CODIMENSION-TWO LOCALLY FLAT EMBEDDINGS HAVE NORMAL BUNDLES

Robion C. Kirby

Let P^p and Q^q be topological manifolds of dimensions p and q, respectively, and let $i: P \to Q$ be a locally flat imbedding. If p+1=q and i(P) separates Q, then Brown has shown that i(P) is flat, i.e., has a trivial normal bundle [1]. We have a similar theorem in codimension 2.

Theorem 1. If p + 2 = q, \exists a neighborhood E of i(P) and a map $\pi : E \to i(P)$ which is a bundle v with fiber R^2 and structural group $\mathcal{H}_0(R^2)$, the space (with the CO-topology) of homeomorphisms of R^2 which fix the origin. v is unique up to ambient isotopy.

If $\partial P \neq \emptyset$ and $\tilde{P} = P \cup (\partial P \times [0, 1))$, then *i* extends to a locally flat embedding $\tilde{i}: \tilde{P} \to Q$, which then has a normal bundle.

Since $\mathcal{H}_0(\mathbb{R}^2)$ deforms to O(2) (see [9]), i(P) has a normal disk bundle.

Since $\mathscr{H}_0(R^2) \equiv \text{TOP}_2 \simeq O(2) \simeq S^0 \times S^1$, and since there is a universal bundle $\text{TOP}_2 \to E_{\text{TOP}_2} \to B_{\text{TOP}_2}$ with contractible total space E_{TOP_2} , we see that

$$\pi_i(B_{\text{TOP}_2}) = \begin{cases} 0, & i \neq 1, 2, \\ Z_2, & i = 1, \\ Z, & i = 2. \end{cases}$$

The topological two-plane bundles over P are classified by maps $P \to B_{\text{TOP}_2}$. Thus the oriented bundles over P are classified by $H^2(P; \pi_2(\text{TOP}_2)) = H^2(P; Z)$.

If $q - p \ge 3$, it is known that there exist locally flat embeddings (in fact, PL embeddings) which have no normal disk bundles [3]. But if q - p is large enough with respect to p, then normal bundles do exist [10]. Since normal bundles do not always exist, it would be nice to have normal block bundles and a good topological block bundle theory a la Rourke-Sanderson [11]. However, topological block bundles will have to differ somewhat from PL

block bundles because there are topological manifolds without handlebody structures in dimension four or five [7].

Section 1 contains notations and definitions, Section 2 has the main lemma, Theorem 1 is proved in Section 3, and Section 4 has an application on straightening handles.

1

Let R^n be euclidean *n*-space, $R^n_+ = \{x \in R^n | x_n \ge 0\}$, rB^n the ball of radius r in R^n , rS^{n-1} its boundary, and int B^n its interior.

 $i: P \to Q$ is said to be locally flat if for each $i(p) \in Q$, there exists a neighborhood N such that $(N, N \cap i(P))$ is pairwise homeomorphic to (R^q, R^p) , where p and q are the dimensions of P and Q. i(P) is flat if i extends to an embedding $i: P \times R^{q-p} \to Q$; i.e., i(P) has a trivial normal bundle. If $\partial P \neq 0$ and $i(P) \subset \text{int } Q$, i is locally flat (flat) if i extends to a locally flat (flat) embedding of $P \cup (\text{open collar on } \partial P)$. This condition is equivalent to $(N, N \cap i(P))$ being pairwise homeomorphic to (R^q, R^p_+) for $p \in \partial P$. If i is proper $(i^{-1}(\partial Q) = \partial P)$, then it is locally flat if $(N, N \cap i(P))$ is homeomorphic to (R^q, R^p_+) for $p \in \partial P$.

Let $\mathscr{H}_{Y}(X)$ be the space (with the compact open topology) of homeomorphisms of X which fix Y pointwise. A basis for the neighborhoods of the identity consists of sets of the form $N(C, \varepsilon) = \{h \in \mathscr{H}_{Y}(X) | d(h(x), x) < \varepsilon \text{ for all } x \in C\}$ for all compact sets C and $\varepsilon > 0$.

The following statements can be found in [2]. If L is locally flat in M and both L and M are compact or interiors of manifolds with boundaries, then $\mathcal{H}_L(M)$ is locally contractible. Let J and K be compact subsets with $J \subset \operatorname{int} K \subset M$. Given $\varepsilon > 0$, there exists $\delta > 0$ such that if $h_0 \in N(K, \delta)$, then \exists a canonical isotopy $h_t: M \to M$, $t \in [0, 1]$ with $h_1|J = \operatorname{identity}, h_t \in N(K, \varepsilon)$, and $h_t = h_0$ outside K.

Let $g_t: L \to M$ be a locally flat isotopy; i.e., $G = (g_t, id): L \times I \to M \times I$ is locally flat in a level-preserving way. Then g_t extends to an ambient isotopy of M. Furthermore, if g_t is small, then so is the extension and it is supported on a neighborhood of $G(L \times I)$.

We will say that A is a weak deformation retract of X if \exists a homotopy $H_t: X \to X$, $t \in [0, 1]$, with $H_0 =$ identity, $H_1(X) \subset A$, and $H_1(A) \subset A$.

2

The main new idea in Theorem 1 is contained in the next lemma. Then by applying it, using standard techniques, we get Theorem 1.

Lemma. Let $h: M \times R^2 \to M \times R^2$ be a homeomorphism with $h|M \times 0 = id$, where M is a compact manifold. Then h is isotopic to a fiber

preserving homeomorphism. Specifically, $\exists h_t : M \times R^2 \to M \times R^2, t \in [0, 1]$ with $h = h_0, h_t | M \times 0 = \text{id}$ for all t and $h_1(z \times R^2) = z \times R^2$ for all $z \in M$.

Proof. We will isotope h so that it becomes close enough to a rotation so as to apply local contractibility to move h to the rotation (= homeomorphism $\rho: M \times R^2 \to M \times R^2$ with $\rho(z, y) = (z, \rho_z(y))$).

Using polar coordinates for R^2 , we describe points of $M \times R^2$ by triples $(z, \theta, t), z \in M$, $(\theta, t) \in R^2$; h can be written $h(z, \theta, t) = (h_1(z, \theta, t), h_2(z, \theta, t), h_3(z, \theta, t))$. We will isotope h_1 and h_3 so that they are small enough (on $M \times KB^2$ for some K > 0) and h_2 so that it is close enough to a rotation.

Step 1. There is a well-known argument for making h_3 small. Let $C_t = M \times tS^1$ and $D_t = M \times tB^2$. We can assume by squeezing that $D_{1-\varepsilon} \subset h(D_1) \subset D_{1+\varepsilon}$ and $h(D_2) \subset D_{2+\varepsilon}$ (see Figure 1). We need to move $h(C_2)$ out between $C_{2-\varepsilon}$ and $C_{2+\varepsilon}$, without moving $h(C_1)$. For a small enough r > 0, $h(C_r) \subset D_{1-\varepsilon}$. We use the radial structure given by h to obtain a homeomorphism $f: M \times R^2 \to M \times R^2$ which slides $h(C_r)$ to $h(C_1)$ and fixes $h(C_2)$ so that $h(D_1) \subset f(D_{1-\varepsilon}) \subset h(D_2) \subset D_{2+\varepsilon}$. Then we use the radial structure given by f to slide $h(C_2)$ close enough to $C_{2+\varepsilon}$ so that it is between $C_{2-\varepsilon}$ and $C_{2+\varepsilon}$. Now $D_{1-\varepsilon} \subset h(D_1) \subset D_{1+\varepsilon} \subset D_{2+\varepsilon} \subset h(D_2) \subset D_{2+\varepsilon}$.

Figure 1

We may iterate this process countably many times so that $D_{t_i-\varepsilon_i} \subset h(D_{t_i}) \subset D_{t_i+\varepsilon_i}$, where the sequence $K=t_1>t_2>\cdots>0$ forms an arbitrarily fine subdivision of [0,K] and the ε_i are as small as desired. h_3 is now small on $M\times KB^2$. Call this new homeomorphism h'.

Step 2. Let $h''(x, \theta, t) = (h'_1(x, \theta, \delta t), h'_2(x, \theta, \delta t), (1/\delta)h'_3(x, \theta, \delta t))$. We claim that if δ is small enough, then h''_1 is arbitrarily small on $M \times KB^2$, and that h''_3 is still small enough. The first follows because h' is continuous and is the identity on $M \times 0$, and the second follows if $\{t_i\}$ is fine enough.

Step 3. We will isotope h'' so that on $M \times KB^2$ it is close enough to the rotation ρ defined by $\rho(z, \theta, t) = (z, \theta + h_2''(z, 0, t), t)$. Let $g = \rho^{-1}h''$. If h_1'' and h_3'' are small enough on $M \times KB^2$, then g will be small enough near $M \times 0 \times (0, K]$. In particular, given $\varepsilon > 0$, $\exists \delta > 0$ such that $g(z, \theta, t) \in M \times [-\varepsilon, \varepsilon] \times (0, \infty)$ for $\theta \in [-\delta, \delta]$ and $t \in (0, K]$ (see Figure 2).

Figure 2

Let \hat{g} be a certain finite covering of g:

$$M \times R^2 \xrightarrow{\hat{g}} M \times R^2$$

$$\downarrow^{\lambda} \qquad \qquad \downarrow^{\lambda}$$

$$M \times R^2 \xrightarrow{g} M \times R^2$$

Let $\lambda_1: S^1 \to S^1$ be defined by $\lambda_1(\theta) = n\theta(2\pi)$, the *n*-fold covering map. Let λ_2 be an approximation to λ_1 with the properties that $\lambda_2 = \text{id on } [-\varepsilon, \varepsilon]$ and $\lambda_2 = \lambda_1$ outside $[-2\varepsilon, 2\varepsilon]$, where we need to have chosen ε small enough. Finally, let $\lambda = \text{id on } M \times 0$ and $\lambda(z, \theta, t) = (z, \lambda_2(\theta), t)$ for t > 0. Then it is

easy to see that g lifts to a homeomorphism \hat{g} with $g = \hat{g}$ on the wedge $M \times [-\delta, \delta] \times (0, K]$. Therefore, g is isotopic to \hat{g} , via an isotopy fixing $M \times 0$.

It is not hard to verify that we can make \hat{g} arbitrarily small on $M \times KB^2$ by taking *n* large enough. By local contractibility, \hat{g} is isotopic to the identity on $M \times KB^2$, and hence on $M \times K^2$.

Since $\rho^{-1}h''=g$ is isotopic to the identity, it follows that h'', and therefore h, is isotopic to the rotation ρ (fixing $M\times 0$ throughout), finishing the proof of the lemma.

REMARK 1. Suppose h was fiber preserving on a neighborhood of a subset L of M. Then we can find an isotopy h_t with the additional property of being fiber preserving on a smaller neighborhood of L in M. The isotopies constructed in steps 1, 2, and 3 are all clearly fiber preserving if h is, except possibly the isotopy constructed using local contractibility. \hat{g} is small on each fiber over the neighborhood of L, so we isotope \hat{g} to the identity on each fiber separately. This is done in a continuous way (using local contractibility) so we get a fiber-preserving isotopy $\hat{g}_t: M \times R^2 \to M \times R^2$, with $\hat{g}_0 = \hat{g}$ and $\hat{g}_1 =$ identity on a neighborhood of L (see Section 1 on local contractibility). \hat{g}_1 can still be small enough to be isotopic to the identity elsewhere, using the relative form of local contractibility.

REMARK 2. If M is not compact, then we may find h_t with h_1 fiber preserving on an arbitrarily large compact submanifold. All the steps in the lemma rely on compactness. For example, in step 3, g may wind $M \times R^2$ around $M \times 0$ more and more as one approaches the open ends of M. But on a compact subset, this winding is bounded so some finite cover \hat{g} is small enough.

REMARK 3. We can require that h_t have compact support if we only require h_1 to be fiber preserving near $M \times 0$. Specifically, we get $h_t = \text{id}$ outside a compact set and $h_1(z \times KB^2) \subset z \times KB^2$ for z in a compact subset of M. One just checks that all constructions can be done in a neighborhood of $C \times 0$, C compact in M.

REMARK 4. The lemma still holds when h is only an embedding (with $h|M\times 0=$ id). This follows because we have noted (in Remark 3) that all constructions are done in a neighborhood of $M\times 0$. (If $\partial M\neq\emptyset$, we need to assume that h is a proper embedding.)

3

Proof of Theorem 1. Let P_0 be an open submanifold of P with a normal bundle v_0 over $i(P_0)$ in Q. Let R^p be a coordinate patch in P with $i(R^p)$ flat in Q, and let $M = P_0 \cap R^p$. Suppose at first that $v_0|M$ is trivial so that there is an embedding $\alpha: M \times R^2 \to Q$ with $\alpha(M \times R^2) = E(v_0|M)$. Since $i(R^p)$ is

flat, let $\beta: M \times R^2 \to Q$ be the flat structure on i(M). We can assume that $\beta(M \times R^2) \subset \alpha(M \times R^2)$, so as to consider $\alpha^{-1}\beta: M \times R^2 \to M \times R^2$. By the lemma (including the remarks, particularly 4), $\alpha^{-1}\beta = h$ is isotopic (with compact support) to an embedding h_1 with $h_1(z \times KB^2) \subset z \times KB^2$ for all z in some large compact subset of M. Then

$$\beta_t = \begin{cases} \alpha h_t & \text{on } M \times R^2, \\ \beta & \text{on } (R^p - M) \times R^2 \end{cases}$$

is an isotopy fixing $R^p \times 0$ with $\beta_1(z \times KB^2) \subset \alpha(z \times KB^2)$ for z in the above compact subset of M. By restricting β_1 to $R^p \times$ int KB^2 and then applying the microbundles-are-bundles argument in [8], we get that $\beta_1(z \times R^2) = \alpha(z \times R^2)$ for the above z. Thus, taking appropriate refinements of P_0 and R^p , say \tilde{P}_0 and \tilde{R}^p , we have extended v_0 to a bundle over $i(\tilde{P}_0 \cup \tilde{R}^p)$.

Now suppose $v_0|M$ is not trivial. Then we cover a large enough compact subset of M with open sets $M_1,...,M_k$ on which v_0 is trivial. We proceed as above with M_1 . Then for $M_2,...,M_k$, we use the relative form of the lemma in Remark 1, to make $\alpha^{-1}\beta$ fiber preserving over large compact subsets of $\bigcup_{i=1}^{J} M_{i}, j=2,3,...,k$. So as before v_0 extends over $i(\widetilde{P}_0 \cup \widetilde{R}^p)$.

If P is compact (with $\partial P \neq \emptyset$), we construct ν coordinate patch by coordinate patch, as above, using appropriate refinements; when P is open, paracompactness is sufficient for the same construction to work. This sort of argument is well known and we omit further details.

If $\partial P \neq \emptyset$, and $i(P) \subset \operatorname{int} Q$, we add an open collar to ∂P , extend i, and proceed as above. If i is proper $[i^{-1}(\partial Q) = \partial P]$, then we construct v on ∂P in ∂Q , extend to collars, and continue as above.

4

Proposition. $\mathcal{H}_{R^k}(R^n)$ is a weak deformation retract of $\mathcal{H}_{R^k-B^k}(R^n)$.

Proof. $\mathcal{H}_{R^k-B^k\cup 0}(R^n)$ is clearly a strong deformation retract of $\mathcal{H}_{R^k-B^k}(R^n)$. But by adding a point at infinity, compactifying each homeomorphism, and removing the origin, we see that there is a homeomorphism $\Omega: \mathcal{H}_{R^k-B^k\cup 0}(R^n) \to \mathcal{H}_{B^k}(R^n)$. Now $\mathcal{H}_{B^k}(R^n)$ deforms to $\mathcal{H}_{R^k}(R^n)$ by Theorem 1 of [8]. Applying Ω^{-1} to this deformation shows that $\mathcal{H}_{R^k}(R^n)$ is a weak deformation retract of $\mathcal{H}_{R^k-B^k\cup 0}(R^n)$.

Furthermore, if $h_0 \in \mathcal{H}_{R^k - B^k}(R^n)$ and h_t is the deformation taking h into $\mathcal{H}_{R^k}(R^n)$, then h_t has compact support. This follows directly from Kister's proof.

Theorem 2. Let $h: B^k \times R^2 \to B^k \times R^2$ be a homeomorphism with $k \neq 1$ and h = identity on $S^{k-1} \times R^2$. Then h is isotopic to the identity, fixing $h \mid \partial$.

Proof. We can assume that $h = \text{identity on } (B^k - \frac{1}{2}B^k) \times R^2$. Then the interior of $B^k \times R^2$ is R^{k+2} , and from the proposition above, it follows that h is isotopic (rel ∂) to a homeomorphism \bar{h} which fixes $B^k \times 0$. It is now easy to see that the method of proof of the lemma works here to give the desired isotopy of \bar{h} to the identity (rel ∂). [Since $\bar{h}|\partial=$ identity, it is not necessary to alter it on the ∂ in steps 1 or 2; since $k \neq 1$ and $\pi_k(\mathcal{H}_0(R^2)=0$, no alteration is necessary in step 3 either.]

Now consider the problem of straightening 3-handles (see [4], [5], and [6]). Let $h: B^3 \times R^n \to V$ be a homeomorphism, PL on the boundary, onto a PL manifold V. We wish to straighten h, i.e., find an isotopy h_t , $t \in [0, 1]$, with h_1 PL and $h_t | \partial$ PL. If $n \geq 3$, Sullivan has shown that $h | \partial$ extends to a PL homeomorphism $\bar{h}: B^3 \times R^n \to V$. However, \exists nonstraightenable 3-handles for $n \geq 2$, so \exists homeomorphisms $g = \bar{h}^{-1}h: B^3 \times R^n \to B^3 \times R^n$, identity on ∂ , which are not isotopic to PL homeomorphisms rel ∂ , when n > 3.

On the other hand, when n=2, we have just seen in Theorem 2 that any homeomorphism $g: B^3 \times R^2 \to B^3 \times R^2$, g= identity on ∂ , is isotopic to the identity, rel ∂ . Thus, since \exists nonstraightenable 3-handles $h: B^3 \times R^2 \to V$, we see that V cannot be PL homeomorphic to $B^3 \times R^2$ rel ∂ . Therefore, $B^3 \times R^2$ has more than one PL structure rel ∂ (in fact, two).

So nonstraightenable 3-handles $h: B^3 \times R^n \to V, n \ge 2$, arise in two ways: if n = 2, V is not PL homeomorphic to $B^3 \times R^n$ rel ∂ so of course h cannot be straightened; if $n \ge 3$, V is PL homeomorphic to $B^3 \times R^n$ rel ∂ , but the homeomorphism h is bad.

We say that two PL structures on a manifold are equivalent up to isotopy (homotopy) if the identity is isotopic (homotopic) to a PL homeomorphism.

From [4], [5], [6], and the above, the PL structures (rel ∂) up to isotopy on $B^3 \times R^n$, $n \ge 2$, correspond to $H^3(B^3 \times R^n, \partial; Z_2) = Z_2$ and the PL structures (rel ∂) up to homotopy correspond to Z_2 if z_2 if

Acknowledgment

The preparation of this paper was sponsored in part by NSF Grant GP-9627.

References

- 1. M. Brown, Locally flat imbeddings of topological manifolds, Ann. of Math. 75 (1962), 331–341.
- 2. R. Edwards and R. Kirby, Deformations of spaces of imbeddings, Ann. of Math. (to appear).

- M. Hirsch, On tubular neighborhoods of piecewise linear and topological manifolds, in Conference on the Topology of Manifolds (edited by J. G. Hocking), Prindle, Weber & Schmidt, Boston, 1968.
- 4. R. Kirby, Lectures on triangulations of manifolds, mimeographed notes, University of California at Los Angeles, 1969.
- 5. R. Kirby and L. Siebenmann, On the triangulation of manifolds and the Hauptvermutung, Bull. Amer. Math. Soc. 75 (1969), 742-749.
- R. Kirby and L. Siebenmann, For manifolds the Hauptvermutung and the triangulation conjecture are false, Abstract 69T-G80, Notices Amer. Math. Soc. 16 (1969), 695
- R. Kirby and L. Siebenmann, Foundations of topology, Notices Amer. Math. Soc. 16 (1969), 848.
- 8. J. M. Kister, Microbundles are fiber bundles, Ann. of Math. 80 (1964), 190-199.
- 9. H. Kneser, Die Deformationssatze der einfach zusammenhägenden flacher, Math. Z. 25 (1926), 362–372.
- 10. J. Milnor, Microbundles, I, Topology 3, Supplement 1 (1964), 53-80.
- 11. C. Rourke and B. Sanderson, *Block bundles*, *I*, *II*, *III*, Ann. of Math., 97 (1968), 1–28, 256–279, 431–484.