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INTRODUCTION

Is A LocarLy flat imbedding of a differentiable (¢ombinatorial) manifold M” into a dif-
ferentiable (combinatorial) mamfold Q" ambient isotopic to a differentiable (combinatorial)
imbedding ?

A negative answer is obtained in the differentiable case by using exotic differentiable
structures on spheres. The simplest example is to let (7 be the ordinary g-sphere S9, M be
«an exotic g-sphere I and the imbedding be the identity map; but there does not exist a

differentiable imbedding of £2 onto 52 '

However in the combinatorial case, it is possible that all locally flat imbeddings are
ambient isotopic to combinatorial imbeddings, although the best known result is the
following of Gluck [4]: If M" is a finite polyhedron with 2n + 2 < 2 then a locally flat
imbedding is ambient 1sotoplc to a combinatorial imbedding.

It is the purpose of this paper to give an affirmative answer in the dﬁerentlable case
with dimensional restrictions as follows:

MAIN THEOREM. Let M" and Q? be differentiable manifolds with M" compact,
29>3n+1), and q=7. Letf: M- Q be a locally flat imbedding such that either
f(M)<=int Q or f is proper (f(0M) = dQ and f(int M) < int Q and q = 8. Let f be dif-
ferentiable on a neighborhood of a differentiable submanifold N* of M™. Let £> 0, Then
there exists an ambient e-isotopy F, : Q— Q, t € [0, 1], satisfying

(1) F, = identity,

(2) Fifis a differentiable imbedding,

(3) F, = identity on a neighborhood of f(N) and on the- complement of an e-neighborhood

of (M) for ali t e 0, 1],

@) |F(x)—x|<eforallxe Qandte]0,]].

It follows that the differentiable imbeddings are dense in the set of locally flat
imbeddings.

T This paper contains the major part of a dlssertatlon written under Professor Eidon Dyer and sub- '
mitted to the University of Chicago. The author is deeply grateful to Professor Dyer for his guldance and
encouragement. Many conversations with Walter Daum were also helpful, :
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208 R. C. KIRBY

Haefliger [5] has shown that two differentiable imbeddings which are isotopic are also
ambient diffeotopic with the above restrictions. Hence the problem of classifying locally
flat imbeddings up to ambient istotopy is equivalent to classifying differentiable imbeddings
up to diffeotopy.

(It should be mentioned here that in [8] the author misquoted Haefliger [5]. The
author claimed in [8] that « was an isomorphism; but & is not monic. An example of
Hsiang and Szczarba [6] provides two differentiable imbeddings of a 22-dimensional mani-
fold in R®7 which are not diffeotopic.)

§1 contains definitions and fixes notation. In 82 and §3 we will be concerned with the
problem of extending a §-isotopy between two differentiable imbeddings of M into @ to an
ambient s-isotopy between the imbeddings. This will be possible (Theorem 2.1) if
2g > 3(r + 1) and & is chosen small enough.

Theorem 2.1 provides the crucial tool in §4 for proving a special case of the Main
Theorem when M is an r-ball. In §5 the Main Theorem follows easily from the special case
using the handle-body decomposition of M.

)

In Euclidean space R, rB" will dénote the n-ball of radius r and 5"~ ! the (n — 1)-sphere
of radius r. U will denote the closure of U. If X < ¥, then N(X) ={ye Y|d(y, X) <¢}
where d is a metric on Y.

M" will always be a compact differentiable n-manifold and Q7 a differentiable g-
manifold: Differentiable will mean C*-differentiable.

- Letf: M- Q be acontinuous map and M, be a subset of M. If we say that f|M, is
an imbedding, we mean that fis one-to-one between points of M, and /(M) and (f[My)~*
is continuous at each point of f(3M,). On the other hand, if we say that f is an imbedding
on M,, we mean that ]}, is an imbedding and /(M) N f(M — M) = &.

~ An e<isotopy fi: M — Q, te[0, 1], is an isotopy satisfying |fi(x) — fo(x)] < & for all
xeM, te[0,1]. An ambient isotopy f;: @ — @, t€[0, 1], is always assumed to satisfy
f, =identity. A diffeotopy is a differentiable isotopy.

§2.

Let fp, fi: M — Q be two differentiable imbeddings connected by a é,-isotopy f, : M — 0,
te[0, 11. If 2¢ > 3(n + 1), it is possible to approximate f; by a §,-diffeotopy F;: M — Q,
te 0, 1] for which F, = f, and F; = f, (see [5, p. 48]). Then can we find an ambient e-
diffeotopy G,: @ — O, te [0, 1], such that G,F, = F,, where ¢ is a function of §, and §,?

The answer is yes if it is also known that |(3F,/6x;) — (6F0/6x | <4, for all €0, 1]
where the x,, { = 1, ..., n, are coordinates in some coordinate neighborhood on M (see [10]).
(In other words, F, must be close to Fy in the C‘—topology on the space of differentiable
jmbeddings of M in Q.)

HSEN =
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Without the extra condition on the partial derivatives, the answer is unknown How—
ever we obtain the followmg related resuit in which 4§ is a function of s.

THEOREM 2.1. Let fo: M~ Q be a differentiable imbedding. Let 2q>3(n+1). Let .
&> 0. Then there exists § > 0 such that if f,: M — Q, { € [0, 1], is a -homotopy for which f;

is a differentiable imbedding, then f, can be replaced by an ambient e-diffeotopy F,: QO — O,
tel0, 1], satisfying

(1) Fifo=11

(2) F, = identity on Q — N(fo(M)) for all t € [0, 1].

If 6M 5 (5, we assume that f, = f, in a.neighborhood of 8M for all t € [0, 1], and then F, also
satisfies :

(3) F, = identity on a neighborhood fo(6M) in Q for all te[0, 1].
The proof is given in §3.

We will need the following slight generalizations of a theorem of Haefliger [5, Theorem
6.1]. The first part of Theorem 2.2. below is an immediate corollary of Haefliger’s result.

THEOREM 2.2. Let £> 0 and 2 = 3(n + 1). Let f: M - Q be a continuous map. Then
there exists 8 > 0 such that if there is an imbedding F: M — Q with | f(x) — F(x)| < & for all
x € M, then f can be approximated via an a—homotopy by a differentiable imbedding g : M — Q
with | f(x) — g(x)| < =. .

If fis already a differentiable zmbeddmg on a o-neighborhood of a closed set C, then g
may be chosen equal to f on C.

THEOREM 2.3. Let &> 0 and 2q > 3(n + 1). Let f, be a differentiable imbedding of M
into Q. Then there exists § > 0 such that if a homotopy f,: M — Q salisfies (1) fi is a dif-
ferentiable imbedding, (2) |f(x) — fo(x)| < & for all x e M, t [0, 1], then f, can be approxi-
mated by a diffeotopy F,: M — Q, t e [0, 11, such that Fy = f, F; = f, and |F(x) — f(x)| <e
Jorall xe M, te]0, 11 '

If fy = fo on a S-neighborhood of a closea’ set C for all te [0, 11, then F, may be taken
equal to f on C.
Proof of Theorems 2.2 and 2.3. Familiarity with [5] is assumed. The proof is essentially

the same as that on pp. 79-81 of [5]. We need only replace the Lemma on p. 79 with the
Lemma below.

Letp > 0 (réspectively p’ > 0} be real numbers such that any two points of M" (respec-
tively Q%) which are closer than p (respectively p’) are joined by a unique geodesic whose
length is the distance between the points, We observe that

[F() = FO) < |FGe) ~ fGo)l + 1£ () — £
+1/0) = FO < [f(x) —f W] + 26.

LemMMA. For some 8, there exists a generic map h: M — O such that

(@) |h(x) —f(x)| < /4 for all xe M,

(b) if A(x) = W(y), then |x — y| < p, and, if x' and y' lie on the unique geodesic between
x and y, then |h(x") — h()| < &/4. -

i
|
|
i
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Proof. By continuity, we can pick o, 0 <a < p, such that if |x —y| <o then
[f(x) — ()] < /8 forall x, y € M. Sirice Fis an imbedding and M is compact, we can pick
>0 and choose & small enough so that if |F(x) — F(y)| < 8 + 26, then |x — y[ < ot
Hence if [f(x} — f(»)| < B8, then [F(x) — F(3)| < ﬁ + 248 and therefore |x — y| < o

Let h be a generic map of M into Q which agrees with f on a neighborhood of C
. such .that |f(x) — A(x)| < min(e/16, 2} for all xe M. Clearly (a) holds. If h(x) = h(),
then |f(x) — /()] < |f(x) — A1 + [A(x) — A + |A(y) — () < B2 + 0+ Bj2= P, so0
[x —yl<a<p Ifx" andy lie on the geodesic joining x and y, then |x’ — 3’| < & Thus
[h(x)y = RO S R — f) + )G = O+ IFO) — (¥ ") < 8/16+ /8 + /16 = /4.
So (b) holds and the Lemma is proved.

The remainder of the proof of Theorem 2.2 proceeds as in [5, pages 80, 81]. (The
s-homotopy between fand g arises naturally from Haefliger's method of proof.)

For Theorem 2.3, we can prove a similar Lemma for homotopies, and then again
. proceed as in [5, pages 80, 81].

We will need the following form of the diffeotopy extension theorem, due originaily
to Thom [12]. = £ ¢1is the only restriction on the dimensions of M and Q which is necessary.

THEOREM 2.4. Let f,: M = O, te0, 11, be a diffeotopy such that for some M, c M,
Si=foon M — My forallte |0, 11. Suppose that L, o 1) f{Mp)isin the mter:orof Qo =0.
Then there exists an ambient diffeotopy F,: Q — Q satisfving

(1) F, = identity

) Ffo=re

(3) F,=identityon Q — Qq for all t € [0, 1].

This statement of the theorem can be found in [9], along with an elementary proof.

§3.

Proof of Theorem 2.1 In view of Theorem 2.4, the way to get an ambient ¢-diffeotopy is
to extend a diffeotopy which moves points only inside a disjoint union of e-balls. Hence, we
change f; to a homotopy g,, ¢t €[0, » + 1], where each g,, f & [k, k + 1], moves points only
inside a disjoint union of small sets. It is necessary for g, to be a differentiable imbedding
fork=0,1,...,n+ 1, so that we may approximate each g,, £ € [k, k + 1], by a diffeotopy
G,, using Theorem 2.3. (See Fig. 1.) ‘ '

. j\ ot =golaf)
A

fl {ar}) = g2 (4]
FiG. 1.
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~ To sketch the first stage more precisely, suppose that { /%), j=1,2, ..., m,is a dis-
joint collection of small open subsets of M., Let y: M — [0, 1] be a continuous function which
in one on U% for each j and is zero except at points near U®/. Then §,(x) = = fym(X) 58
homotopy for which ¢; = f; on U%/ and g, = f, except at points near U%J. By Theorem 2.2,
gy is homotopic to a differentiable imbedding g,: M — Q with g, =f, on U/ and g, =,
except near U, There is an obvious homotopy g,, # & [0, 1], between g, =f;, and g,.
Then using Theorem 2.3, g, is replaced by an ambient diffeotopy G,, 7 € [0, 1]. This proce-
dure is repeated for other sets U™/ until all of f,(M) is moved to f,(M). The details are
complicated and tedious, so the reader might well skip them during a first reading of
the paper.

Pick a C‘-triangulation T of M and let p be the mesh of T. Let T be the first derived
subdivision. Order the vertices of T, {t°}, j=1,2 ..., m,, Let U’ be the interior of the
star of ¢ in 7! for each /. Order the vertices of T wh1ch are barycenters of 1-simplices
of T, {v'+}, j ., my, and let U be the interior of the star of o'+ in T1. Contlﬂue
ending with U/ "" bemg the interior of the star in T of the barycenter of an n-simplex of 7-

The {U},i=0, ..., n, J=1, ..., m, form an open cover of M with the property that

no point of M belongs to more than n -+ 1 of the U™, Let
UM = Uk, o, UR, UY, L, Ullys _

be open n-balls such that Ui, = UM for each i, j, k and {U%J, .} covers M. Let Ui =
UTL (U, |

Let .

= dmin{d(fo(M ~ Uph), fo(Tbi. 1)), d(Fo(T>), £ T2},

where the minimum is taken over all possible i, f, and k; and alt j, and j, with j, # j, and
where d(X, ¥) denotes the distance between X and Y.

For each i, we need many UJ, since we often have a mapping f of Uj into @ which is
an imbedding on U}, ,; in approximating f by an imbedding, we can keep f fixed only on
Uk+z Thus many approximations need many refinements.

Pick o, 0 < & < p; o will be determmed more specifically later. Let
a0—5<a1< S P

be real numbers such that, in Theorem 2.2, if & = oz, ;, then § = Z o &, satisfies the theorem,
and such that Y1 (n 42 — i) <a

Let y: M—10,1]1 be a contmuous function such that =000 M—-U° and° =1
on Ug. Let h?(x) = £, 000 fOr all x € M, te [0, 1]. Then

© B =fo,

(2) Eg =foon M -U2,,

(3) A3 =/, on U3,

@ Iﬁ"(x) RGO < 6 = i, -

(5) A} is a differentiable imbedding on (M — U%,) L T2,.
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Proof of (5). HU equals an imbedding, f, or'f;, on (M — U Hu ). LetxeM—
[(M-U°)Hu T ] Then the distance from f,(x) to fo((M — U%,) u T? 1) 1s greater than
3p. Since k=7, we have {h() — fo()l <oy <a<p for all ye M. Therefore the
distance from AJ(x) to AY(M — U%,) v UY) is greater than 3p — 2p = p > 0. Thus the
images under hY of (M — U%,) U T? and its complement in M are disjoint, and (5) holds.
(See Fig. 2. The integers —3, ..., 2 denote the images of the left end points of U2, ..., U$)

g (MY=19 (1)

We apply Theorem 2.2 to A9 to get I Y Q, te[0, 1], satlsfymg

(1) HS =

(2) HYisa dlﬁ'erentiable'nnbeddmg,

(3) H,O =H)=h} on M — U%; and on TS for all t €0, 1],

4) |HXx) — hY(x)| < o, for all x e M, te [0, 1].
Next we define g,: M — 0, te [0, 1], by

RS, for t e [0, 11,
9: = {Hg,_1 forte [, 1].

g, satisfies :

(D go =Jos. '

(2) g, = HY is a differentiable imbedding,

(3) g, =goon M — U%, and on UY,

@ g =fyon T3, ‘

(5) 1g.(x) — go(x)| < 00 + 0y, forall xe M, t € [0, 1].

Thus g, moves f,(U9) to fI(Uz) This is the first of 1 4 1 steps; next we Would move
g(U}) to £,(UY), and so on.

We must define the obvious homotopy from g, to f; which keeps gl(U ) fl(Uo)
fixed, First let A°(x) = f.(x) where T= °(s) + t(1 - 'yo(x)) Then

1) kS =H3,

(2) }10 _.]:19 )
() A=k} =f, on U} forall te [0, 1].
Now define -

g [H3 s te[03] o u
T e te 51D
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. Then wé have : : ‘
(1) by =g, (because hy=H} = 91)
() ki =1,
(3) il =hi=f, on U forallte[0, 1],
(@) [h}(x) — By < ap + oy for all xe'M, £ [0, 1].
(4) holds because 7 moves points no more than ft does which is Tess than a, = §, and
H? moves points no more than o;. '

The proof will proceed by induction. Suppose we have ¢t M —Q,te[0, k], satisfying
(1) go =fo.

(2) g, is a differentiable imbedding for i =0, 1, ..., k,

(3 g.=g;0n M — Ui_ forallte[i,i+11,i=0,1, ..., k—1,

(4) g =fron U;c:(% 2k o

(5) lgdx) — go(O < Yd-olk — i+ 1) - ;.

‘We observe that g,, e [0, 1], which was defined earher satisfies these propertles and
starts the induction.

Also suppose we have defined #if: M — Q, te [0, 1], satisfying
(D k= g
() K =11 _ :
(3 hf=hi=f, on | Jizf Ui forall te [0, 1],
(@) 1B — B0 < Yhoottis
We see that k) =f, or k! as recently defined, satisfies these conditions and therefore
starts the induction. ' :

Now we want to define g,, te [k k+ 1], and h"“ te[0,1]. Lety*: M~[0,1] be a
continuous function such that y* = 1 on U¥ and y* = 0 on M — U* 1+ Let 7(x) = B g (%)
forall xe M, te[0,1]. This homotopy satlsﬁes

() B = g,

2 Bt =g on M~TU",,

(3) E’f =f1 Ofl (Ui‘c:(}U %) UUO = U oUzk,

@) [hfx) — Bg0l < Yk o,

(5) Rt isa differentiable imbedding on (M — U% ;) U (U: OUZH D

Proof of (5). R¥ equals an imbedding, g, or fl, on (M —U: 1) Ul ) T8, Let
xeM—[(M— Ukl)U =0 Ul

Then the dlstance from folx) to fo((M — TE,) u Ul oUbisq is greater than 3p Since
= g, and g, = f,, we have

1(y) L CHOR (y)l +19:(y) — go(y)l <Z ~ ot + Z o(k—- i+ 1) % .
imolk i+ 2) o <0ﬂ<.0,
for all yeM Therefore: the dlstanoe from hf(x) to h"([M Uk} UHJUzkH) is

greater than 3p — 2p = p > 0. Thus the images .under. 2* of (M U" z) o (U, OUZk+1)
and its complement inM.are disjoint, and (5) holds. .
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Now we apply Theorem 2.2 to A%, with & = w44, and 8 = Y oe; and get H*:M - Q,
t e [0, 1] satisfying :

() Hy =k
(2 Hiisa djﬁ'erentiable imbedding,

(3) Hk ﬁk on M — U’i3 alld on U; 0U2k+2!
4) |Hk(x) Hk(x)| < Upyq- .
Then we define g,, t e [k, k + 1], by

gm {ﬁzf-z,, te [k, k1]
' \Hymam-r te[k+ 1 k+1],

satisfying
(1) go =70 ' ‘
() g, is a differentiable imbedding for i =0, ..., k + 1, (because g;,, = HY),
3 g=gionM—-U'sforte[i,i+1],i=0, ...,k (because g, = g, te [k, k + 1],

on(M—-U)Nn(M—-U)=M— U’£.3),

4 g4y =fion U; oUzs+2 (because gy, = H’f = E’f = fi on U§=OU§I¢+2)"

(5) 194%) — go(®) < Y 5¥dk—i+2)- o, forallxe M, t € [0, k + 1] (because, |g(x) —
go)| = [gu®) — go(®)| + 1 H5(x) — B§(x)| + | HE(x) — Bi(o) | < YE_o(k — i +1) - o
+ 3kt + ey g = Y2k —1+2) , where ' =t or 1.)

Now we must define K M-0te [0,1]. But first, let A%(x) = h¥(x) where

7 = %(x) + (1 — y"(x)). Then

(1) ]',’l'k — |

(2) ]3}; =fl’ )

(3) B =h =f, on [ Jiao Uk, for all te[0,1].

Then define

pEEL = {H1 2 te[0,4]
! R 4 tel4,1),

which satisfies 3
(1) h’:‘)“ = Gr+1s (beéause hgﬂ .,= H’f =gr11)
(2) K5t = fy, (because REYY = bt = £)),
(3) hi*t = pEtt —f on {J¥_ Uk, for all te[0, 1] (because on U; o Uopsz, We

have hi*' =K} =f, = gy.q = B§*" for all te[0,4], and K* = RS, , =, for |

allte[4, 1]).
(4) |HFTA(x) — BE ()] < DX 3o, (because H% moves points at most ey, ,, and A
moves points no more than h¥ does, which is Y533 a,).

Then, by induction we obtain g,: M — Q0,1 [0, n + 1] satlsfymg

(1) go = fos

(2) g; is a differentiable imbedding for i=0,1, ...,n + 1,

3) g.=g;onM—U' jforallte[i,i+1],i=0,1,...,n,

4 gpu1=fron U; =0 U ez =M,

(9 1gx) — g <YM —i+2) oy <a,forallxe M, tel0,n + 1].
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Pick f > 0, to be determined later. We want to apply Theorem 2.3 to gntelk, k+1),
with 8 =& Note that g, = g, on M — U* ; which is a neighborhood of M — Uk,. Since
19:x) — g(X)] < 19:(x) — go(x)| + |9u(x).— go(X)] <+ & =22, and 2« ‘may have been
chosen small enough to satisfy Theorem 2.3, we obtain a diffeotopy G,: M > Q,te [k, k + 1],.
satisfying : -

(1) Gy =grand Gyyy = giuy, ! .

(2 1G(x) —gdx)l < Bforall xe M, te [k, k + 1],

- (3 G =G,=gyonM-U%,. . -
By doing this for £ =0, 1, ..., n, we get a diffeotopy G,: M - Q, 1€ [0, # + 1], which also
satisfies

(4) GO =f0s and Gl =.f1!

(5) 1Gx) = fo( S 1G(x} — g(x)| + gx) — go(x) <+ for all te[0,n+ 1],
xeM. .

(5) implies
(50 1G(x) — Go(0)| <2(f + o) forall t, #' [0, n + 1], x e M.
Consider G;, te[k, k+1]. By choosing 2(B+a)<p we see that G(U%) <
N, (G(T%)) = N"forallte [k, k+1],j=1,2, ..., m,. Sincethe G(U%L), j=1, ..., my,
are more than 3p apart from each other. it follows that the N/, j = 1, ..., my, are disjoint,
The diameter of N/ is less than u + 2p. :

By applying Theorem 2.4 to G, te[k, k+1], k=0,1, ..., n, with M, = U* , and

Qo = 7=, N*/, we obtain an ambient diffeotopy F¥: 0 — 0, f e [0, 1], satisfying
(1) F& = identity, '

@ F ka = Gy _

(3) Ff =identity on @ — [ )™, N*/ for all ¢ € [0, 1]. :
In particular, Fi(N*/) < N*/ for j=1, ..., m,, te[0, 1]. By choosing i + 2p < &/(n + 1),
we see that FF also satisfies o

(4) |Fi(x) — x| < &/(n + 1), for all x < Q, & [0, 1];
. Finally, let F;: Q0 - @, t & [0, 1] be defined by .
F?n-l;l)-t . te [0: 1/(” + 1)]

p o T P2 te[lfn+1),2)n+1)]
‘ - -

FloayF* Lo FL o FY ‘te[nfn+1),1].
We verify the conclusions of Theorem 2.1. 4

(1) Fifo=Fi fp "—'Fi"Fi'"l "'F}'F?'Go =Fi‘"'F%'G1 = “—'Ff'Gn=n+1 = fi.
(2) F, = identity outside N (f,(M)) because each F% is fixed outside N(fo(M)). This

holds since G(U™}) = Ny, (fo(M)) which implies that N*/ = N LG(U%)) =
N ool Jo(M)) = Nfo(M)). : .
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(3) If 8M # &, and f, = f, in a neighborhood .of M, then it is clear from the proof '
‘that each map constructed can be made equal to f; in a perhaps smaller neighbor-
hood of oM.

This completes the proof.

Remark. Since the ambient diffeotopy F, was constructed in a local fashion, it is clear
that Theorem 2.1 holds even if M is not compact. Extra care must be taken with the approxi-
mations; &, 8, p, ¢; and f3 all must be chosen as functions from M to the positive real numbers.
The Uj* form a locally finite open covering of M on which ¢, §, p, o; and § have minimums.
The proof for non-compact M is then very similar to the compact case.

§4.

TEroREM 4.1. Let f be a locally flat imbedding of 2B" into the interior of QF, with
2g > 3(n + 1). Let U be a neighborhood of f(B") in Q. Then f can be extended to a stable
imbedding of R® (where 2B" is the usual subset of R into U. (In all cases, stable structures
are those provided by the differentiable structures.)

“Proof. Case 1: Suppose that ¢? = R = U. Then (see [2, Theorem 1'] or [11]) there
is-an ambient isotopy H,:R?— R, t€ [0, 1], such that H, = identity, H, f(x) = x, for all

xe2B" and H, is fixed outside a bounded set for all €0, I]. Then (H,)™* is a stable

imbedding of R? in R? extending f.

Case 2: Let 7 be any compact, differentiable manifold. It is possible to extend f to
an imbedding of R? in U (this is true for any g and #). f(R%) is diffeomorphic to R by a
diffeomorphism k. Then hf :B" — R®, according to Case 1, can be extended to a stable
imbedding (Af): R?— R Then h™t-(hf) is a stable imbedding of R? into U, extending f.

TarEoREM 4.2. Let f 1 RT— R?be a stable homeomorphismwithq = 1. Let g(x) : R — (0, c0)
be a continuous function. Then there exists an isotopy f,: R* — RY, t e [0, 1], satisfying

W) fo=/f _

" (2) f1 is a diffeomorphism

(3) |fx) — f(x)| < e(x) for all xe RY, t& [0, 1].

Proof. Let g, = min{e(x}|x € rB%}. Since f is stable, f]int 2B? may be approximated
(see [3] by a differentiable imbedding g,:int 28? — R? such that 7, extends to a homeo-
morphism g,: R — R? where g, = Son R —~int 2B? and [g,(x) — f(x)[ < 8, for a §, to be
chosen. fis isotopic to g, via the usual isotopy g,, ¢ € [1, 2], where - -

gf(x)={gz(-'(2_ 093" (%)) for z;fz

g2(x) : for t=2.
Certainly J, can have been chosen small enough so that [g{x) — f(x)| < &,/3 for all x ¢ R?

cand fel, 2]

Next, we approximate g, by a homeomorphism g5 : R? — R? for which Qaliﬂt 3R is
differentiable, g, = g, =/ outside int 3B%, g; = g, on int BY and |g1(x) — g,(x)] < 6,. As
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before, there is an isotopy g,, 7 €[2, 3), between g, and g, and &, may have been chosen
so that |g,(x)-— g,(x)| < &,/3 for all ¢ [2, 3]. xe Re.

Inductively, we can construct a sequence of homeomorphisms, {g;}, and isotopies
{91 teli—1,i]} where g,lintiB® is differentiable, g, = f outside int iB% g,=g;_, on
int(i — 2)B7, and |g,(x) — g;-,(x)| <e/3 forall te[i~ 1, 1], x e R '

Clearly f; = lim g,is a diffeomorphism Also, since we can assume that lim,, ,&(x) = 0,
then lim; , .5, = 0 and hence g, = im,,.g,=f,. Letf,=g, s= A+ -1, te]0, 1]
Then (1) and (2) hold and (3) is easily verified {for x e rB? — int(r — 1)B%, we have

L) — .01 S 1 G0) = g1 (O] + |9, 1 () — g0 + 19.0%) = gy 1| + 19,4 1(%) — g.(%)]

&, & .
S0+ + ;lers;zésrés(x),

L%

since g, ,(x) = g,(x) = fi(x) for integers k = » + 1).

Theorem 4.2 is a corollary of the following two theorems (letting 7971 = OB%). The
theorems are not needed here, so the proofs are omitted, but appear in 71

TeEOREM 4.3. Let f:R*— R? be a stable imbedding. Then there exists an isotopy

JiiRE = R t e [0, 1), satisfying (1)
) fo=1, ’
(2) 11 is differentiable on B, and
(3 fi=fon R*— 2B for all tc [0, 1}

TeeoreM 44. Let L' be a closed, compact, differentiable manifold and
J1L x [0, 1)~ Q be an imbedding with fIL x 0 differentiable. Let &> 0. Then there exists
an isotopy Fy: L % [0, 1} — Q satisfying '

(1) Fo =1, ‘

(2) F, is differentiable on L x [0, 1),

B) 1Fx, 8) — f(x, 5)| <& and

@ Fi=fonLx0. . _

If in addition f is defined on L x 1, we can require that F, = fon I. x 1.

Let f7:2B" - 02 be a locally flat imbedding with 2g > 3(z + 1). By Theorem 4.1, f*
extends to a stable imbedding £ of R? into Q. Let f=f"[int 2B% If f "(2B") lies in an »-
submanifold N of 0, we can assume that f(int 289 n N = f(int 2B"). For f:int 2B7- (,
we have the following Theorem: : ' '

THEOREM 4.5. Let s> 0, q 27and2q>3n+1). Let C* 1 he g compact, differentiahle
submanifold of 8B" = S"~*. Suppose that f is differentiable on a neighborhood U of "%
in B, Then there exists an ambient e-isotopy F,: Q — 0, te [0, 1], satisfying

(1) F,fis differentiable on int B" and a neighborhood of C*~* in B*,

Q) F, = identity N(f(B") nf(int BY. :

Proof. First we apply Theorem 4.2 to flint B%:int B? s f(int BY) & @ using the con~
tinuous map &:int B7— (0, o) which satisfies limy,;,;2(x} = 0. This provides an isotopy f;
which extends to an isotopy G,:int 2B7—» Q such that G, =7, G,|int B? is differentiable,
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and G, =f on int 2B7 — int B? for all # € [0, 1]. However G, is no longer differentiable on '
C"~1, The object is to move G;(U*) back to f(U"), keeping G differentiable on int B", where
/! is a smaller neighborhood of C*~* than U. The method is quite similar to the proof of
Theorem 2.1 so only the outline is given here (see {7] for details). o

Let Z*~1 be a neighborhood of C*~! in 8B" for which Z is a manifold and Z = U n 88",
For some real number @, 0 < @ < 1, fis differentiable on a neighborhood in B of the sub-
manifold Z x [a, 1] imbedded in B" by (x, f) = tx for x 3 Zc 6B” and 7 eJa, 1]. Subdivide
the interval [a, 1] by

a<@+DR2<@+YB < <@+kYk+1)<-- <1

Denote the interval

d+k a+k+1
[k +17 k+2 ]
by I.

‘We now apply Theorems 2. 1,22,23 and the technigues of Theorem 2.1 to G on
disjoint neighborhoods of the manifolds Z % I, k=0,1, ..., 00, where § = d5;, = min{e(x)]
xeZ x I} is chosen small enough for Theorem 2.1. That is, we find an imbedding
G, :int 287> ) which equals G, except on disjoint neighborhoods of Z % I, equals fon
Z x I, k=0, 1,..., and is differentiable on int B7. Then we find an isotopy G,, f & [1, 2]
between G, and Gz, differentiable on int B?. (See Fig. 3.)

G\ 18"

Fic. 3.

Then by the same methods, we obtain G, an imbedding equal to f on a neighborhood

"of Z x [a, 1] in B, equal to G, elsewhere and hence differentiable on int B" union U,
An isotopy G, t e [2, 3], dlﬁ‘erentlable on int BY, is constructed as before. Then F:0- Q,
1[0, 1], defined by F, = G, f 1, is the desired ambient isotopy. ‘

: . 8B
Proof of Main Theorem. M can be represented as a handlebody (B"; fy, kv oo S b0,
where

Mo = B", . )
My = M,|) B¥ x B"™*, where f; : S% 71 x B* ™M — M,
.t is a differentiable imbedding,

M=M,=M,_;\)B*x B, where f:S* 'x B %M,
f1 is a differentiable imbedding.




SMOOTHING LOCALLY FLAT IMBEDDINGS OF DIFFERENTIABLE MANIFGLDS 219

It is possible to extend f, and M; (to §,) so that
MO = 2BB,

M, =8, \J2B% x 28" % ~ where f; 1 (28" —int B¥) % 28"k s 0,
' 1 is a differentiable imbedding such that
FEH % BMy < oM, ‘

M =M, =M, |)2B% x 28"*, where f,: (2B —int B*) x B" ¥ M, __
fr is a differentiable imbedding such that
L(8%=1 x 2B"%) < 8M,_,.
We can assume that f is a differentiable imbedding of all of 2B x 2B" % in A1, (See
Fig. 4.) : '

Case 1: Assume that M = N = (¥, _
We apply Theorem 4.5 to f[M, with C" ™! =¢¥, ¢ replaced by &/(r + 1) and B" replaced
by 2B” = M. We obtain an ambient isotopy G,: Q — 0, te0, 1], such that
(1) G, = identity, :
(2) Gifis differentiable on int 28? > M,,
O G —xl<sfr+ Dforallxe Q, 1e [0, 1],
() G, = identity on Q — N,j¢1.1)(f () for all £ [0, 1].
Suppose for 0 < i < r we have an ambient isotopy G,: Q- Q, t €0, ], satisfying
(1) G, = identity, _
(2} G,fis differentiable on 2 neighborhood of M. 115
(3) [Gfx) — x| <i-g/(r + 1) forallxe Q, e 0, 1],
(4) G, =identity on @ — Nisie+ 0\ F(M;_ ) for all ¢ e [0, i]. .
Again we apply Theorem 4.5, this time to G,f;:2B% x 2B" % - 0. Again we replace
& by ¢/(r + 1} and B" by B* x 28" "% in Theorem 4.5. We let C*~! be §%~1 x B M and
observe that G,ff; is differentiable on a neighborhood of this set (see Fig. 4). Then we
obtain an ambient isotopy G,: 0 — Q, € [0, 1], satisfying -
(1) G, = identity, : ;
(2) G,G.f; is differentiable on int (B* x 28" %) and on a neighborhood of S~ x
2By —-k;’ ) ’ ’ o '
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(3) 16(x) — x| < &f(r + 1) for all x£Q, t£[0, 13,

4) G, =identityon @ — N ¢4 (G fF(B¥ % 2B"*))and on G f(M — f(B" x 287 k),

Define G,: 0 — Q, teli,i+ 1], by G, = G;_;* G;. Then ' '

(1) G, = identity,

(2) G, fis differentiable on a neighborhood of M;,

(3) |G(x)—x] <vforallxe @, te [0, 1] where v = (i + 1}-¢/(r + 1).

(4) G, = identity on @ — Nv(f (M) for ali te[0, i + 1].
By induction we obtain Gy: Q= Q, t& [0, r + 11 Thenlet F,: Q— 0, t &0, 1], be defined
by F, = Gty 1€ 10, 1) This F, clearly satisfies the theorem. _ :

Case 2: Suppose that M # ¢f and f(@M) cint Q. oM is collared in M, i.e.thereisa
differentiable imbedding g: 6M x I — M with g(x, 0) = x, for all x €M, Let M¥*=M —
(@M x 10, %)). The argument in Case 1 provides an ambient isotopy F, which smooths the
image under f of a neighborhood U of M#*in M. Then we follow F, by an ambient -isotopy
H,, te[0, 1], which shrinks F,f(M) inside F, f1 (). Then H Ff(M)isa differentiable im-
bedding. (H, is obtained by shrinking F\ f1 (M) locally using the pairs (V, V n Ff(M)),
which are homeomorphic to (R%, R*" — R7}.), obtained from the local flatness of F, f(M)).

Case-3: Suppose that a neighborhood U in M of a submanifold K of 8/ is imbedded
differentiably by . The arguments of Cases 1 and 2 provide an ambient isotopy smoothing
F(M) and fixing a smaller subneighborhood U’ of U containing K.

Case 4; Suppose that N # . Apply Case 3to M —int N, taking care that the ambient
isotopy fixes all of f(N).

Case 5: Finally, suppose f is proper. Then we smooth f (6M) in 8@ via an ambient
isotopy of Q, noting that 2(g — 1) > 3((n — 1) + 1), and recalling that g — 1 = 7. Then
using the collar of 8Q in Q, we can smooth the image of a neighborhood U of M in M.
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