% X B® (twisted framing). This changes S* or M* by connected sum with either 5% x 52

or S? x S2. The attaching circles of different 2-handles cannot link in 4-space, so we see
8 r ~ 8 8 ~

that W, = B® § r(B? x B®) { s(B? x B%) and Wy = M xI § p(B* x B®) x ¢(B? x B®);

furthermore W, = § r(S? x S?) § s(S? x S?) = 0W; = M | p(S? x S?) § ¢(S? x §?).

By sliding 2-handles over 2-handles, we can arrange that s = ¢ = 1 (as in Corollary 14.6)

unless 8 = ¢ = 0 to begin with; the latter case holds when W is already spin, so we

ignore this case and assume 3 = ¢ = 1.

An obstruction to putting a spin structure on W, is a fiber F» = (point x B?) of
the one copy of B? % B®. An obstruction to extending the spin structure on M* over
W3 is also a copy Fs of the fiber of B2 x B3; there is really no difference between the
two cases since the 2-handles are all added to a coordinate chart in M*, If 8F, = 8F;,
we would be finished, but 8F, and 8Fs; may represent different homology classes in

r ~
Hy(§ S? x $2 § S? x S%;2).

Since [8F;] and [0F;] are both characteristic classes and have self-intersection zero,

it follows from [Wall4] that there is an orthogonal (preserves the intersection form)

automorphism ¢ of Hz(a S? x 8%} S? % S?%: Z) which takes [0F;] to [8F;]. In this
case, the automorphism is easy to construct, for by the classification of odd, indefinite
forms (if r > 1), we can choose a basis [0F,], 21,22, T3,...,Tar41 for Hy(Ws; Z) with
2 1 @ (1) @ (—1), and another basis [0F3], y1,...,Y2r+1 With the
same form. Then the automorphism ¢ sends [0F;] to [0Fs] and 23 toy,,i =1,...,2r+1.

By another theorem of [Walll], proved later as Theorem 2 in Chapter X, there is a
diffeomorphism g : W, — W, with g, = ¢. Then we cut W open along 8W,, twist
8W> by g~*, and reglue. In the resulting 5-manifold, which we still call W, 8F, and
8F; now represent the same homology class.

It may happen that 8F;, and 8F; are not disjoint, but [8F;] N [8F;] "= 0 so the
intersection 8F; N 8F3 consists of pairs of points, p. and ¢., i = 1,...,n, of opposite
sign. Then we may change 8F;, say, by a bordism B consisting of 1-handles, to a surface
S of genus n which misses 3F3; the construction is exactly like the elimination of triple

intersection form
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points in the proof of Lemma 5.

Now, observing that S § 8F; is an oriented, connected surface representing
0 € H2(8W,; Z), we apply Theorem 3 and obtain an orientable 3-manifold Q2 in W,
in 8Q® = SU 8F;. The normal bundle to Q3 in W? is trivial since it has one section
normal to 8W; and another in 8W, but normal to Q3. We now add the bordism B to
@3, pushing B—(QnNB) into W, so as not to intersect Q —(Q N B); note that the normal
bundle to Q U B is also trivial for the same reason. Now, we add F3 to one component
of 8(Q U B) and a shrunken F» to the other component of 8(Q U B) to obtain N®. The
trivialization of the normal bundle extends over F, and Fs since they are 3-balls. O

Much of this argument will be used in Wall’s theorem about A-cobordisms ( Chapter X)
and in Rohlin’s theorem (Chapter XI).



IX. p(M)=30(M), %°=Z AND QF"=7

The Hirzebruch index theorem [Hirze] in dimension 4 is:

THEOREM 1. If M* is smooth, closed and oriented, then the first Pontrjagin number
p1(M) is three times the index of M, py(M) = 3o(M).

COROLLARY 2. Q%° = Z and the isomorphism is given by the index.

PRroOF: From Theorem VIIL.1(b) and the index theorem, we know that if o(M) = 0,

then M bounds an oriented 5-manifold. But o(CP?) = 1 so 2§° — > Z is an isomor-
phism. O

COROLLARY 3. Qipi“ =l Z is a monomorphism onto either Z or2Z.

PROOF: As above, if 0(M) = 0, then M spin bounds. But the index of a spin manifold
is divisible by 8. We show below in the proof of the index theorem that the index of the
Kummer surface is 16. Until Rohlin’s theorem (Chapter XI) is proved we do not know
that ¢/8 must be even. .

PROOF OF THEOREM 1: This is normally proved easily by verifying the equality for
C P? and using the facts that CP? generates 25°, and p; and o are bordism invariants
and are additive under connected sum. In the order that we are presenting material,
we need to use the index theorem to show that Q5° = Z, so we give a longer proof,
independent of Q3 = Z, using P = Z and a verification of the theorem for the
Kummer surface as well as CP2.

To begin, recall that for a complex surface p; = ¢? — 2¢; (see [M-S], page 177); also
recall that the total Chern class of CP™ is (1 4+ a)"*! =1+ (n+1)a + ... where a
generates H2(CP™;Z) and is dual to CP"~!, and a™ generates H2*(CP";Z) = Z.
Thus ¢;(CP?) = 3a and c2(CP?) = 30®. Then p;(CP?) = ¢2(CP?) — 2¢;(CP,) =
(3a)?> — 6a® = 3a®. Thus p;(CP?) = 3 = 30(CF?).

Next, we need to verify the index theorem for spin 4-manifolds. At this stage we
do not know the generator of QF'™ = Z, but the Kummer surface K* represents some
multiple m of the generator M*. So p;(K) = mpi(M) = mlo(M) = €o(K) for some
integer £. If we check that p;(K) = —48 and o(K) = —16, then we will know that £ =3
and p; = 3¢ for spin manifolds.

We need a construction of the Kummer surface from which it is easy to calculate
both p; and . One can get p; (via ¢? —2c) by describing K* as a non-singular quartic
in CP?, but the index is not easily gotten from this description; vice versa, one may
easily calculate o from a handlebody description of K, but not p;. So we proceed from

9
our earlier description of CP? § (—CP?) with its torus T representing the obstruction
to a spin structure (see Chapter V). This T'? has a trivial normal bundle T2 x B? and
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9
T? x (B? —0) inherits the Lie group spin structure from CP? § (CP?)—T?. We will form

9
a 5-dimensional bordism W5 by taking two copies of CP? § (~CP?) x I and attaching
T? x B? x [~1,1] by gluing T? x B? x —1 to one copy along T? x B2 x 1 and T? x B? x 1
to the other copy along T? x B% x 1. To extend the orientations on the two copies of

9
CP? § (—CP?) over the “handle”, we must glue by the “identity” on one end and by
the identity composed with a reflection in the B2-factor on the other end. Then the Lie
group spin structure induced on T'? x S? x {—1U 1} extends trivially.
9
Thus we have a bordism from 2(CP2? § (—CP?)) to a spin 4-manifold K* (which is
9
actually a Kummer surface). Then p;(K*) = p1(2(CP? § (-CP?))) = —48 = 3(—16) =
9

30(2(CP? § (—CP?))) = 30(K*), and we have the index theorem for spin 4-manifolds.

Now let M* be an arbitrary smooth, closed, oriented 4-manifold. It is bordant to
a simply connected manifold and the obstruction to finding a spin structure can be
taken to be a torus T2 with self-intersection T' - T = n. Then the pairwise connected

sum (M*,T?) 8 (—=CP?,CP!) will still have a torus T? as the obstruction to a spin

n
structure on M* § (—CP?) = M' and now T -T = 0. So T has a trivial normal
bundle T? x B? whose boundary T2 x S! either inherits the Lie group spin structure or
inherits a spin structure which does not coincide on a circle C in T'? with the Lie group

structure. In the latter case we can glue a B? x S! x B? to (M* 3 (-=CP?)) x I along
C x S! x B? x 1 and obtain a bordism from M* 3 (—=CP?) to a spin manifold. In the
case of the Lie group structure on T3, we glue (CP 3 — CP?)—(T? x int B?)) x[-1,1]
to (M* 3 (=CP?)) x I along T® x [—1,1] x 1 to obtain a bordism from M* ﬁl (—CPF?)

9

to a spin manifold disjoint union CP? § (—CP?). Since we know the index theorem for
spin manifolds and for £CP?2, then we know it for M* and hence all oriented, closed,
smooth 4-manifolds. O

Note that we have shown that M?* is bordant to the union of a spin manifold and a
connected sum of CP?’s and —C P?’s. One way to attempt to show that Q° = Z (with
the isomorphism given by the index) is to show that a spin 4-manifold connected sum
with some £CP?’s is diffeomorphic to a connected sum of +CP?’s; this is fairly easy
to do for the Kummer surface (see [H-K-K], §2, pg. 67) which, in fact, is the generator
of Q'™ = Z (see Chapter XI). But until Rohlin’s theorem is proved using 2°P* = Z in
Chapter XI, we do not know whether there is a strange spin manifold of index 8.

PROPOSITION 4. Let M* be closed, smooth and simply connected. The homotopy
type of M determines its tangent bundle, Ths.

PROOF: M is homotopy equivalent to a wedge of 2-spheres with a 4-cell attached. Over
the wedge, T is determined by the second Stiefel-Whitney class w3 (Thr),. a homotopy
invariant. Over the 4-cell T is determined by the Euler class x(M) and the first
Pontrjagin number p;(M) which is equal (via the index theorem) to 30(M), and both
x(M) and o(M) are obvious invariants of homotopy type. 0



X. WALL’S DIFFEOMORPHISMS AND H-COBORDISM

In 1964 Wall published [Wall1,2] some basic theorems about realizing automorphisms
of the intersection form by diffeomorphisms and that manifolds with isomorphic forms
are h-cobordant.

THEOREM 1. Let M§ and M} be smooth, simply connected, closed 4-manifolds with
isomorphic intersection forms. Then M, and M; are h-cobordant.

(The theorem also holds in the topological case if the Kirby-Siebenmann triangu-
lation invariants are equal [Quinnl], [Freedmanl]. Moreover, the h-cobordism is a
product in the topological case [Freedmanl], but not necessarily in the smooth case
[Donaldson3].)

THEOREM 2. Let N* be a smooth, simply connected, closed 4-manifold with an
intersection form which is either indefinite or has rank < 8. Then any automorphism
of the intersection form of M = N § §? x S 2 is realized by a diffeomorphism of M.

PROOF oF THEOREM 1: First we do the spin case and then make some comments
on the changes necessary for the non-spin case. Since M, and M; have the same
index, M U (—M,) bounds a connected spin manifold W35. Choose a Morse function
f: W —[0,1] with f~1(0) = M,, f~*(1) = M, and consider the associated handlebody
structure on W. We can always (in any dimension) cancel the 0-handles and similarly
the 5-handles.

Let R* be a chart in M,. A 1-handle B! x B* in W is attached to M, (actually, a
thickened M), and we may assume by connectivity of M that the attaching S° x B*
lies in R*. After adding the 1-bandle, M, becomes M, § S* x S3, to which all other
handles are attached. We could also achieve M § S! x S® by adding a 3-handle B® x B?
along a trivial S? x B? in R}, so we trade this 1-handle for the 3-handle and then attach
all other handles in the same way as before. This changes W ® by a surgery on the S?!
determined by the 1-handle; we still call the result W?® and note that it is still spin.
In this way we change all 1-handles to 3-handles and all 4-handles to 2-handles (by
inverting W so that k-handles become (5 — k)-handles).

So W is built by adding 2- and 3-handles to M. Since Mj is simply connected, each
attaching circle of a 2-handle can be isotoped to a trivial circle in R}. The framing is
zero in m;(SO(3)) = Z/2 because W is spin. Thus the result of adding the 2-handles,

k
say k of them, to M is to obtain a bordism to My § S? x S?, and similarly with M{. If
we assume that all 2-handles correspond to critical points at which our Morse function
is < 1/2, and for 3-handles, f > 1/2, then we have shown that f~1(1/2) = M, =
k k
M, § S? x 82 = M; | S? x S2.
This is worth being called:
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THEOREM 3. If M, and M, are smooth, closed, 1-connected 4-manifolds with iso-
k k
morphic forms, then M, § S? x §? is diffeomorphic to M; } S? x S2.

(We have only proved this in the spin case, but the non-spin case follows because

for odd My, M, t S? X S?is diffeomorphic to My § S? x S? as in Corollary 1.4.6 and
Remark.)

Continuing with the proof of Theorem 1, we want to cut W along M/, and reglue a
different way so that the result is an h-cobordism. More precisely, let

k k
d: Myt S2xS*— M, § $* xS?

be the diffeomorphism, and let ¢ be the isomorphism between the intersection form for
M, and that for M, that is, ¢ : H2(My;Z) — Hy(M;;Z) preserves the intersection
form. We would like each 2-handle to be cancelled homologically by a 3-bandle. Given
a 2-handle B? x B® let the corresponding S? x S? have coordinates so that S2? x 0 comes
from the core of the 2-handle B? x 0, and 0 x S? is 0 x B2, For the 3-handle B3 x B?,
let S2 x 0 be 8B% x 0 and 0 x S? come from 0 x B2. Then we want an isomorphism
¥ Hy(} S? x S%2) — Hy(f S° x S?; Z) to consist of & ((1) (1’)

It follows that we need a diffeomorphism g of M; ,1; S? x §? to itself which on ho-
mology satisfies (gd). = g.ds = ¢ @ . Then if we glue W back together by the
diffeomorphism gd, the 2- and 3-handles will cancel homologically so that we have a
homology-cobordism; everything is simply connected so it is an h-cobordism.

k
To find g, we need to realize the automorphism g, = (¢ @ )d;! of Hy(M; § S? x S?)

by a diffeomorphism g. This can be done by Theorem 2 since N = M ; 52 x S? has
indefinite form, and we can gain another S? x S? by adding a (geometrically) cancelling
pair of 2- and 3-handles to W by a “birth”.

In the case when M} is odd, the bordism W will not be spin, there may be
2-handles attached to M, with the non-trivial framing, and the middle level of W,

J £ ~
My is M; § S? x S? § S? x S2. But from Corollary 1.4.6 and its proof, we see that it
can be arranged for all 2-handles of W to be attached by the trivial framing and M, ,

k
is M; § S? x S%. Then the proof proceeds as in the even case. .

PRrRoOOF OF THEOREM 2: We will show, via the handle calculus, how to realize a certain
type of automorphism by a diffeomorphism of M, and then quote Wall for the fact that
these automorphisms generate all automorphisms.

First assume that M has a handlebody decomposition with no 1- or 3-handles. Then
M has a framed link L such as in Figure 1 and an associated intersection matrix (using
as basis the 2-dimensional classes determined by the 2-handles) as in Figure 2a.
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Figure 2

The plan is to slide handles over handles to get a new framed link L'; this does not
exactly give a diffeomorphism of M, but rather a diffeomorphism from the 4-manifold
My to the 4-manifold M}. However, if after sliding handles we return to exactly the
original framed link L, then we will have an auto-diffeomorphism from M = My to
itself. We will do this and see what happens to H; by keeping track of the basis.

First, slide the component z over the component denoted by w obtaining L' in Fig-
ure 3. w is an arbitrary indivisible element of H3(N; Z) and therefore can be taken to
be a basis element. This changes the basis by replacing z by z + w and the intersection
form changes to the matrix in Figure 2b. Now we slide various handles over y, aiming
to restore zeros to the next-to-the-last row and column.
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As in Lemmas 1.4.4, 1.4.5, we move y around z + w removing the linking of each a;
with z 4+ w and then removing the linking of w with z + w. This requires (algebraically)
ay - w slides for a;, as - w slides for as,... and w - w slides for w. We obtain the matrix
and basis in Figure 2c, and the framed link L" in Figure 4.

as-(ajrwly 0w
N
o) Qs
PNl xm\q
w-{w*w)y
ai-(ai'w)y
Figure 4

Now we slide £ 4+ w over y so as to unknot z +w and so as to reduce the framing from
w-w to 0 or 1. In the even (spin) case, we slide z +w over y algebraically (w-w)/2 times
and get framing zero on z + w — 1/2(w - w)y, and we have obtained exactly L again;
the basis has changed according to the automorphism A ,, where A,(a;) = aia; - w)y,
i=1,...,k Au(w) =w —(w-w)y, Aw(z) =2z +w - 1/2(w-w)y, and Au(y) =y. In
the case where w - w is odd, we have achieved a diffeomorphism from N § S2 x S? to
N} s? X S? where S? X S? is denoted by w - w(Q) 0 and A, is as before except that
Au(z) =z 4+ w.

In the even case, we are done because the automorphisms A ,,, and the automorphisms
Al, constructed with the roles of z and y reversed, and the automorphisms-induced by
diffeomorphisms of S? x S? connect sum the identity on N, generate the orthogonal
group of the intersection form on M = N § S? x S?, (see [Walll], page 136, and

[Wall2,4]). In the odd case we only need the observation that N § S2xS? = N § S2 X S
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(Corollary 1.4.6) and the existence of the diffeomorphism of S? X §? = CP? § —CP?
which is complex conjugation on C P2,

The case when N* has 1- and 3-handles can be taken care of by arranging through
handle slides for each 1-handle to be cancelled by a 2-handle, each 3-handle to be
cancelled by a 2-handle, and the remaining 2-handles a 1,...,ar,w to have algebraically
zero intersection with the cocores of the 1-handles and the cores of the 3-handles; in
other words, the boundary maps at the chain level from the 3-handles to the 2-handles,
and the 2-handles to the 1-handles, should be of the form (é 8 ) Then the argument

proceeds as before with ay,...,ok,w,z,y.






XI. ROHLIN’S THEOREM

§1. An elementary proof.
We begin with an elementary proof of Rohlin’s theorem: If M* is closed, smooth and
spin, then index(M) = 0(16).

, 6
COROLLARY. Q" 7 Z is an isomorphism, and the Kummer surface is a gener-
ator.

For a French translation of Rohlin’s original proof, as well as Y. Matsumoto’s geo-
metric proof, see [G-M]. The proof given here is more along the lines of [F-K] except
that the technical difficulties are fewer because spin structures are used.

PROOF: By the usual method we can kill 7;(M) by adding 2-handles to M x I along
the generating circles of w1 (M) with the correct framing so that the spin structure on M
extends across the bordism. The new boundary, still called M, is now simply connected.

Assume, contrary to the theorem, that index(M) = 8(16). By connected sumining
with copies of the Kummer surface with the right orientation, we can assume that
index(M) = 8. Now let N* = M } CP? 1? — CP?. Then index(N) = 0 and an integral
dual to w2 (N) is the homology class [T'?] € Hy(N; Z) where T? is the imbedded torus
defined in Chapter V.

Since [T?]-[T?] = 0, T? has a trivial normal circle bundle ), which is diffeomorphic
to T®. As shown in Chapter V, N*—T? is spin, and (uniquely, since H}(N*-T?; Z) = 0)
T? inherits a spin structure which is the Lie group spin structure. Any section of 3,
gives T? the Lie group spin structure (see below), and we want to use this fact, that our
TZ,. is non-zero in Q5P™, to show that N cannot exist and therefore index M = 8(16)
is impossible.

Since index(N*) = 0, N bounds an orientable 5-manifold, W *, which we can assume
has no 1 or 4 or 5-handles (see the proof of Theorem X.1). The middle level, be-
tween the 2 and 3-handles, is obtained from S* by surgering the unlink and therefore is
r ~
} S? x S? ﬁ S? x S? (by Corollary 1.4.6 we can take s = 1). The middle level is
also obtained from N* by surgering the unlink (since m;(N) = 0) and therefore is

p ~
N* § 52 x S? (use Corollary 1.4.6 to eliminate any S? x S?).
P
A characteristic surface for N* § S x S? is still T2. Under the diffeomorphism g
P r ~
between N* § S? x S? and § S? x S? § S? x S?, g.[T?] is a characteristic class in

Hy(f S? xS? ¢ S? x 82 Z). Now g.[T?] is represented by a smooth imbedded 2-sphere;
this can be constructed by hand or can be deduced as follows from Wall’s theorems.

~ r ~
The fiber, S%, of S? x S? is a characteristic surface for § S? x §? § S? x S2. Thereis
r ~
an orthogonal automorphism of Hy(§ S? x S? § S? x S2; Z) which carries g,[T?] to [S?]
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since both have self-intersection zero. This is a special case of [Wall3, Theorem 4], but
can easily be seen by applying the method of proof of Theorem I1.3.2 to g«[T?]; (since
9+[T?] - g«[T?] = 0 and is characteristic, it must have a dual of square 1 and together
these define a form ((1) 1) whose orthogonal complement must be @ ((1) é), SO We
have the desired automorphism).

This automorphism can be realized by a diffeomorphism h, according to Theorem X.2,
perhaps after connected summing with another copy of S2 x S2. Thus hg(T?) and S?

represent the same homology class in Hy(} S? x S% § S? X S2; Z). According to Theo-
rem II.1.1 there is a bordism Y? from hg(T?) to S? which is smooth and oriented and

lies in (E ST xS5%4 8? X S?) x I. Furthermore, Y3 is an integral dual to w,, so its com-
plement has a (unique) spin structure. (This follows from the proof of Theorem II.1.1
since Y3 is the inverse image of C P! which is an integral dual to w,(CP?).)

The normal circle bundle C to Y in W is oriented (by choosing the outward pointing
normal vector to C), so by Proposition IV.2, it gets a spin structure from W - Y.
There is a non-zero section of C over a neighborhood of a 1-skeleton of ¥'. Choose a
basis of circles for H,(Y; Z/2) and lift a neighborhood of these circles into C' by the
section; these neighborhoods are oriented by Y, so by Proposition IV.2 again, they get
a spin structure from C. Since there exists some spin structure on Y, it follows from
Proposition IV.1 that the section and C determine a spin structure on Y.

On 8Y, this spin structure must be the unique one on S? and must be a spin structure
on T? gotten from a section of its normal circle bundle T¢,,. But any T2 in T,, gets the
Lie group spin structure. So Y3 is a spin bordism from T7,, to S?, different elements of
QP and we have contradicted the assumption that index M = 8(16). a

§2. Qgher,

Although the above proof is the most elementary proof of Rohlin’s Theorem that we
know, the theorem has a more natural setting. The material below follows [F-K], but
is easier because our homomorphism ¢ : 258* — Z/2 is easier to define and show well
defined.

Let (M*, F?) be a characteristic pair, where M* is smooth, closed and oriented, F'?
is closed, oriented, and dual to w,(M*), and M* — F? is assumed to have a given spin
structure which does not extend past F2?. Let 252" be bordism of characteristic pairs;
that is, (M;, F1) is bordant to (M,, F,) if there exists a pair (W*,Y3) with W and ¥
smooth and oriented, Y dual to w,(W), and a spin structure on W% — ¥ (not extending
past Y'?), such that 3(W,Y) = (M, Fy) — (M,, F>) and spin structures agree.

LEMMA 1 [F-K]. Q** = Z @ Z and an isomorphism is given by (o(M),
(F-F —0(M))/8). The generators are (CP?,CP') and (CP? § — CP2,3CP! § CP!).

We sketch the proof in [F-K]. The homomorphism is clearly onto, so we must show
that if (M) = 0 = F . F, then (M,F) bounds. As in the proof of Rohlin’s theo-
rem, bord M* to a 1-connected 4-manifold, preserving F, and let W° be a smooth
5-manifold with 8W = M* and no 1, 4 or 5-handles. Then, as before in Chapter X, The-
orem 1, W splits between the 2 and 3-handles into two pieces W5 and W3, where W, =
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E S? x B® let 52 X B3 e = 0 or 1, and is obtained from the 0 and 2-handles, and

Ws=M*xI i S? x B3 is obtained from the 3-handles, that is, M* x I union 2-handles
which are dual to the 3-handles. Note that 8W; = M* U(—8W,), and F x I is charac-
teristic in W3 and e(* x B?) is characteristic in W,. Since F x 1 and e(* x 8B?) have
self-intersection zero and are characteristic in 8W5, (possibly [F] = 0 and ¢ = 0), there
exists a diffeomorphism d : 8W, — 8W, so that d.[F x 1] = [e(* x 8B?)]. Then cut
W3 along W, and reglue via d obtaining W,. Then since d,[F] is the same homology
class as [e(* x 8B?)] there is a connected 3-manifold U in a collar of 8W, joining F' x 1
to e(* x 8B%). Then F x I UU Ue(* x B®) is a characteristic 3-manifold ¥ in W. It is
not hard to check that the spin structure on M* — F extends to Wy — Y, but not across
Y. a

Next, we define a homomorphism ¢ : 2§*** — Z/2. Let (M*, F?) be a characteristic
pair. The normal circle bundle C to F in M gets a spin structure from M — F. Pick
a basis of circles for H,(F;Z/2) and, using any section of C, push a neighborhood of
the circles into C. The spin structure on C puts a spin structure on this neighborhood
and hence, via Proposition IV.1, a spin structure on F. That this spin structure on F
is independent of the choice of section is due to the fact that F is characteristic and
therefore a normal circle has the Lie group spin structure. For, different sections will
differ by multiples of the normal circle, but the spin structure on C corresponds to an
element ¢ of H'(E;Z/2), where E is the principal SO(3)-bundle of T¢, and o is zero
on any normal circle to F. '

Thus F gets a well defined spin structure which determines an element in 257" = Z/2.
To see that it is independent of the choice of characteristic pair (M, F'), apply the same
argument to a bordism (W?®,Y3) to put a spin structure on Y? which gives the spin
bordism between two choices of characteristic pairs.

THEOREM 2. ¢:Q5t* — Z/2 coincides with 6 : Q58* — Z/2 defined by

F-F—o(M)

8(M,F) = .

od 2.

PROOF: It suffices to check this on generators of 2§2* = Z@Z. Clearly, §(CP?,CP!) =
0 = ¢(CP? CP?) since CP! = S?. Also §(CP? § — CP? 3CP! § CP')=1. ¢is also
1 because 3CP! § CP! is represented by T? and T? - T? = 8. After connected sum

with eight copies of (—CP?,CP?'), we have our old friend from Chapter V, namely a
T? whose circle bundle is T§,.. O

Rohlin’s Theorem is now an easy corollary; if M is spin, take F'? to be empty, so
0 = ¢(M, —) = 6(M, —) = —o(M)/8 (2), s0 o(M) = 0(16)

COROLLARY 3 [K-M]. If the dual to w, in My can be represented by a smooth,
imbedded 2-sphere, then (F - F — o(M))/8 = 0(2).

§3. The p-invariant and the Arf invariant of a knot.

We can now define a Z/2 invariant, Rohlin’s invariant, of a Z-homology 3-sphere I 3.
Let p(Z3) = ¢(M*)/8 mod 2 where M* is a spin 4-manifold with spin boundary T3
(note that X3 has only one spin structure, and that the intersection form on M is even
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and unimodular, hence ¢ is divisible by 8). A different choice M’ gives the same value
for p(X3) since o(M) — o(M') = ¢(M U —M') = 0 mod 16.

Now suppose that I3 is only a Z/2-homology 3-sphere, so that it still has a unique spin
structure but no longer will ¢(M*) be divisible by 8. Now we define a Z/16 invariant
#(Z?) = o(M*) mod 16 and note that if £2 is also a Z-homology 3-sphere then u(Z?)
is 0 or 8.

Finally, an arbitrary oriented 3-manifold with a specified spin structure can be given
this same Z/16 invariant ¢(M*) mod 16.

ExaMPLES: The Poincaré homology 3-sphere bounds the Eg form and hence its Rohlin
invariant is 1 € Z/2. The lens space L(p,p — 1) defined by p-surgery on the unknot
bounds (for p odd) the even 4-manifold determined by either of the framed links in
Figure 1, whose

Figure 1

index is —(p — 1) and p-invariant is (1 — p) mod 16. (The first framed link may
be obtained by blowing up p ~ 1 (—1)-circles to reduce the framing from p to 1,
see Figure 2a, and then blowing down the 1-circle, or by blowing up a succession of
—1-circles which reduce the p framing and successively split off the previous —1-circles,
as in Figure 2b, and finally blowing down the 1-circle.)

-1

N
Ao ! p-1
|

-

> (Q5)-

a) b}

<

1

Figure 2
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We can also define the Arf invariant of a knot K in 53 (or, in fact, in any Z-homology
3-sphere) using spin structures and Theorem 2. Let F'? be a Seifert surface for K in
53 x 1 and push the interior of F into the interior of S® x [—1,1]. There is a unique
spin structure on (S3 x [-1,1]) — F? which does not extend across F; it restricts to the
unique spin structure on S* x —1, and to the unique one on (S® x 1) — K which does
not extend across K. As in the construction in the proof of Theorem 2, we get a spin
structure on the normal circle bundle to F?, and then get a spin structure on F and
hence on the closed surface £ = F U B?. This determines an element of Q3™ = Z/2
which we define as A(K).

We show that A(K) is independent of the choice of Seifert surface F' by use of The-
orem 2: first add a 2-handle to S3 x [—1,1] along K with framing 1 (any odd framing
would work). The new manifold has F union the cone of the 2-handle, i.e. F', as char-
acteristic surface, and we can cap off S® x —1 with B* and the new boundary with a
spin 4-manifold to obtain M*. Clearly A(K) = (M, F) which is independent of the
choice of F since any two Seifert surfaces are bordant in 53 x I.

COROLLARY 4. A(K) equals the Rohlin invariant of the homology 3-sphere obtained
by +1 surgery on K. (If K is a knot in an arbitrary Z-homology 3-sphere T, then this
equality must be corrected by p(T).)

The Arf invariant of a knot K, Arf(K), is normally defined as follows: for a Seifert
surface F for K, H,(F;Z/2) is a Z/2 vector space with non-singular inner product
given by the intersection form. We define a quadratic form ¢ : H,(F;Z/2) — Z/2 by
g(7) equals the number of full twists, mod 2, in a neighborhood of an imbedded circle
representingy € H,(F; Z/2), as in Figure 3. It is easy to verify that ¢g(7;+72) = ¢(m)+
g(72)+71 72 so there is an Arf invariant in Z/2 associated with (H(F;Z/2),q), (see the

9

Appendix) and thisis Arf(K). A formulais given by Arf(K) = Zq(72i_1 )+q(y2:) mod 2

=1
where 71,...,724 is a standard hyperbolic basis for H,(F?; Z/2).

Figure 3

Of course one can directly show that Arf(K) is independent of the choice of F, but
this will follow from showing that Arf(K') = A(K) (see [Rober]). To compute A(K),
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we need to determine the spin structure on Tr | ;. Choose the Lie group framing on
Tr | 7i, that is, the framing given by the tangent vector 7 to ; and a normal vector n,
to 7; in Tr. Follow (7,n,) by the normal vector n, to F in S®, and then add the inward
pointing normal v to $3 in B*. Then the trivialization (7,n1,n2,7) on T« | 7v; either
agrees or disagrees with the unique trivialization of T'gs, according to whether (7,71,72)
agrees or disagrees with the unique trivialization of T'ss over the 2-skeleton. (7,7n1,72)
agrees iff (n1,n,) rotates an odd number of times compared with the 0-framing of v;
(this is obvious if 4 is an unknot). Thus if (n,n;) rotates an odd number of times,
then v; gets the Lie group spin structure, but if (n;,n;) rotates evenly, then (7,n;) was
the wrong trivialization and we should have given Tr | v; the other trivialization, that
is, the one that bounds, or is zero in Qipin.

Therefore F gets a spin structure which is determined by the rule: for even (odd) full
twists in F around +;, the spin structure on T | 4; bounds (does not bound).

Finally, we note that if we define a quadratic form ¢' : H\(F;Z/2) — Z/2 by

, 0 if 7; has a bounding spin structure
q()=

1 if 4; has a non-bounding spin structure

then ¢' is quadratic and identical to ¢ so their Arf invariants are equal. But it is easy
to see that the Arf invariant of ¢’ gives an isomorphism Q3F'" — Z/2. We have shown

LEMMA 5 [Rober]. For a smooth knot K in S* (or a homology 3-sphere), Arf(K) =
A(K).

COROLLARY 6. Let M* be a closed 4-manifold and F? a characteristic surface which
is smoothly imbedded in M* except for n singular points at which the imbedding is
locally pairwise homeomorphic to the cone on (S3, K;) for knots K;, i = 1,...,n, in S3.
Then there is a congruence extending Theorem 2:

K-K —o(M)

- +3 Arf(K;) = ¢(K) (mod 2).

i=1

The reader can also devise a formula for the case when F? is a smoothly immersed
surface with n double points. In a 4-ball neighborhood of a double point, F 2 looks
like the cone on the Hopf link. If we replace the two disks by an annulus inside the
4-ball, then we have added a torus to F?; the generator corresponding to the cone of the
annulus has one twist in it, so the quadratic form is one, whereas the other generator
corresponds to an arc leaving the double point along one sheet and returning along the
other, 50 its twists must be computed from the description of F2.

COROLLARY 7. Given a spun 3-manifold N3, an oriented 4-manifold M* with
OM* = N, and an oriented surface F2 in M* which is dual to the obstruction to
extending N’s spin structure over M*, then

pu(N?) = g(M*) ~ F . F (mod 16).
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If F has singular points as in Corollary 6, then we must correct by SZ Arf(K;). The
g=1
choice of ¢(M*) — F - F rather than F . F —o(M?*), a choice of sign, is dictated by the
example of L(3,1). It occurs as the link of a singularity in a complex curve and when
the singularity is resolved, we see that L(3,1) bounds the unknot with framing —3, so
that p#(L(3,1)) = —1 — (—3) = 2. Via the sequence in Figure 4, we see that L(3,1) also
bounds a spin 4-manifold with index 2.

Figure 4

We end this chapter with a few more computations of invariants.

First we return to the lens space L(p,p — 1) defined by surgery on the unknot with
framing p, which is the boundary of B* with a 2-handle attached to the unknot with
framing p, called M*. Then the y-invariant is also equal mod 16 to

o(M)-F.-F=1-p

where F? is the characteristic surface consisting of the cone of the 2-handle union cone
on the unknot. More generally, the homology lens space obtained by p-surgery on a
knot K has p-invariant equal mod 16 to

o(M)~F-F +8Arf(K) = 1—p+ 8 Arf(K).

Still more generally, we compute the u-invariant of a Z/2-homology sphere obtained
from surgery on a framed link L by finding a characteristic sublink (the sums of the
elements in this sublink should link an even element evenly and an odd element oddly),
band connected summing the circles in the sublink to form a knot K and computing its
framing f, whereupon the p-invariant is given by

index(linking matrix) — f + 8 Arf(X) mod 16.

This can be seen to be equivalent to adding 2-handles to the framed link L, finding a
characteristic surface with one singular point equal to the cone on K, and then using our
earlier formulae. For example, in Figure 5, the sum of the components is characteristic
and represented by a trefoil knot with framing zero, so the y-invariantis0 -0+ 8 =8
which is correct since the 3-manifold is the Poincaré homology sphere.
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Figure 5



XII. CASSON HANDLES

§1. Whitney’s Trick.

To motivate Freedman’s work, we must describe Casson’s work; to motivate Casson’s
work we must see how a higher dimensional topologist would try to classify simply
connected 4-manifolds, what goes wrong, and how Casson made progress.

Suppose we want to represent the bilinear form —(Es & (1)) by a closed, smooth
4-manifold (remember that this is impossible (III, §3)), knowing that —(Es & (1)) ®

10
((1) (1) is represented by M* = CP? { (-CP?).

Let a,8 € Hy(M;Z) generate the hyperbolic pair,i.e, ara=8-=0,a -0 =1,
and a-v = 8 -4 = 0 for all other basis elements v. Since n;(M) = 0, @ and g are
represented by maps f : S> - M and g : S? — M. We can assume that f and g
are smooth immersions so that f(S?) and g(S?) have transverse intersections and self-
intersections. The algebraic sum of the intersections between f(S?) and g(S?) is one
since a - § = 1. We can arrange that the

=-3 —f(s%) = t=-3
t=- T~ T~ t=-2
=‘1 U =-1
) 6)
t=0 T T t=0
t=1 —_— t=1
163 O
t=2 ~— ~_ t=2
t=3 t=3

Figure 1.1 In a coordinate chart with coordinates
(z,y,2,t) we see 3-dimensional slices as t ranges
from —3 to +3. In these slices we see slices of

f(S?) with a new double point when t = 0. They have
opposite signs.
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Figure 1.2

algebraic sum of the self-intersections of both f(S5?) and g(S5?) is zero by introducing
more self intersections with the correct sign. This can be done locally, as in Figure 1.1.

Whitney’s trick [Whitney| is a method for removing a pair of double points of
opposite sign; it works in dimension > 5. To understand Whitney’s trick, imagine the
following (Figure 1.2) model in dimension 4; p and ¢ are the two points of intersection
(of opposite sign) of, say, f(S?) and ¢(S?) in M*; ay and a4 are curves in f(S?) and
g(S?) respectively joining p and ¢. Our picture is of R® = [(z,y,2,t) € F* | t = 0}
and we suppose that a neighborhood of @ in f(S?) lies in R® as drawn, and that a
neighborhood of ay on g(S52) is of the form (ay,t), t € (—=1,1), so that the only part
of this neighborhood that we see in time ¢t = 0 is @,. Furthermore, suppose, as drawn,
that thereis a 2-ball D (the Whitney disk) with 8D = ay U ay and that D is smoothly
imbedded with DN f(5?) = ay, DNg(S?) = a,, and normal bundle D x R! x R! where
f(S*)N(D xR xR')=ay xR x0and g(S?)N (D x R* X R!') = ay x 0 x R

In this model it is easy to describe how to remove the pair of double points—simply
push £(5?) across D by an isotopy which has support in the normal bundle of a slightly
larger disk D' (see Figure 1.3).

The model is basically the same in higher dimensions; the dimensions of f(S?) and
9(S?) may be larger, but p, g, ay, a, and D are the same, and trivial normal bundles
of D must split in two factors, one for ay and one for @, just as in our case. Then the
isotopy in higher dimensions is the same as ours except that it is the identity on the
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Figure 1.3

extra dimensions.

To carry out the Whitney trick, it is necessary to be able to construct the model.
as and a, always exist (assuming connectivity) and usually ay U ay is null homotopic
so that D can be immersed. In all higher dimensions, this immersion can be a smooth
imbedding via transversality, but in dimension 4, it is no easier to imbed D than to
imbed the 2-spheres in the first place! It is this difficulty only that makes dimension
4 so much harder than higher dimensions—in fact, Freedman proves that D can be
imbedded topologically and then things proceed fairly easily. There can be one further
problem, to make the normal bundle of D match up correctly with f(S?) and g(S?),
but this can be analyzed and dealt with.

Because of Rohlin’s Theorem, it is known that Whitney’s trick must fail in certain
smooth cases (see [F-K]).

§2. Finger Moves.

Without Whitney’s trick, progress in 4-manifolds was slow. It was Casson’s brilliant
idea in 1973-74 to avoid the problem of imbedding 2-spheres and instead find a substitute
for a 2-sphere that was easier to imbed. Casson lectured on those ideas in April 1974
at I.H.E.S. and they appear in [G-M].
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10
want to smoothly imbed 2-spheres representing o and 8 and meeting at one point, i.e.
S2 v S2. Their normal disk bundles would give S? x S?-(open 4-ball); we will describe
this 4-manifold as a 0-handle (4-ball) with two 2-handles attached to the Hopf link
with O-framing. It is trivial to imbed the 0-handle in M, but the 2-handles may have
intersections and self-intersections. We cannot avoid the self-intersections, but we can
avoid the intersections between the two 2-handles (let’s call them h2 and h%) as follows.

First immerse h%. If the attaching circle for h is null homotopic in the complement
of (0-handle union A2), then via transversality we can move the null homotopy to an
immersion giving an hzﬁ disjoint from h2. Perhaps Casson’s most surprising idea was
that by increasing the number of double points of h2 via “finger moves”, he could
arrange that # was null homotopic. So we digress to explain finger moves, which will
be used over and over in the construction of Casson handles.

Let K? be a 2-dimensional complex (e.g., an immersed 2-sphere) in a 4-manifold
(e.g., M*). Suppose we change K2 to a complex L? by a regular homotopy as drawn in
Figure 2.1, i.e., we place our finger tip on a 2-simplex in K 2, push around an element
a of 7 (M — K'), and push back through the 2-simplex creating two new double points.
The push through K2 is exactly the same as the reverse of the Whitney trick, and there
is a 2-ball D which would serve as the Whitney disk (see §1).

a 8
Consider again our favorite 4-manifold M* with form —(Es & 1) & (O 1)' We

g &%
P finger
- - - 1= move
KZ
Figure 2.1

What happens to m;(M ~ K?) as a result of the finger move? The finger move kills
the commutator {4,7~'uv]. To see this, notice that m;(M — K) is not changed by
the isotopy in Figure 2.2(a), nor by adding an arc as in Figure 2.2(b) (since the arc is
codimension 3, it does not effect the fundamental group). The complement of LU D can
be deformed into the complement of (K U (arc)), so that 7y (M — K) = m (M — (LU D)).
It remains to see that adding D to M — (L U D) kills [u, v~ u~].

A neighborhood of P is pairwise homeomorphic to (R*,R2, U R%,) where R2, is
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Figure 2.2

the z — y-plane and similarly R2,. A torus T2 = S? x S? links RZ, U R, in R* (in
fact, T? = {(z,y,2,t) € R* | 22 + y®> = 1 = 2% + t?}). This torus T?, called the
distinguished torus, intersects D in one point, say ¢g. Then the normal circle » to D at
q is a commutator [u, 8] = péu~16-! where p and § generate the torus (see Figure 2.1).
Removing D from L U D, or equivalently, adding D to M — (L U D) allows ¢ to bound
the normal disk to D at g, so that v ~ 1in M — L and we have killed [g, §]. Finally,
observe that § = v~ v if one keeps track of base points, so we have killed [x,vy ™! u7].

§3. Casson Handles.
Now we go back to M* and the immersed 2-handle h2 which is attached to the circle

a in g@'g in S3 = §(0-handle). For simplicity, call an immersed 2-handle a kinky

handle and let M, = M* — (0-handle). It is not hard to check that my(Mo — k) is
generated by conjugates of the circle # since # is isotopic to a normal circle to h,.
(This fact is analogous to m;(S%-knot) being generated by finitely many conjugates
of a normal circle to the knot.) Furthermore, 7;(M, — h,) is a perfect group, since
H\(M — ho;Z) = 0 because the circle 3 generates H;(M,,0Mo; Z) (algebraically the
only point of intersection between o and 8 in H,(M;Z) is the 0-handle). Thus any
element in 74 (Mo — h,) is a product of commutators of conjugates of 8, but by a finite
number of finger moves, we can kill these commutators of conjugates. Thus we get a
kinky handle h, with m;(Mp — hs) = 0 so that we then get a kinky handle hg disjoint
from h,. Again use finger moves in Mo — hq to ensure that 7,(My — he — hg) = 0.
Of what use are these immersions? Here is Casson’s surprising program. Suppose
for simplicity that h, has only one double point p and let C be a circle in.h, through
p which leaves p along one place and returns along the other (see Figure 3.1). C is
homotopically trivial in Mo — (hs U hg) so C bounds a kinky handle ha1 meeting
ha Uhg only in C. (Technically, we have to be careful whether C is on the core 2-ball
of ho or on the boundary of the 4-dimensional immersed handle h ,: the choices are
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0-handle

Figure 3.1

isotopic via an imbedded annulus and we will hereafter ignore this point.)

If ho 1 was imbedded, then hoUh, ; would be diffeomorphic to an imbedded 2-handle
and we would be done. Presumably, h, 1 is not imbedded, but we still use this fact to
determine the framing of C' to which hq 1 is attached; use the framing so that ho Uhqa 1
has a chance to be imbedded 2-handle (this happens to be framing zero as in Figure 3.7
later).

In the same way, we add kinky handles hg; and kg, to hyg as in Figure 3.1. Using
more finger moves when necessary (it is negessary to show that only the last stage of
immersed 2-handles need to be altered by finger moves), we iterate this process. Add
third stage kinky handles hqa;; and hg; j, and then fourth stage kinky handles, and
so on. The end result after countable iterations is two Casson handles (see Figure 3.2
for the simplest—only one kink at each stage—Casson handle); each is the union of
countably many kinky handles with all boundary deleted except for the attaching part,
namely S! x int B2.

There is an uncountable collection W of Casson handles, uncountable because at each
stage the kinky handles can have any finite number of kinks (self-intersection points).
Our discussion so far motivates Casson’s main theorem:

THEOREM 3.1 (Casson) [G-M], [Edwards2]. Let M* be simply connected and let
D,,...,D, be smoothly immersed transverse 2-disks in M* with boundaries,
8D,,...,8D,, imbedded disjointly in 8M*, and D; - D; = O for i # j. Assume that
there exist f3,...,08, € Ha(M;Z) such that §3; - B; is even and D; - B; = 6;j. Then the
D;’s can be regularly homotoped (rel 8) to be disjoint, and then kinky handles may
be added disjointly so as to build n disjoint, smoothly imbedded Casson handles with
D,,..., D, as their first stages. Furthermore, these Casson handles satisfy -
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S'x int B?

Figure 3.2 Simplest Casson handle

Property 1: Each Casson handle is proper homotopy equivalent, rel 8 =
S! x int B?, to B? x int B2.
Property 2: Fach Casson handle is a smooth submanifold of B2 x B? with
S! x int B? = 8B? x int B2,

Freedman proved:

Property 3: Each Casson handle is homeomorphic to B2 x int B2, rel 8.

In our case with M, = CP? lﬁo (~CP?)— int B*, h, and hg correspond to D; and
D,, and f serves as a dual for h, and a serves as a dual for hg, that is, ko - g = 0,
ha-B=1,hg-a=1,anda-a = 8 = 0. So we have sketched a proof of the first
part of Theorem 3.1 in our special case.

To understand Property 1, note that any Casson handle, CH, is simply connected.
For m1(ho) was generated by C, but C was killed by k4,1. The generators of 71 (haUha 1)
are killed by the third stage kinky handles, and so on (see Figure 3.7). It is not hard
to check that the homology of C H is that of a 2-handle, but to do so we have to be
precise about the boundary of CH. A Casson handle is attached to a thickened circle,
an S* x B?, which can be seen already in the first kinky handle h,. All other boundary
including 8(S' x B?) is assumed deleted from the Casson handle, for we want it to be
pairwise proper homotopy equivalent (in fact, homeomorphic) to (B? x R%,S! x R?).
There is an alternate description of a Casson handle which is crucial for Property 2 and
Freedman’s work. To begin we give a handlebody description of the simplest Casson
handle; later we relate it to the Whitehead continuum.

Consider first one kinky handle k with one kink (self-intersection). It is not hard to
see that the kinky handle k is diffeomorphic to S! x B®—just pick a curve like C above
(running from the double point along one sheet back to the double point on the other
sheet) and shrink k into a neighborhood of C. But it is important to keep.track of the
attaching circle of k (the part of 8k along which k is attached to a 4-manifold is called
O8_k and equals S* x B?). It is drawn in Figure 3.3.
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Figure 3.3

To see this, examine a neighborhood of the double point of the form B? x B? where
B? x 0 and 0 x B? are parts of the core of the kinky handle, and note that 8(B? x 0)
and 8(0 x B?) are linked circles in 8(B? x B%) = 5* (see Figure 3.4).

1inked
circles
Egzj;7
0xB? Q)

1-handle attaching circle on
3(5'xB?) = 3(0-handle Ul-handle)

N

Q)

Figure 3.4

To obtain the rest of £ we must add a one-handle B! x B® to the B? x B? so that
the two-dimensional 1-handle B! x B! x 0 x 0in B! x B3 is attached to the 0-handles
B? x 0 and 0 x B? so as to make the core of k (Figure 3.4). Then the position of the
attaching circle of k is evident (the two possibilities in Figure 3.3 arise from the choice
of how to add the 1-handle).

The most convenient notation for k is in Figure 3.5 where (recall I, §2) a circle with
a dot denotes the 1-handle obtained from B* by removing the obvious slice disk for the
circle.
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Figure 3.5

When we add a second kinky handle to the first, we attach it so as to kill m;(k), as
drawn in Figure 3.6(a). This process is iterated to get the simplest Casson handle in
Figure 3.7.

N
e

-2

2) ] ismzy 4) =Ti50topy
b) ¢)

Figure 3.6(a), (b), (¢), (d)

Note that if we ignore 8.C H, the attaching circle of CH (the left-most undecorated
circle), then the first pair of 1- and 2-handles cancel (just erase them), as do the next
pair, and the next, and so on; thus all the handles cancel and we are left with R*.
Therefore the interior of CH is smoothly trivial, and it is only as a pair, (CH,0_CH),
that the Casson handle is interesting, Now suppose we cancel, keeping track of the
attaching circle, as in Figure 3.6(b). The first pair of handles cancel as in Figure 3.6(c)
which “doubles” the attaching circle or doubles the 1-handle (Figure 3.6(d)). Cancelling
another pair of handles results in either redoubling the attaching circle or the 1-handle
as in Figure 3.8. More cancelling gives more doubling, so we can see that the pair

(CH,30_CH) is not at all trivial.



a) b)
Figure 3.8(a) and (b)

Figures 3.5(b), 3.6(d) and 3.8(b) are particularly interesting. Let T, be an n-stage
tower, i.e., the union of the first n kinky handles (then To, = CH). The figures indicate
that Ty, T and T3 are equal to B? x B? with a certain slice disk removed; moreover,
8_T = S' x B? with attaching circle S! x 0 and the dotted circle lies in B? x S*. More
is true, for the slice disk for the dotted circle in Figure 3.6(d) can be chosen to lie inside
a normal disk bundle neighborhood of the slice for the dotted circle in the previous
state, Figure 3.7(b). Similarly the slice in Figure 3.8(b) lies in a thickening of the slice
in Figure 3.7(d). This holds for all n, i.e., T, is B? x B? minus a slice for a dotted circle
in B2 x S which lies in the previous slice thickened. And T, = CH is B? x int B2
minus the intersection of the thickened slices! This is related to a well-known space, the
Whitehead continuum.

§4. The Whitehead Continuum.

The Whitehead continuum Wh is constructed as follows: Let T be the solid torus
S1 x B? and let Ti be another solid torus smoothly imbedded in Ty, as drawn in
Figure 4.1. If we imbed another solid torus in T'; just as T} is imbedded in T, then we
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get T,, and so on. (The pair (T%,Tk+1) should be diffeomorphic to the pair (T, T1).)
o0

The intersection ﬂ T}, is called the Whitehead continuum, Wh.
k=0

Figure 4.1

In the early thirties, J. H. C. Whitehead gave a proof that any contractible non-
compact 3-manifold was homeomorphic to R3, discovered a mistake, and found [White]
a counterexample, namely, S3 — Wh. S% — Wh is not simply connected at infinity, so
S3/Wh (or R®/Wh) is not a manifold. However, (R*/Wh) x R is R*. We will discuss
these properties of Wh and its relation to Casson handles after a closer look at Wh.

If we delete one point from W h, namely, the limit point of the clasps @~ , then
what remains is a homogeneous space which is locally homeomorphic to the Cartesian
product of a Cantor set and the reals. This can be seen by examining the intersection
of Wh with p x B2 C S' x B? = T,. Since the T}, k£ = 0,1,2,..., get thinner and
may be chosen to be centered on a line, we see that WhNp x B2 = Whn p x Bl.
Then we also see that T; misses the first, third, and fifth fifths of p x B! if we divide
B! into five intervals. Similarly T, misses the odd fifths of the remainder, and so on,
giving a Cantor set homeomorphic to the usual one where we remove middle thirds (in
particular, ours is homeomorphic to the real numbers which contain no ones or threes
in their expansions using the integers mod 5, e.g., .242042...).
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Using the standard imbedding of Ty in S® or R®, we may think of Wh as a subset
of either S® or R®. First let us check that S — Wh is contractible, for which we need
w1 = 0 and H2(S® — Wh; Z) = 0. The fundamental group is generated by circles linking
Ty. Consider Cy = (point x 8B?) C S! x B? = Ty. Then Cj contracts to a point in
5% — Ty and therefore in S3 — W h; this follows from Figure 4.2

Figure 4.2

since Cy is obviously homotopic (although not isotopic) to a point in the complement of
T. Similarly the linking circle Cy is homotopically trivial in the complement of Tx4;.
But notice that these homotopies of C; to a point cannot be made to miss T§ = S3 Ty,
for the isotopy reversing the components in the symmetric link must affect T'§. This is
important because it shows that S® — Wh is not homeomorphic to R® because in R®, a
loop near oo can be contracted near oo, whereas a loop C, (which is near oo in S®—Wh
for large k) must hit T when contracted. This is made precise by the

DEFINITION: A space X is simply connected at oo if given any compact set K, there
exists a compact set L with K C L, such that loops outside L can be shrunk outside
K,ie., m(X — L) — m;(X — K) is the zero homomorphism.

S% — Wh is not simply connected at oo, for there is no L if K is chosen to be
Ty = S® — Tp. Stallings’ theorem [Stall] states that a contractible, simply connected
at 0o, smooth n-manifold is diffeomorphic to R™ if n > 5. This is still unknown (it
is equivalent to the Poincaré conjecture) in dimension 3 fifty years after Whitehead’s
mistake.

S3 /W h, the quotient space when Wh is crushed to a point, is not a manifold at the
quotient point (if it was, then clearly $% — Wh would be simply connected at co). We
will prove later that (R®/Wh) x R is R* (XIIL, §2).

The observant reader will have noticed that the torus T% in Figure 4.1 is similar to
the boundary of the slice disk used in defining the tower Tk in Figures 3.5, 3.6 and
3.7. In fact, if we identify Ty with B2 x B! in 8(B? x B?), then each solid torus T} is
exactly a thickening of the dotted circle whose slice disk is subtracted from B2 x B? to
get the k**.stage tower T). Moreover, the slice disk can be thought of as a thickened
cone on the torus Tj. (Recall that these thickened slice disks are nested because a
thickened slice for Ty = B? x S is just B? x B? in which we can imbed a slice for the
solid torus T, and so on, by iteration.) Thus the k-stage tower T is diffeomorphic to
B? x B? minus a slice disk for the dotted circle equal to the solid torus T, which is just
B? x B? — cone Ty. In the limit then, the simplest Casson handle C H is diffeomorphic
to (B% x int B?) — (cone Wh). We have now shown Property 2 of Casson’s Theorem
in the simplest case.
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In general, a Casson handle may be built with kinky handles with many kinks. This
complicates matters only in that our construction of the Whitehead continuum must be
generalized to allow for parallel copies of Ty (called replication) (see Figure 4.3)

Replication

Figure 4.3

which corresponds to a kinky handle with many kinks (see Figure 4.4). For simplifica-
tion, we will usually assume our kinky handles have only one kink.

This essentially finishes our description of Casson’s work and lays the foundation for
Freedman’s work. Because the Casson handles are proper homotopy equivalent to stan-
dard handles there were no known invariants to distinguish them. It was known that
they were standard topologically (smoothly) if one of the links in Figure 4.5 was topo-
logically (smoothly) slice. It was known that the first three were not even topologically
slice and the rest were doubtful. Now we know that they are topologically slice from the
fifth one on, but that some family (allowing replication for extra kinks) is not smoothly
slice.
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Further links in this sequence are obtained by taking the
untwisted (hence the —2 twist to undo the other twists)
double of the right component, and by allowing replications.

§

Figure 4.5



XIII. FREEDMAN’S WORK

§1. Decomposition.

We now have two relatively simple descriptions of the simplest Casson handles CH,
i.e., Figure XII.3.7 and B? x B? — cone Wh. The latter suggests a clue which leads
toward Freedman’s proof that C H is pairwise homeomorphic to (B2 x B?,3.), namely
the fact (Shapiro-Bing) that ((B? x S')/Wh) x R is homeomorphic to B? x S* x R.
Suppose that we could imbed some Casson handle CH, in our given one CH, (with
8_CH, = 8_CH,) so that the frontier of CH,, (B% x S*) — Wh, had closure in CH,
equal to the one point compactification of (B2 x S!') — Wh which is just (B? x S*)/Wh.
(This is analogous to imbedding B® — 8B® in R* as the unit 3-sphere minus the north
pole, and then observing that its closure is B®/8B® = $3.) This extra control on the
imbedding of C H; in C H, is achieved by one of Freedman’s technically hardest theorems
(§3). But this only gives one copy of (B? x S?)/Wh whereas we seem to need R copies,
((B% x S*)/Wh) x R, to conclude that CH, contains (B? x S'/Wh) xR = B2 x S' xR
which contains a 2-handle B%2 x B! x B! with the same attaching set 8_. Freedman
cannot find R copies, but he does find a Cantor-set of copies of (B? x S1)/Wh in CH,,
and then he strengthens the Shapiro-Bing theorem sufficiently to conclude that CH is
topologically an honest 2-handle.

There are two ingredients in Freedman’s proof: one is classical differential topology,
specifically, a sort of 4-dimensional handlebody theory (like the handlebody definition
of C H) which leads to the Big Reimbedding Theorem (§3); the other is classical decom-
position space theory as pioneered by R. H. Bing (§§1-2). These ingredients are joined
by “the Design” which organizes Freedman’s proof (§4).

A decomposition D of a topological space X is a partition of X into closed subsets,
some of which are points and some of which are non-trivial. Our example is X =
S x B? x R with closed subsets {Wh,} = {Whxt} fort € Rand {pxt} fort € R and
p € S x B2 — Wh (the latter are trivial elements of D). The quotient space of X where
the closed sets of X are crushed to points is denoted X/D. The principal question is
when is the quotient map X - X/D approximable by homeomorphisms (ABH); of
course, this would imply that X/D is homeomorphic to X.

One’s intuition can be improved by considering these examples and propositions:

1) Let X = R? and D = {(z,y) |0 < z <1 and y = 0} and trivial elements; then
R? L, R?/D, which simply crushes an interval in R? to a point, is ABH.

2) If X is an n-manifold and D has only one non-trivial element Dy, then Dy is the
intersection of a nested sequence of topological n-balls iff X — X/D is ABH (the if
part is easier, but both should be understood).

3) If X - X/Dis ABH, then no element of D can be a circle. (In fact, an element
of D must be cell-like, which means that this element D is (i) compact and metric, and
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(ii) imbeds in the Hilbert cube I* such that D is null homotopic in any neighborhood
U of Din I*®)

The main tool for showing that a decomposition is ABH is the Bing Shrinking Cri-
terion (one says that D is shrinkable),

THEOREM (Bing) [Edwardsl]. For X a compact metric space, ¢ : X — X/D is
ABH <= the following Bing Shrinking Criterion holds; given € > 0, there exists a
homeomorphism h : X — X such that
1) sup dist(gh(z),q(z)) < e
z€X
2) diameter(h(D)) < ¢ for all D € D.

Edwards’ proof of the important implication, <=, is so short and slick that it is worth
quoting [Edwardsl]. In the Baire space C{X, X/D) of continuous maps with uniform
topology, let £ be the closure of the set {gh | h: X - X is a homeomorphism}. The
Bing Shrinking Criterion amounts to saying that for any ¢ > 0, the open set of e-maps
in € (maps having all point inverses of diameter < ¢), denoted €., is dense in £. Hence
&= m £, is dense in € since € is a Baire space. Since £y consists of homeomorphisins,

£>0
g€ €is ABH. O

We need to apply the Bing Shrinking Criterion to ((B? x S')/Wh) x R which is not
compact; there are ways around this difficulty, e.g., use a non-compact version of the
criterion, or cross with S?! to get a compact situation and later take the oo-cyclic cover.

§2. (R®/Wh) x R.
THEOREM 1 [A-R]. (R®/Wh) x R is homeomorphic to R*.

Proor: If we are crushing only one copy (not R) of the Whitehead continuum to a
point, then we would shrink it by using the extra dimension to undo the clasp in Tp4,
and 1sotope it to be small in T. If we do this for large enough k, then we shrink Wh small
enough to satisfy 2) of the Criterion. Furthermore, each isotopy of T, takes place in
T%, and since T}, is taken by the quotient map to a small (depending on k) neighborhood
of the point {Wh}, it follows that gh can be arbitrarily close to ¢. (The reader may
enjoy visualizing an isotopy h. : R* — R*, t € [0,00) such that ho = tlingoht = q. Let

h:, t € [k, k + 1], be obtained by unclasping h x(Tk4,) in k(T x [—1/2%,1/2F]) and then
shrinking h.(T%+1) smaller than 2-% in hy(T}). Then gh;! : R* — R*/Wh has a limit
ghz}! which is a homeomorphism, and (gh 7! )k, are homeomorphisms approximating g.)

The problem is to shrink R copies of Wh simultaneously. Here is the construction.
In Figure 2.1, let u : R® — R be a continuous function which is zero outside T}, which
measures the angle between a point of T and the line L (as indicated in Figure 2.1),
and is a continuous extension on Ty — Tj.

Let i : R* — R* be defined by ji(x,t) = (z,t+ p(x)) for z € R®, ¢ € R. Then for any
t, @(Ty x t) is unclasped and may be shrunk to a “vertical” torus by a “rotation” of the
form p(z,t) = (p:(z),t) where p; rotates R® around the axis orthogonal to the page by
an angle equal to —f radius.

To shrink each Wh x t smaller than ¢, we must use 6ji where § << ¢, and use the
pair (T%,Tk+1) instead of (Tp,T1) where k is large enough so that §(64)(Tk+1 x t) has a
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Figure 2.1

diameter less than ¢ (by the choice of §) and 5(841)q is close enough to ¢ (by the choice
of k).

To “see™ what happens, consider the thickened solid tori T'(n) = T X [2rn—-,27wn+]
where n € Z and + is very small. Then j( U T'(n)) is a chain since g(T'(n)) links

nez
(T (n +1)), which is coiled rather like a cord on a telephone (see Figure 2.2). The rota-

tion j simply unwinds or uncoils the chain so that it is vertical. The links 5(84)(T'(n))
have horizontal size depending on %k and vertical length depending on 6.

The homeomorphism (R® /Wh) x R — R* (call it ®) should be contemplated because
it (actually a far more complicated version) is the only non-differentiable part of Freed-
man’s proof. Note that ®(Wh x R) is a wild arc in R*, meaning that ®(Wh x R) does
not have a neighborhood homeomorphic to R x B3. This is true because R* — (Wh x R)
is not simply connected at co. In fact, ®(Wh x R) must intersect every horizontal
3-plane, R® x t, in a Cantor set.

§3. Reimbedding Theorems.

Keeping in mind decomposition space techniques, we want to understand a given
Casson handle CHy well enough to set up some kind of decomposition of it. Freedman
“explores” C Hy by imbedding a Cantor set of Casson handles inside it. For this we
need reimbedding theorems.

Recall that an n-stage tower T}, (XII, §3) is a kinky handle (7)) union kinky handles
to kill m;(T}) (this is T3) union kinky handles to kill m;(73) (this gives 73) and so on
n times. Note that m;(7},) is generated by loops, one for each double point, in the last
stage of kinky handles; in fact, T}, is diffeomorphic to a boundary connected sum of
S! x B*’s (just cancel handles from the left in a figure like Figure XI1.3.7). Given an
n-stage tower T2 (e.g., the first n stages of CHy), we achieve control by constructing
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an imbedding of another n-stage tower T} in 70 so that m (T2) — m1(70) is the zero
homomorphism; even better, we arrange that the non-trivial loops in T'} can be capped
off by n-stage towers imbedding in T'? (this is called mitosis). The first step is the

LiTTLE REIMBEDDING THEOREM. Every 3-stage tower T{ contains another 3-stage
tower T} (with same attaching circle) satisfying

(a) The first two stages agree, i.e., T} = Ty and
(b) 7 (79 — T}) - m(T? — T}) is an isomorphism.

We are being notationally sloppy, for T3 is really a “thin” version of 7. Then (b)
means that if a loop in the complement of 7'} dies in the complement of T} then it must
have been homotopically trivial already. This theorem is not hard to prove using finger
moves (XII, §2) and is the first step in the

Bi1G REIMBEDDING THEOREM. Every 4-stage tower T contains another 4-stage tower
T¢ such that

(a) T; =717

(b) mi(TQ — T}) — = (TQ — T}) is an isomorphism

(c) m(T}) — = (TQ) is zero.

(Freedman used five stages here, but Gompf showed that five stages were unnecessary
[G-S].)
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The proof is long and technical, with many steps requiring finger moves; these create
more non-trivial loops in T’} which have to be killed, so it is not always clear that
progress is being made. This theorem was proved by Freedman in 1978 and was the
principal step in his construction of an exotic smooth structure on S 2 x R [Freedman3),
[Sieb1].

A simple bootstrap operation strengthens the Big Reimbedding Theorem to:

Mitosis. Every five-stage tower T contains a five-stage tower T} such that the loops
generating m1(T}) can be capped off by six-stage towers imbedded in TQ. (We require
six-stage towers so that the first five stages of the caps are themselves homotopically

trivial.)

The five-stage tower should be thought of as the genes of a Casson handle, for inside
it is a five-stage tower which can be capped off by a five-stage tower, and so on; thus a
five-stage tower can replicate,

The proof is easy: by the Big Reimbedding Theorem, applied to the last four stages
of T?, there is another five-stage tower T¢ in 79 (with 7% = 77). The loops generating
n1(T3) are homotopically trivial in the complement of T (use (b)) and a calculation that
a linking circle to T3} diesin TQ — T} (see Lemma 4.1 in [Freedman1)); by transversality
the loops are capped off by immersed two-balls, i.e., by kinky handles, so we have T'd
in 79.

Forget the first stage and apply this argument to get T2_, C T} 4, or T? C Ty. Forget
the first two stages and get T2 _ C T2 ;, or T§ C T?. Eventually we get a T¢, C T¥
which is the same as a five-stage tower whose loops are killed by six-stage towers.

It is important to note here that mitosis gives us a way of imbedding a Casson handle
so that the closure of its frontier is just (B% x S')/Wh (in the case of the simplest
Casson handle; more generally we can have up to a Cantor set of Whitehead continua
in B? x S!, each of which is crushed to a separate point, and here the closure adds a
Cantor set to the frontier). To arrange this we require that the diameter of successive
stages of CH tend to zero. So let T}, be an 11-stage tower in any space, say some T,
and observe that Tj}_,, is homotopic to a collection of circles which can be homotoped,
hence isotoped, inside e-balls while fixing 8_(7?). Then inside T¢_,, find a T?_,4 and
shrink T2 _,; while fixing 8_(T?_,,). Thisensures that successive stages have diameters
going to zero while earlier stages are not stretched large. This technique allows us to
assume that Casson handles have the right sort of frontiers whenever we wish, so we
ignore the question from now on.

Freedman had essentially reached this point in 1978 [Freedman3]. The reimbedding
theorems led to, and were motivated by, the existence of a smooth 4-manifold which
is proper homotopy equivalent to but not diffeomorphic to S® x R (now we know it
is homeomorphic to S3 x R). This was the first example of a “fake” smooth simply
connected 4-manifold, although Cappell and Shaneson [C-S] in 1975 had found a fake
RP* (homotopy equivalent but not diffeomorphic to RP*). Casson had already shown
in 1974 that there was either a fake S® x R or a fake end (in this case a smooth manifold
proper homotopy equivalent to S? x S2-point with no smoothly imbedded 3-sphere near

the missing point) but he was unable to determine which possibility held; now we know
both exist.
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We finish this section with a sketch of the exotic $% x R from [Freedman3] although
it is not necessary for understanding the rest of this outline. Consider the Poincaré
homology 3-sphere P3; it bounds a simply connected smooth 4-manifold X # with inter-
section form Eg [K-Sch] (any other homology 3-sphere bounding such a spin 4-manifold
of index = 8(16) would do). n1(P?), which is the binary icosahedral group, is normally
generated by one element. If we surger that element in P? x [0,1], we obtain a smooth
simply connected 4-manifold Y with H,(Y,Z) = Z & Z because Y looks homologically
like (S® x I) f (S? x S?) (to see this, surger (i.e., remove S* x B® and glue in B? x S?)
a trivial circle in the interior of 3 x I).

We can represent the Z @ Z in Y by a pair of Casson handles attached to
in the boundary of a 4-ball in Y. For each Casson handle we use the Big Reimbed-
ding Theorem to imbed a sequence of 5-stage towers T¢ C T3 C T2 C ... such that
m1(T¥) — 7, (TF) is zero and TP is the first five stages of the Casson handle. Then we

o0

remove the 4-ball union the intersection m T¥ from each Casson handle. This is proper

homotopically like removing the wedge okf towo 2-spheres, and leaves a simply connected
smooth 4-manifold ¥ with boundary P U —P, the homology of S3 x I, and one end
which is proper homotopy equivalent to the end of R*.

Glue together a countable collection of ¥’s along their boundaries P and — P so that
we get a manifold which is proper homotopy equivalent to S® x R with a countable
number of points (e.g., p x n, p € S3, n € Z C R) removed. Finally, pick a transverse
copy of P and join all the missing points on the right by an arc and remove it; similarly on
theleft. What remains is proper homotopy equivalent to S® x R but is not diffeomorphic
to S® x R because there is a spanning Poincaré homology sphere. (If a diffeomorphism
existed, we could compactify smoothly with two points and get S* with P smoothly
imbedded; then P would bound a smooth contractible 4-manifold which could be added
to X* to get a closed, smooth, almost parallelizable 4-manifold, contradicting Rochlin’s
theorem.)

§4. The Design.

Freedman’s aim was to understand Casson handles and that evolved into an explo-
ration of a Casson handle by an uncountable collection (the design) of imbedded Casson
handles which have good frontiers in the sense we have previously explained.

Let CH, be a given Casson handle, e.g., the simplest one. We imbed a 5-stage tower
T? in CH, and another 5-stage tower T?? inside T? (the choice of superscripts will soon
be clear; also all towers in this section will be 5-stage so we drop the 5). We kill the
non-trivial loops in T'° by adding a tower T°° in CH, and we imbed another copy 72
inside 7% which also kills the loops of T'°. Similarly we kill the loops of T'? by adding
a tower 7?0 inside T'°, and we put another copy 7?2 inside T° (see Figure 4.1).
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Figure 4.1 The towers are drawn as 1-handles /) but

st should be remembered that they are more ltke 2-handles
B? x B? with connected boundary B? x S, as indicated by
dotted lines.

We iterate this process, obtaining 7222 C T?2° which lie in 7'2° and kill the loops of
T?2; gimilarly with 7202 C T2°° and 7?2 C 7°2° and T°%2 C 7°%°, The pattern should
be clear.

This gives a Casson handle for each element of the Cantor set C represented by base
three decimals without any ones, i.e., .n1nonsny ... where n; € {0,2}, for example, the
Casson handle corresponding to .02020202... is obtained as the union of the 5-stage
towers 70 U T'02 U T020 yT0202 yT02020 ... We are interested in the frontiers of these
Casson handles (the boundary minus the attaching set 8_) which will be denoted F,,
v € C. Recall once again that the closure of F in CH, is (B% x S')/Wh., where Wh, is
a generalized Whitehead continuum which allows for replication (as in Figure X11.4.3)
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and where each component of Wh., is crushed to a separate point. If v and 7' are close
in C, then F., and F,s are pointwise close as sets since v and 7' agree on their first N
digits (N large). Thus the F vary continuously with respect to 4 € C. (Note that as
defined, F, N Fy # @, but we can make all the F, disjoint by using collar neighborhoods
of 8T; in T to push F, slightly away from F...)

The F,, v € C, “explore” CH,, but they miss big gaps. For example, there is a
gap between F, and F,, vy = .022222... and 4’ = .200000... which is not explored
by any F.,.; in fact, this gap corresponds to the first middle third which is deleted by
constructing C and v U~' = 8[.1nyn3ny ... ] = J[all numbers beginning .1]. Thus CH*
is the union of all F,, v € C, and a countable number of gaps, G' g, where # runs over
the middle thirds; these middle thirds correspond to the rational binary numbers where
we write a binary number using {0,2} and then .02222... = .20000... is the rational
1/2. So 8 € @ = binary rationals.

These gaps are not contractible, but can be shown to be the shape of a circle. It
might be thought that we have explored very little—that the gaps are almost everything.
Perhaps Freedman’s boldest conception is that the gaps can be ignored, can be crushed
to points. Well, not quite, for one cannot crush circles and get a manifold; so we crush
a gap and a bit more (something like a 2-disk killing the circle) so that a contractible
object is crushed.

To organize this incipient decomposition, we should reflect on the diagram in Fig-
ure 4.2.

CH,

V‘ Yy % B*xR?D
P

w
B2 X R2 ow

Figure 4.2

Let B2 x R? = (B? x S* x R) U (B? x 0) and crush each Wh; x ¢ to a point to get Y,
where Wh, € B2 x S* and t € R, and Wh, = Wh, ift =« € C and Wh, is chosen
continuously with respect to ¢ otherwise. Let w be the quotient map.

Define a relation p : CH, — Y which is a homeomorphism on the F,, v € C, and
a relation on the gaps Gz, f € Q. More precisely, p | F, is just the homeomorphism
between F, and ((B? x S')/Wh,) x v; for p | G4 let Ag be the middle third of [0,1]
corresponding to f, let Ty be some replicates of the k-th solid torus (in the definition
of Wh) where 8 = k/2", and let p take Gy to the set T x Mg in (B2 x ') x Rin Y.

We cannot define ¢ to be the map which crushes T x Ag to a point (points if Tr
has more than one component) for each § € @, because we would be crushing non-
contractible sets. Since T% is a solid torus (or tori), we can find a way in ¥ (or even
B? x R?) to imbed disjoint 2-balls, indexed by 8, which cap off T} and then we can
crush these larger, contractible sets to points. That roughly defines ¢, and also the
decomposition D which refers to the non-trivial point inverses of ow.

What are the virtues of these maps and relations? First of all, the decomposition
B? x R* 2% (B? x R?)/D is a decomposition on a well known space, not a mysterious
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object like CH,. Furthermore, it differs from the classical (B2 x R?)/Whx R by crushing
a well specified countable collection of sets, the non-trivial point inverses of ¢. It can be
shown (the proof is Edwards’) by a much more technical, yet still classical, argument
that D is shrinkable so that ow is ABH (approximable by homeomorphisms). Thus
(B? x R?)/D is B? x R2.

Second, o has crushed sets which contain p(Gg) for all 8 € Q; thus op is a continuous
map with only countably many non-trivial point inverses from CH, to B? x R?. The
problem that G is not contractible has been cleverly swept under the rug for p(Gp)
lies in a contractible set which is crushed by 0. Now we recall that C H, is a subset of
B? x B? and hence of S*%, and that B2 x R? C S*, and we extend op to a continuous
map f:S* — S%.

All we know (or need to know) about f is that it has countably many non-trivial point
inverses whose diameters go to zero and whose images are nowhere dense. Remarkably,
this is enough to prove that f is ABH. An easy step then shows that op is ABH
(rel 8.) so that C H, is indeed homeomorphic to the standard handle B2 x RZ.

This finishes an increasingly sketchy outline of Freedman’s main theorem, that Casson
handles are topological handles. Since we can now imbed handles or S 2 x B?’s whenever
the intersection form predicts (Theorem XI1.3.1), we can now obtain the topological h-
cobordism theorem and classification theorems as in high dimensions; all this is nicely
explained in the introduction to [Freedmanl].

For the details of a more modern proof of Freedman’s theorem, and for all you ever
wanted to know about topological 4-manifolds, see the forthcoming book of Freedman

and Quinn, [F-Q].






XIV. EXOTIC R*’S

It was morally clear from Casson’s 1973-74 work ([G-M]) that if some Casson handles
were topological handles but not smooth handles, then there would have to be exotic
smooth structures on R*. (This follows because there would be a set in B* which
was topologically cellular but not smoothly cellular, that is, there would be open sets
which were homeomorphic to R* but weren’t smoothly R*. See Edwards’ remark,
page 234 [G-M].) So when Freedman heard in March 1982 of Donaldson’s theorem
that any non-trivial definite form, say —(Es & (1)), was not represented by a smooth
4-manifold, he knew that there ought to be an exotic R*. The proof (Theorem 3 below)
he gave produced an exotic R* that lay smoothly inside $%, but required a compact
counterexample to the smooth h-cobordism theorem which was not known until [Don3].
The proof that others found, assembling the ingredients of Casson, Donaldson and
Freedman, produced an exotic R* that does not smoothly imbed in S%. The author’s
version of this is Theorem 1 below.

After one exotic R* was found, the search began for more. It was soon realized that
the open balls of sufficiently large radius inside the exotic R* provided an uncountable
collection of possibly different exotic R*’s, but it was not until 1985 that they were
shown to be different [Taubes].

Meanwhile Gompf found three exotic R*’s in 1982 [Gompfl] and then a countable
collection [Gompf2] using the construction of Freedman and Taylor [F-T] of a universal
exotic R* which contained all other exotic R*’s as open subsets. Then in fall 1984 during
tea at MSRI, Gompf found an easy construction of countably many exotic R*’s which
is given in Theorem 2 below.

THEOREM 1. There exists an exotic smooth structure on R*.

10
PROOF: Recall our motivating example M* = CP? } (—CP?) which has intersection

form —(Es 1) & Z (0 ! with generators a and § with a-a = -8 = 0 and

1 0
a-f =1. We have seen (Theorem XI1.3.1) that these two classes can be represented by
topologically imbedded 2-spheres. In fact more is true: there exists a smooth manifold
W*, smoothly imbedded in M*, where W* = (0-handle) U (C H;) U (C H,) and the two
(perhaps different) Casson handles are attached to () and boundary is deleted
so that, by Property 3 of Theorem XI1.3.1, W is homeomorphic to $2 x S2-point. W is
also a smooth submanifold of $2 x $2, namely

int{(0-handle) U (B® x B%? — cone Wh;) U (B? x B? — cone Wh,)}

for some generalized Whitehead continua Wh; and Wh, in S! x B2.
The topological core S2 Vv S of W in M* carries the homology classes a and £ in
Hj(M*; Z). The complement of this $2Vv S? in S? x 52 is proper homotopy equivalent to
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R* (use the fact that S? v S? has a neighborhood homeomorphic to S? x S2-point to see
that the end is $® x R), hence by Freedman’s topological proper h-cobordism theorem
[Freedman1] is homeomorphic to R*. This R*, being an open subset of $% x S2,
inherits a smooth structure £ which we show is exotic.

Suppose not. Then there are arbitrary large “round” smooth 3-spheres in R, large
enough to surround any compact set in this R*. In particular there would be a smooth
3-sphere large enough to contain the closed, compact set K = S2? x S2— W, so therefore
this 3-sphere lies smoothly in W, but misses S? v S2. Then this 3-sphere also lies
smoothly in M* with o and 3 (represented by S? v S?) on one side and —(Es & (1)) on
the other. Cut M* along this smooth 3-sphere and glue in a 4-ball to get a contradiction
to Donaldson’s Theorem (III, §3). Figure 1 may help visualize this construction, except
that W* is far more convoluted than can be drawn. 0

REMARK 1: The characterizing property of this R% is the compact set K which cannot
be surrounded by any smoothly imbedded 3-sphere. It also cannot be surrounded by
any homology 3-sphere which bounds a smooth acyclic 4-manifold because then the
same construction would contradict Donaldson’s theorem,

REMARK 2: The same contradiction is achieved if an open neighborhood U of K, U
homeomorphic to R*, was smoothly imbedded in a smooth homotopy 4-sphere @ *. Then
U — K is the end of W. We delete from M* the closed set W* — (U — K). We can add
on the smooth open manifold Q — K along U — K. This gives a smooth manifold whose
form is —(Eg & 1), contradiction.

THEOREM 2 (Gompf). R* has countably many exotic smooth structures.

PROOF: We begin with the definition of the end-connected-sum of two copies of R*:
choose a smooth arc v in R* from a point p to infinity. Any two such are diffeotopic. v
has a tubular neighborhood and its boundary is a smooth copy of R® properly imbedded
in R*, namely 4 x S? union p x B® with corners rounded. Now take two copies of R*

end
and form R* § R* by choosing arcs v and 72 in each, throwing away the interiors of
their tubular neighborhoods, and gluing the two copies of R® together by an orientation

reversing diffeomorphism. It is not hard to see that the diffeomorphism type of R* elﬁd R*
is independent of the various choices.

From Theorem 1 we have an exotic structure ¥ on R*? characterized by a compact set
K which cannot be surrounded by a smooth 3-sphere. We can imbed K inside a ball
of radius k, kB*. Outside kB* choose two disjoint smooth (in R%) arcs 4, and v, from
71 to oo and p; to oo. For each, choose tubular neighborhoods and then R3’s which
are disjoint (and smooth in R{). Now form the end-connected-sum, E, of a countable
collection of R%’s, in which the i** copy of R% is glued to the (i — 1)-copy along the R?
of 7 and is glued to the (i 4+ 1)-copy along the R® of v,.

It is easy to see that E is homeomorphic to R*, for the arcs are ambiently isotopic to
{(21,0,0,0) € R* | z; < —1} and {(2;,0,0,0) € R* |1 < z;}. It contains a countable
number of copies of K, one for each R%. It is not hard to choose topological coordinates
on E (that is, a homeomorphism to R*) so that the first copy of K lies in int B%, the
second in int 2B* — B*, the i** copy in int iB* — (i — 1)B*, and so on.
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Figure 1

Now we show that the open balls int(zB"), 1 = 1,2,3,... with the smooth structure
they inherit from E, form a countable, distinct collection of exotic R*’s. Suppose not,
i.e. suppose for i < j that there is a diffeomorphism f : intiB* — int jB%. Let A be the
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open annular region which f maps onto int jB*— (j —1/2)B*%. Then “furl” the smooth
manifold (int jB* — iB*) U A by using f to glue the two ends together; the smooth
result, N*, is homotopy equivalent (in fact homeomorphic) to S® x S*. Furthermore, N
contains j — 7 > 0 copies of K. It is not hard to find a smooth circle in N which misses
at least one of the copies of K. Surgering this circle produces a manifold @* which is
homotopy equivalent to S* and contains a copy of K. But this contradicts Remark 2
after Theorem 1 because K, in fact kB?*, lies in a homotopy S*. O0

THEOREM 3 (Casson and Freedman). There exists an exotic R whichimbeds smoothly
in S%.

In 1976 Casson (Lecture 3 in {G-M]) described a smooth 5-dimensional h-cobordism
between compact 4-manifolds and showed that they “differed” by two proper homo-
topy R*’s (the construction is given below). Freedman knew, as an application of his
proper h-cobordism theorem that the proper homotopy R*’s were R*; after hearing
of Donaldson’s work in March 1983, Freedman realized there should be exotic R*’s
and, to find one, he produced the second part of the construction below involving the
smooth imbedding of the proper homotopy R*’s in S*. Unfortunately, it was necessary
to have a compact counterexample to the smooth h-cobordism conjecture, and Donald-
son did not provide this until 1985 [Donaldson3]. This counterexample was a smooth
h-cobordism Y between the rational surface CP? § 9(—C P?) and its logarithmic trans-
form L = L(2,3) known as the Dolgachev surface [H-K-K]. Y'® is not a smooth product
because CP? § 9(—CP?) and L(2,3) are not diffeomorphic.

(Incidentally, as soon as an exotic R*, R%, was found as in Theorem 1, there was
an exotic, but non-compact, proper h-cobordism between R%{ and R*, obtained from
R% x I by removing from R% x 1 everything but a coordinate chart R*.)

PRrOOF: Consider Y'® as a handlebody built on L. As before, we can cancel the 0, 1, 4
and 5-handles. After handle slides, the remaining 2 and 3-handles occur in algebraically
cancelling pairs. In higher dimensions the Whitney trick (Chapter XII, §1) can be used
to make these pairs cancel geometrically so that no handles are left and Y is a product.
In dimension 4 this can only be done topologically [Freedmanl].

For simplicity of notation, we will use the fact (without proof) that Y can be con-
structed with just one 2-handle h, and one 3-handle hs. Since h, is added to a simply
connected 4-manifold L, it follows that the middle level of Y is L § $2 x S?; adding
hs (upside down) to the rational surface gives 2CP? § 10(—C P?) which must also be
L} S? x S2. (Turning the argument around, we can see how to construct ¥ by seeing
how to add one 2-handle to L so that it breaks apart into 2CP? § 10(—CP?). This
can be done by adding the 2-handle so as to cancel the 1-handle in L (see page 75
[H-K-K]).)

After adding h; to L, the new boundary is the middle level of ¥ (modulo some
collars), Y1/, and the cosphere of h, (8(p x B®) in B? x B%) is a smooth 2-sphere S, in
Y1/2. The attaching 2-sphere S of h; also liesin Y /2- S2 and Sj intersect algebraically
once but geometrically 2k 4 1 times, k > 0. For simplicity, we assume k = 1, so that
S N S3 = pg U p1 Up, (see Figure 2). Note that S, - S, = S3- 53 =0.
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Figure 2

Associated with this handlebody structure on Y is a Morse function whose gradient
vector field integrates to a smooth product structure on Y away from the set X of
ascending and descending manifolds of the two critical points. In particular, Y;/5 —
(S2 U S3) flows up and down to give the smooth product structure on ¥ — X.

If we think of p; and p; as the unwanted pair of intersections (where the sign of p; is
(=1)%), then, working in Y1/2, we can imbed a toplogical Whitney disk which lies in a
smoothly imbedded Casson handle, C H;, whose boundary is a circle consisting of arcs
joining py to p; in S; and S3. Furthermore we can smoothly imbed in Y3/, an auxiliary
Casson handle, CH,, whose attaching circle consists of two arcs joining po to p; in 53
and S3 (see the schematic picture in Figure 3).

Figure 3
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To construct CH; and C H,, it is necessary (see Chapter XII, §2) to arrange that
71(Y1/2 — S2 — S3) = 0 and to observe that there are dual classes, namely the character-
istic tori at the p;, to the proposed Whitney disks. To arrange that 7 (Y;/2—S2—S3) = 0,
we use the fact that m(Y;/, — S2) = w1 (L — Jh3) = 0 so that conjugates of a meridian
us to S3 generate 7 (Y, — Sz — S3). Similarly, it is generated by conjugates of a
meridian g3 to S2. Since Hy(Y;/2 — S3 — S3;Z) = 0 it follows that m; (Y1, — S2 — S3) is
equal to its commutator subgroup, and therefore is generated by elements of the form
(3, ul] = [;tz,p,g-lh]g_l. Such elements can be killed by the right finger move (see
Chapter XII, §2), that is we isotop the attaching map S; of A3, increasing the num-
ber of pairs of points of intersection in S; N S3 so as to make the complement simply
connected. But from now on, we ignore these extra points.

In the middle level Y ;, let U be an open tubular neighborhood of S; U S3. Adding
the two Casson handles CH; and CH, to U give an open 4-manifold W* which is
homeomorphic to an open tubular neighborhood of $2V 52 in §% x §? (since CH; and
CH, are homeomorphic to B? x R? and the attaching maps are smoothly standard, p;
and p2 and CH; and CH, can be amalgamated into a large open 4-ball around po).

Call Z the part of the h-cobordism Y which lies above and below W. Z is a smooth
product outside the compact set X, hence near its end. Smoothly, Z has only the
handles h, and hj; these can be cancelled topologically because we can use CH; as a
Whitney disk to eliminate the pair of double points p; and p;. Thus Z is a topological
product; in fact the smooth product structure on Y — Z extends to a topological product
over Z. Furthermore, Z must be homeomorphic to R* x I because Z is formed from the
open tubular neighborhood W of S2 v §? by adding 3-handles to each S? (one down,
one up), as in Figure 4.

Figure 4

The components of 8Z, Z, and Z;, inherit smooth structures from Y = L U
CP? } 9(—CP?); call these structures @, and ©;. Suppose @y is standard (there is a
similar argument if ©; is standard). Then there is a sufficiently large 4-ball of radius p,
pB*, in Zy = R so that over Zy — (p — 1)B*, Y is a smooth product (this follows if
(p —1)B* contains X N L). In fact, Y is a smooth product over L — int pB* with “ver-
tical” boundary pS* x I. If pS® x 1 bounded a smooth 4-ball in Z; C CP? § 9(-~CP?),
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then, since all diffeomorphisms of S? extend over B, we would have constructed a dif-
feomorphism between L and CP? § 9(—CP?). Thus either pS® x 1 does not bound a
smooth 4-ball in Zy or @ is exotic. This part of the argument is essentially in Lecture 3
in [G-M]; Freedman then shows that pS?® x 1 does bound a smooth 4-ball.

Next we show that Z smoothly imbeds in S* x I, so of course Z; lies in $* x 0 and 2,
in S* x 1. Consider the smooth product S* x I as an h-cobordism with one cancelling
pair of 2 and 3-handles. Thus in the middle level we see a pair of 2-spheres (the cosphere
S of the 2-handle and attaching 2-sphere S3 of the 3-handle) which meet transversely
in one point po. In a neighborhood of py, isotop S;3 so that S2 N S3 = pp Upy Up: and
there are two smooth Whitney disks D; and D, playing the roles that CH, and CH,
did earlier. Inside smooth thickenings of D; and D, namely D; x R? and D; x R?,
we can smoothly imbed CHy and CH,; in fact C H; smoothly equals D; x B? minus
a generalized cone on a Whitehead continnum. Thus the entire smooth manifold Z is
smoothly imbedded in S* x I.

Furthermore, as we saw for Y, there is an associated Morse function on S * x I whose
gradient vector field integrates to a smooth product above and below (S* x 1/2) —
(S2 U S3). Thus the smooth product structure on Z — X coincides with the smooth
product structure on Z — X as a subset of S* x I.

Recall that pB* is smoothly imbedded in Z; and hence in S* x 0. The complement
of a smooth n-ball in S” is always a smooth n-ball (because the smooth n-ball may be
ambiently isotoped to a standard round n-ball), so S* x 0 — pB* is a smooth 4-ball.
Moving up the smooth product structure, we see that in S* x 1, pS® x 1 bounds a
smooth 4-ball on the outside, hence in Z;. Thus R}, is exotic. 0

ADDENDUM: The smooth structures ©¢ and ©; on R* are equivalent, that is R‘éo is dif-
feomorphic to R§,. Then L can be obtained by “surgery” on R§, from CP? § 9(—CP?).

PROOF: We arrange a Z/2-symmetry on W as follows. S, and S3 meet in three points
and there is a diffeomorphism switching S, and S3. When the Casson handles CH; and
CH, are being constructed, there is always the freedom to add extra kinks (inside a
small ball) at any stage, so if, say, CH, has k fewer kinks than CH; at the i** stage, then
we add k extra kinks to CH;. Doing this at each stage, we get C H; to be abstractly
diffeomorphic to CH3, although they may be imbedded very differently in Y7 ;. This
diffeomorphism between CH; and CH, can be easily extended to an involution of W
switching S and Sj; after surgery on S; and S3 by hy and hj, the involution gives a
diffeomorphism between the two boundary components of Z, R‘éo and R‘él, which we
now refer to as R§.

We have seen that Y —X is a smooth product between L—X and CP? § 9(~C P?)-X;
and that I = (L — X)) Up, RY and CP? § 9(~CP?) = (CP? § 9(—CP?) ~ X1) Uy,
R} where ho and h; are diffeomorphisms on the overlaps. But then we can “surger”
CP? § 9(~CP?) by removing R% and gluing it back on by the diffeomorphism kg to
obtain L.






APPENDIX: THE ARF INVARIANT

Our discussion of the Arf invariant is lifted directly from [R-S, Appendix]. Let V be
a vector space over Z/2 equipped with an inner product,i.e. z-y€ Z2/2,z-y =y -z,
and given a linear map A : V — Z/2, there exists y € V such that A(z) = z - y for all
z € V.V = Hi(F?;Z/2) with the standard intersection form is the obvious example.
Let ¢ : V — Z/2 be a quadratic function, i.e. ¢ must satisfy

gz +y)=q(z)+qly) +z-y (2) forallz,yeV. (*)

Note that applying (*) to 040 and to =+ z shows that ¢(0) = 0 and -z = 0. Choose
z and a dual y to z so that z.y = 1 (y corresponds to the linear map which sends z to 1

z
and all other elements of V to zero). Then the hyperbolic pair H = ’ (;) é) defines

a unimodular subspace and hence an orthogonal complement H +. We continue to split
off hyperbolic pairs until nothing is left and we have shownthat V = H, @ H,®--- @ H,,.

It is easy to verify using (*) that on the three non-zero elements of H, z, y, and z+y,
q is either always one (this case is called H!'!) or ¢ is zero on two of the elements and
one on the third (this case is called H®? because we can choose a basis of two elements
on which g is zero). Thus (V,q) = ® H°C & HY', where r + s = 2n.

Given a basis z,, y1, T2, ys for H%° @ H°° we can choose a new basis =, + y; + =,
z1 +y1 +y2, 1+ T2 + Y2, ¥1 + T2 + y2 on each element of which ¢ is 1, so it follows that

-1
H°¢g H*® = H'' @ H"!. Thus(V,q) is isomorphic to either ®HYor @ HYO@HM
depending on whether s is even or odd.
-1

Finally, @ HO is not isomorphic to "® HOO @ H'! because out of the 22" elements

in V, ¢ is zero on 227~! 4 27! of them in @ H®0 and is zero on 227~1 — 27~1 of them
-1
in '@ HOC @ H.
n
We define the Arf invariant of (V,q), Arf(V,q) € Z/2, to be zero if (V,q) = & H®?

n—1
andoneif (V,q) > & H°°@H''. Note that the Arf invariant is additive under direct
sum.
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attaching map, 3.
Bing shrinking criterion, 87, 94.
blowing down, up, 14.
Borromean rings, 41, 42.
Casson handle, 72, 76-81, 83, 86-95, 99-101.
characteristic element, 25.
characteristic surface, 65, 66, 69.
decompositions, 86-87.
design, 86, 91-94.
distinguished torus, 76.
Dogachev surface, 8, 32, 98.
dotted circle, 4.
double, DMy, 7, 48.
exotic R*, 32, 95-101.
fake S° x R, 90.
finger moves, 75.
form

definite, 24.

even, 24.

integral bilinear, 24.

intersection, 20.

odd, 24.

signature, 24.

unimodular, 20, 24.
framed link, 4.
gaps, 93, 94.
Gluck construction, 16.
handle

cancellation, 13.

kinky, 76-81, 84, 101.

one, 4, 8.

slides, 9, 11.

three, 7.

two, 4.
handlebody, 3.
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birth, 3.
death, 3.
Hirzebruch index theorem, 57.
index, 27.
additivity, 29.
intersection form, 20.
Kummer surface, 8, 32, 57, 58, 64.
Leech lattice, 24.
lens spaces, 67-70.
mitosis, 89, 90.
p-invariant, 66-70.
Qgher, 65, 66.
259, 46.
03°, 57, 58.
Qipfn, 35.
Q3P 36, 66.
37", 46.
QP 49, 57, 58.
Poincaré homology sphere, 15, 42, 67.
quaternionic Hopf bundle, 43.
rational surface, 39, 98.
reimbedding theorems, 88,
big, 86, 89-91.
little, 89.
replication, 84.
Rohlin’s theorem, 31, 39, 57, 58, 64, 74.
Schoenflies conjecture, 18.
Seifert manifold, 50.
o, see index.
simply connected at oo, 83.
spin structure, 33-37.
Lie group, 34, 35, 38.
T3, 14,
T3,., 38, 64, 65, 66.
tower, 8183, 88-92,
triple points, 44, 45, 49-52.
Whitehead continuum, 78, 81-84, 86-94, 95, 104.
Whitney disk, 73-75, 99, 101.
Whitney trick, 72-75, 98.
zero framing, 5.



