CODIMENSION-TWO LOCALLY FLAT
EMBEDDINGS HAVE NORMAL BUNDLES

Robion C. Kirby

Let PP and O be topological manifolds of dimensions p and g, respectively,
and let i : P — Q be a locally flat imbedding. If p + 1 = g and i(P) separates
Q, then Brown has shown that i(P)is flat, i.c., has a trivial normal bundle [1].
We have a similar theorem in codimension 2.

Theorem k. Ifp + 2 = g, a neighborhood E of i(P)and a map n : E — i(P)
which is a bundle v with fiber R* and structural group #,{R*), the space (with
the CO-topology) of homeomorphisms of R? which fix the origin. v is unigue up
to. ambient isotopy. '

If P # & and P = P U (@P x [0,1)), then i extends to a locally flat
embedding 7 : P — Q, which then has a normal bundle.

Since #,(R?) deforms to O(2) (see [9]), i{P) has a normal disk bundle.

Since #,(R?) = TOP, =~ 0(2) =~ §° x S', and since there is a universal
bundle TOP, — Eqgp, — Brop, With contractible total space Ergp,, we see
that i

0, i#12
T[i(BTOPz) =4 2Ly, i=1,
Z, i=2.

The topological two-plane bundles over P are classified by maps P — Brop,.
Thus the oriented bundles over P are classified by H*(P;m,(TOP,)) =
H¥P;Z).

If ¢ — p = 3, it is known that there exist locally flat embeddings (in fact,
PL embeddings) which have no normal disk bundles [3]. Butif g — pis large
enough with respect to p, then normal bundles do exist [10]. Since normal
bundles do not always exist, it would be nice to have normal block bundles
and a good topological block bundle theory a la Rourke-Sanderson [11].
However, topological block bundles will have to differ somewhat from PL
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block bundles because there are topological manifolds without handlebody
structures in dimension four or five [7].

Section 1 contains notations and definitions, Section 2 has the main
lemma, Theorem 1 is proved in Section 3, and Section 4 has an application
on straightening handles.

1

Let R" be euclidean n-space, R%, = {x € R"|x, > 0}, rB" the ball of radius
rin R®, rS"~ ! its boundary, and int B" its interior.

i:P— @ is said to be locally flat if for each i(p) € Q, there exists a neigh-
borhood N such that (N, N ~i(P)) is pairwisc homeomorphic to (R? R?),
where p and g are the dimensions of P and Q. i(P) is flat if i extends to an
embedding i:P x R"? > @Q; ie, i(P) has a trivial normal bundle. If
4P # Oand i(P) < int Q, i is locally flat (flat) if i extends to a locally flat (flat)
embedding of P uw (open collar on 6P). This condifion is equivalent to
(N, N m i(P)) being pairwise homeomorphic to (R4 RE) for pedP. M i is

- proper (i~ 1{(¢Q) = 8P), then it is locally flat if (N, N r i(P)) is homeomorphic

to (R%,R%) for pedP.

Let #(X) be the space (with the compact open topology) of homeomor-
phisms of X which fix ¥ pointwise. A basis for the neighborhoods of the
identity consists of sets of the form N(C, &) = {h e #H(X)|d(h(x), x) < ¢ for
all x € C} for all compact sets C and ¢ > 0.

The following statements can be found in [2]. If L is locally flat in M and
both L and M are compact or interiors of manifolds with boundaries, then
H;(M) is locally contractible. Let J and K be compact subsets with J < int
K < M. Given ¢ > 0, there exists § > 0 such that if hye N(K, &), then 3
a canonical isotopy k, : M —» M, te{0, 1] with h,|J = identity, h,e N(K, ),
and h, = h; outside K. ‘

Let g,: L. - M be a locally flat isotopy;ie, G =(g,id): L x I » M x [
is locally flat in a level-preserving way. Then g, extends to an ambient isotopy
of M. Furthermore, if g, is small, then so is the extension and it is supported
on a neighborhood of G{L x I).

We will say that 4 is a weak deformation retract of X if 3 a homotopy
H,:X - X, te[0,1], with H, = identity, H,(X) = A4, and H{d) c 4.

2

The main new idea in Theorem 1 is contained in the next lemma. Then by

- applying it, using standard techniques, we get Theorem 1.

Lemma. Let h:M x R* -+ M x R> be a homeomorphism with
WM x 0 = id, where M is a compact manifold. Then b is isotopic to a fiber
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preserving homeomorphism. Specifically, 3h,: M x R*> - M x R%te(0,1]
with b = hy, h|M x 0 = id for all tand hy(z x R*} =z x R? forallze M.

Proof. We will isotope h so that it becomes close enough to a rotation so
as toapply local contractibility to move k to the rotation ( = homeomorphism
p:M x R? = M x R® with p(z, y) = (2, p:()))-

Using polar coordinates for R?, we describe points of M x R? by triples
(z,0,1), ze M, (6,£)e R? ; h can be written h(z,8,t) = (h,(z,8,1), hy(z, 0, 1), hx(z, 6,1)).
We will isotope h, and h, so that they are small enough (on M x KB? for
some K > 0)and k, so that it is close enough to a rotation.

Step 1. There is a well-known argument for making h; small
Let C, = M x tS' and D, = M x tB>. We can assume by squeezing that
D,_, = k(D)) = D, and h(D,) = D, ., (see Figure.\]). We need to move
h(C,) out between C,_, and C, , ,, without moving i(C ). For a small enough
r >0, h(C,) = D, _,. We use the radial structure given by h to obtain a
homeomorphism f: M x R? — M x R* which slides A{C,) to A(C,) and
fixes #(C,) so that i(D;) = f(D,_,) = h(D,) < D, .. Then we use the radial
structure given by fto slide h(C,) close enough to C, .., so that it is between
C,_,and C,,. Now D,_, < D) c Dy, = Dy, c D)) = Dy

nC,) h(Cy) KC,)
Ci_, Ciys Caae= f(Casd)

Figure 1
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We may iterate this process countably many timesso thatD, ., = i(D,) =
D, +» where the sequence K = t; > t; > --- > 0 forms an arbitrarily fine
subdivision of [0, K] and the g, are as small as desired. k5 is now small on
M x KB? Call this new homeomorphism #'.

Step 2. Let h"(x, 0, £) = (hi(x, 8, 6t), hs{x, 6, 81), (1/8)h(x, 6, 1)) We claim
that if § is small enough, then hj is arbitrarily small on M x KB?, and that

3 is still small enough. The first follows because 4’ is continuous and is the
identity on M x 0, and the second follows if {;} is fine enough.

Step 3. We will isotope h” so that on M x KB? it is close enough to the
rotation p defined by p(z, 6,1) = (z, 8 + Hs3(z,0,¢),t). Let g = p~*h". If kY
and % are small enough on M x KB? then g will be small enough near
M x 0 x (0,K]. In particular, given ¢ > 0, 35 > 0 such that g(z,0,f)e
M x [—eg,¢e] x (0, 0) for 8 e[—4,d] and t (0, K] (see Figure 2).

gM x [—4,8) x (0,K])

Mx0 <5 M % 0 % (0, %0}

Figure 2

Let & be a certain finite covering of g:
M x R*4 M x R?

‘L.l l}l
M x R?% M x R~

- Let 4; : S — S? be defined by 4,(0) = nf{2r), the n-fold covering map. Let

42 be an approximation to 1, with the properties that ; = id on [—¢, ] and
Az = A4 outside [— 2¢, 2¢], where we need to have chosen ¢ small enough.

- Finally, let A = id on M x-0 and A(z, 8, t) = (2, A2(#), t) for £ > 0. Then it is
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easy to see that g lifts to a homeomorphism g wi;[h g= & on the wec.lge
M x [—8, 8] x (0, K). Therefore, g is isotopic to g, via an Isotopy fixing
MItX iso ﬁot hard to verify that we can make 2 arbitr:_iri'ly smgll on M x K 32
by taking n large enough. By local contractibility, £ is isotopic to the identity
on M x KB?, and hence on M x R% )

Since p~ A" = g is isotopic to the identity, it follows that h' R E}nd therefore
h, is isotopic to the rotation p (fixing M x 0 throughout), finishing the proof
Offziiifnnlin}?éuppose h was fiber preserving on a nfai.ghborhood ofa sub.set
L of M. Then we can find an isotopy h, with the ad(:htlonal pro_perty Qf being
fiber preserving on a staller neighborhood of L in M, 'I_'he isotopies con-
structed in steps 1, 2, and 3 are all clearly fiber preserving 1:f h is, except
possibly the isotopy constructed using local contrzictlblht}f. gis small on
each fiber over the neighborhood of L, so we isotope g to the identity on f:e'mh
fiber separately. This is done in a continuous way (2u51ng local czzontffactibﬂny)
so we get a fiber-preserving isotopy g, : M x R® — M x R? with g, =2
and #, = identity on a neighborhood of L (s'ee Segtlon 1 on loc_al con-
tractibility). 8, can still be small enoughto be 1.so_t.0p1c to the identity else-
where, using the relative form of local contractibility. . ‘

REMARK 2. If M is not compact, then we may find k, with h 1 fiber preserving
on an arbitrarily large compact submanifold. All‘ the steps 12 the lemma rely
on compactness. For example, in step 3, g may wind M x R*around M x 0
more and more as one approaches the open ends of M . But on a compact
subset, this winding is bounded so some finite cover g is sglall enough. _

REMARK 3. We can require that h, have compact support if we iny require
h, to be fiber preserving near M- x 0. Speciﬁcall_y, we get h, = id outm;l;;
compact set and A,{z x KB czx KB*forzina c.:ompa.c.t subset of M.
One just checks that all constructions can be done in a neighborhood of

compact in M. . .

C;(Er%ui( 4. "I;“he lemma still holds when # is only.an embedding (with
BM x 0 = id). This follows because we have noted (in Remark 3) that all
constructions are done in a neighborhood of M x 0. (If M # &, we need
to assume that £ is a proper embedding.)

3

Proof of Theorem 1. Let P, be an open submanifold qf P wi’fh al noprmal
bundle v, over i{(P) in Q. Let R? be a coordinate patc_h in P with i(R?) flat
in Q, and let M = P, n RF. Suppose-at first that volM is trivial 50 tha_t tlier'e
is an embedding « : M x R — @ with a(M . x R?) = E(vc|M). Since {R?) 1s
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flat, let f: M x R? — Q be the flat structure on i{M). We can assume that
BM x R*) < «{M x R?), so as to consider ¢ 'f:M x R* - M x RZ By
the lemma (including the remarks, particularly 4), « '8 = h is isotopic (with

- compact support) to an embedding £y with A,(z x KB?) < z x KB? for ali
z in some large compact subset of M. Then

oh, on M x R?
B: =

B on (R? — M) x R*

isan isotopy fixing R? x 0with 8,(z x KB?) < afz x KB for z in the above
compact subset of M. By restricting $; to R? x int KB? and then applying
the microbundles-are-bundies argument in [8], we get that filz x RY) =
a(z x R?) for the above z. Thus, taking appropriate refinements of P, and
R?, say P, and R", we have extended v, to a bundle over i(P, u R?).

Now suppose vo|M is not trivial. Then we cover a large enough compact
subset of M with open sets M,,..., M, on which vy is trivial. We proceed as
above with M. Then for M,,.., M,, we use the relative form of the lemma
in Remark 1, to make ™' fiber preserving over large compact subsets of

i_ M, j=23..k So as before vy extends over i(P, i RP).

If P is compact (with P # (%), we construct v coordinate patch by co-
ordinate patch, as above, using appropriate refinements; when P is open,
paracompactness is sufficient for the same construction to work. This sort
of argument is well known and we omit further details.

If 0P # (&, and i(P) = int Q, we add an open collar to dP, extend i, and

proceed as above. If i is proper [i~}(6Q) = 8P], then we construct v on 8P in
a0, extend to collars, and continue as above.

Proposition. #7%(R") is a weak deformation retract of #i _ pdR").

Proof. #rx - ge,o(R") is clearly a strong deformation retract of Hpx — pd R™).
But by adding a point at infinity, compactifying each homeomorphism,
and removing the origin, we see that there is a homeomorphism
1 - prso(R") = H3iu(R"). Now H#yd R") deforms to #gu(R") by Theorem 1
of [8]. Applying Q' to this deformation shows that Hr(R") is a weak

. deformation retract of H#ju._ g, o(R™.

Furthermore, if iy € #5—pd{R™) and h, is the deformation taking h into

- #rdR"), then h, has compact support. This follows directly from Kister’s

proof.
Theorem 2. Let h:B* x R* > B* x R? be a homeomorphism with k # 1

© and h ='identity on "' x R Then h is isotopic to the identity, fixing h|o.
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Proof. We can assume that i = identity on (B* — 3B x R*. Then the
iaterior of Bt x R? is R¥*2, and from the proposition above, it follows that
h is isotopic (rel 9y to a homeomorphism A which fixes B* x 0.1t is now easy
to see that the method of proof of the lemma works here to give the desired
isotopy of f to the identity (rel 8). {Since Fj¢ = identity, it is not necessary to
alter it on the @ in steps 1 or 2; since k # 1 and m{H(R*) = 0, no alteration
is necessary in step 3 either. ]

Now consider the problem of straightening 3-handles (see [4], [5], and

[6]). Let h:B* x R"— Vbea homeomorphism, PL on the boundary, onto
a2 PL manifold V. We wish to straighten h, ie., find an isotopy k., £€(0, 1],
with h, PL and A/ PL. li n = 3, Sullivan has shown that hj@ extends to a
PL homeomorphism h ‘B> x R"— V. However, 3 nonstraightenable 3-
handles for n = 2, so 3 homeomorphisms g = F-'h:B* x R"—= B*> x R",
identity on &, which are not isotopic to PL. homeomorphisms rel 8, when
nz=3. :
On the other hand, when n = 2, we have just seen in Theorem 2 that any
homeomorphism g : B> x R* — B® x R2, g = identity on 4, is isotopic to
the identity, rel 8. Thus, since 3 nonstraightenable 3-handies 2 : B*x RV,
we see that ¥ cannot be PL homeomorphic to B? x R? rel 8. Therefore,
B?® x R? has more than one PL structure rel @ (in fact, two).

So nonstraightenable 3-handles h : B® x R*— V,n > 2,arisein two ways:
ifn = 2, Vis not PL homeomorphic to B?® x R"rel dso of course h.cannot be
straightened; if n > 3, Vis PL homeomorphic to B*> x R" rel g, but the
homeomorphism F is bad. .

We say that two PL structures ona manifold are equivalent up to isotopy
(homotopy) if the identity is isotopic (homotopic) to a PL homeomorphism.

From [4], [5], [6], and the above, the PL structures (rel &) up to isotopy on
B3 x R", n>2, correspond to H¥B® x R",8;Z,}) = Z, and the PL
structures (rel 8) up to homotopy correspond to Z, ifn =2,0 ifn = 3.
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