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On the set of non-locally flat points of a
submanifold of codimension one’

By Rogion C. KIRBY

THEOREM 1. Let f: M™*— N" be an imbedding of a topological (n—1)-
manifold M without boundary into a topological n-manifold N without
boundary., Let E be the set of points of M at which f is not locally flat.
Then, if n = 4, E cannot be a non-empty subset C* of a Cantor set where C*

48 tame in M and f(C*) is tame in N,

Chernavskii [8] and Hutchinson [10] have announced results similar to
this, proved using engulfing techniques.

If 6M+ @ and ECaM, then the same conclusion holds, Let n: M—[0,1]
be a continuous function which is zero on oM and non-zero elsewhere. Con-
sider the manifold 7 in M x [--1, 1] defined by M = {(z, 1} | — M=) =t = Mx)}.
Since f is flat on the interior of M, fextends to an imbedding f': M — N for
which s | 811 is locally flat except at E. Since E is tame in oI if it is tame
in M, and since 838 = &, we may apply Theorem 1 to see that E cannot be
a subset of a Cantor set. _

Suppose p € F is isolated in E. Choose M’ to be a neighborhood of p with
p=E = EnN M, and let a be a flat arc in M’ through p. fla — p) is flat,
80 by [7], fle) is flat, and therefore p and f(p) are ‘tame, Applying Theorem
ltof| M : M'— N, we see that p¢ E' E. Thus E has no isolated points
and hence must be uncountable, since a closed countable subset of a manifold
must contain isolated points, This fact also follows from the theorem that
the union of flat cells is flat in codimension one (see [13] or [14]).

The fact that f(C*) is tame in N cannot be removed from the hypothesis
of Theorem 1. A counter-example in B* could be constructed from Blankin-
ship’s are [1]. This arc is wild at a Cantor set, but lies in an (% - 1)-sphere
which is locally flat except at the Cantor set; furthermore, this Cantor set is
tame in the (n — 1)-sphere.

 COROLLARY. Theorem 1 holds in the special case that M* = S** and
N* = R or 8~ -

TaEOREM 2. The corollary is eguivalent to Theorem 1,

* The research on this paper was partial]ly supported by National Seience Foundation
grant GP-6530. . :
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Figure 1-

PROOF OF THE COROLLARY. f(S*) separates R" into a bounded open set
Z “inside” f(S**) and an unbounded set “outside”. Since C* is tame in S*,
there is a homeomorphism of S** taking C* onto C, so we assume C* = C.
F1({8** — C) .is locally flat, so it is flat, so we can assume f imbeds the
pinched annulus A4 into B* with /(S x 1) in Z.

Since f| (J — C) is locally flat and f(C) is tame we can conclude from [4]
that fJ) is flat in B". ,

Let L = f{J x 1/2); it is flat. Denote points of R" lying on L by
t;,tei—1,1].

The idea of the proof is to find a map K: R*— R" such that K is a homeo-
morphism outside f(S** x 1/2), is the identity outside f(S*), and collapses
J(S™* x 1/2) to L, taking f(Z,) to t; (see (D) below). This “fills up” Z, which
is then shown to be an %-ball (see (E) below). Then f will be locally flat at
C, completing the proof of the corollary.

(A) Z is homeomorphic to B".
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Proor. Since f{J) is flat, we may shrink it to a point p by amap g: B"—
R" where g is a homeomorphism off f{J). Then ¢f(8* ) is an {n — 1)-sphere
which is locally flat except at p. By [5], g/(S™*) bounds an n-ball. In partic-
ular, the interior g(Z), is homeomorphic to B, so Z is also homeomorphic to

R",
' (B) Given ¢ > 0, there exists a homeomorphism G: B* — R* for which
(1) G = identity outside f{(S"),
(2) GAS™ x 1/2) c NL).
Furthermore, this holds for any other ¢’ and 4.

Proor. Let s be the map which shrinks I to a point p and is 2 homeo-
morphism elsewhere. sf(S"* x 1/2) is an {n — 1)-sphere with only one non-
locally flat point p. Then it bounds an n-ball by [6]. So each point

‘zesf(S™ x 1/2) is joined by a ray r., to p. Under s~ (not defined at p)
these rays are taken to rays called s—'r,, which may not converge to any point
of L, but do get arbitrarily close to L. Using these rays, we may slide
FA8* % 1/2) into N (L), fixing L. The result of this slide is called G.

(C) For any te(—1,1) — C and hence for any ¢ € D, there exists a map
H: R*— R"® which satisfies
(1) Hf(Zt) = iy,

(2} H = identity outside f(S™™),
(3) H isa homeomorphism outside f{S™" x 1/2) and on a neighbor-
~ hood of f(S™* x (1/2) — Z,).

It is implied by (2) that Hf is a locally flat imbedding of (S**! x 1/2) —
C — Z,. Also, (C) holds for other ¢’ and A'.

Proor. The set S7~* x (0,1/2] in A may be identified with B~* — 0.
Then f(B™* — 0) = f{S;* x (0, 1/2]) lies in Z as a closed, flat submanifold.
Adding o« to Z = R", we obtain X*. Letting f(0) = oo, f imbeds B** and is
flat on B* — 0. By Theorem 3, f extends to an imbedding f*: Z*— Z=,
flat on Z* — {0, «}. We have f*(Z"* — 0) C Z. We can ensure that

K

FrE = 0N Ay = FB - 0 = (s x (0,1 ])

by pushing f*(Z* — B} off f(A,;,) using the collaring of f(S").

Now let a be the shortest geodesic in £ joining ( F*)~(t,) to ==. Then
f*(a@) is locally flat mod f(o<), hence flat. Let s: Z— Z be the map which
shrinks f*(a) to ., is the identity on f(4,,), and is a homeomorphism off
SHa), Then S+ x 1/2) = f{Z,) bounds sf*(X~* — int B~™), an (n — 1)-
ball which is flat except at ¢;, and whose interior misses f(4,,). It is now
easy to construct H by shrinking this (n - 1)-ball to ¢;. ‘
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For there is an arc A C f(B™") (the image of a radius) from f(0) to a peint
b ¢ f(3B*"), which is locally flat mod f(0), hence flat. Then there exists a
map 8:; Z* — I* which is the identity on f(9B*), a homeomorphism off 4 and
shrinks A to b, Then sf(B") is an (#n — 1)-ball with boundary f(0B"") which
is locally flat except at the point b in its boundary. By [11] this ball is flat,
Therefore f(3B*") is unknotted in Z*, so a space homeomorphism takes it
onto S™*, Furthermore we can assume f(0) = 0,

Let §: &% — 2B* — 3B~ be a map satisfying

(i) j = identity in a neighborhood of 0,

(i) J(e0) =0,

(iii) 7|(Z** — {0, e=}) is an imbedding, and

(iv) if o is a compactified ray in ="~ beginning at 0, then j{0) lies in the
plane P determined by X, and p and winds once around éB** as in Figure 2,
In particular we require that j(0) “represents” a generator of

H(@2B* — 6B~ =7Z. _
To ensure local flatness later on, we assume that j is extended to a product

neighborhood N of Z*, pinched at 0 and oo, such that 7| N — {0, «} is an
imbedding into 2B* — oB*!, Now we wish to “unwind” fj(N), rotating

X

k)

Figure 2
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around S*, so that f7(0) and fj(co) no longer coincide; then Z*~* will be
* flatly imbedded except at 0 and o= and will contain a neighborhood of f(0) in
SB .

There is a natural homeomorphism of int B~ x S* onto Z* — S™* taking
0 x S*onto the compactified X, -axis and int B** x 0 onto int B! (here S*
is [0, 2] with 0 = 2x). Identifying Z* — S** with int B*~* x 5" in this way,
let p;:Z* — 8§ —int B> and p,: Z* - S**— S' be the projections. Let
g: R'— S" be the universal covering space (where ¢q(x) = x mod 27). Since N
is simply connected, the map p, fj: N - St lifts to a unique map »: N — R!
satisfying g» = p,f7 and A(0) = 0. In effect, » assigns to each point in N a
“winding number” around S**,

‘We now show that A(ec) = 0, Let o be a compactified ray in Z** as
above, 50 o is an arc with end points 0 and cc. Recalling that f(9B™)=S8""7%,
Ji(0) represents a generator of H(f (2B™ — 8*?), since j(p) represents a
generator of H,(2B* — S, By excision on the pair (£*, f(2B%)), we see that
HE» — 8, f(2B* — 8% = 0, (4 = 1, 2), and hence the inclusion f(25*) —
S*#c X — §*? induces an isomorphism of first homology groups. Thus f5(e)
also represents a generator of H (X* — S$*%). Finally, p,: Z* — 8**— S'ig a
homotopy equivalence, so p,fj(p) represents a generator of H(S'). Thus
© Mec) = £27.

To unwind the map f7, let a: B'— (—x, 7) be a homeomorphism which
ig the identity on (—x/2, ©/2), and define G: N— Z* — S** = int B~ x 8!
by G(z)={(p.f1(z), gar(z)). The verification that & is an imbedding is routine,
noting that A(0) = Mee). If ze B*!is sufficiently close to 0, then p,f7(z) =
p.f(z) and gan(z) = grz) = p,fi(2) = p.f(z). Thus ¢ = G| Z** agrees with
f near 0 and is locally flat off 0, o € X**, completing the proof. '
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