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Dynamical systems: a statistical approach
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Dynamical systems: a statistical approach

Completely integrable Chaotic
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For general aspects see

Brin–Stuck Introduction to Dynamical Systems

The billiard on the right is a form of Sinai billiard.

For the discussion of chaotic flows on billiard tables see Wojtkowski

http://wmii.uwm.edu.pl/~wojtkowski/hb11.pdf

and references given there.

We should stress that the results discussed below are really for
smooth dynamical systems. There are technical difficulties in
extending them (e.g. meromorphy of the Ruelle zeta functions) to
billiards because of singularities and the presence of glancing
trajectories.

http://wmii.uwm.edu.pl/~wojtkowski/hb11.pdf


In the chaotic case positions and directions get uniformly
distributed:

Question: How long do we have to wait to have uniform
distribution?
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The length of time needed to have uniform distribution can be
estimated when we know exponential decay of correlations∫

f (ϕt(x))g(x)dm(x) =

∫
f (x)dx

∫
g(x)dx +O(e−γt)

This has a long tradition but general results are recent:

Dolgopyat On decay of correlations in Anosov flows, Ann. of Math.
147(1998)

Liverani On contact Anosov flows, Ann. of Math. 159(2004),

Tsujii Contact Anosov flows and the FBI transform,
Erg. Th. Dyn. Syst., 32(2012)

Nonnenmacher–Zworski Decay of correlations for normally
hyperbolic trapping, Inv. Math., 200(2015)



The most famous function of mathematics: Riemann zeta function

ζ(s) =
∏
p

(1− p−s)−1, p = a prime number

ζ(s) has a pole (singularity) at s = 1.

It has a lot of important zeros

− log |ζ(s)|



A dynamical analogue: Ruelle zeta function

Replace primes with prime closed orbits



A dynamical analogue: Ruelle zeta function

Replace primes with prime closed orbits

Replace p by log Tγ where Tγ is the length of a prime closed orbit.
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A dynamical analogue: Ruelle zeta function

Replace primes with prime closed orbits

ζD(s) =
∏
γ

(1− e−sTγ )−1

Replace p by eTγ where Tγ is the length of a prime closed orbit.

It turns out that the zeros and poles of ζD contain information
about statistical properties of the chaotic dynamical system.

That includes the time at which we achieve uniform distribution.



For an introduction to dynamical zeta functions and to the
literature see

http:

//homepages.warwick.ac.uk/~masdbl/grenoble-16july.pdf

Recent papers about meromorphic continuation of dynamical zeta
functions:

Giulietti–Liverani–Policott Anosov flows and dynamical zeta
functions, Ann. of Math. 178(2013)

Dyatlov–Zworski Dynamical zeta functions for Anosov flows via
microlocal analysis http://arxiv.org/abs/1306.4203

Dyatlov–Guillarmou Pollicott-Ruelle resonances for open systems,
http://arxiv.org/abs/1410.5516

Microlocal approach to Anosov systems started with
Faure–Sjöstrand Upper bound on the density of Ruelle resonances
for Anosov flows, Comm. Math. Phys. 308(2011)

http://homepages.warwick.ac.uk/~masdbl/grenoble-16july.pdf
http://homepages.warwick.ac.uk/~masdbl/grenoble-16july.pdf
http://arxiv.org/abs/1306.4203
http://arxiv.org/abs/1410.5516


Computational methods for zeta functions were developed by
Cvitanovic, Eckhardt, Gaspard...

A recent mathematical account and references:

Borthwick–Weich Symmetry reduction of holomorphic iterated
function schemes and factorization of Selberg zeta functions,
http://arxiv.org/abs/1407.6134

A slightly different zeta function is needed to obtain the rate of
decay to equilibrium: in addition to closed orbits it also includes
the instability factors:

ζ1(s) := exp

(
−
∑
γ

T#
γ e−sTγ

Tγ | det(I − Pγ)|

)
.

http://arxiv.org/abs/1407.6134


Trouble with all this: Few real systems are purely completely
integrable or purely chaotic.

The simplest (?) flow exhibiting chaotic behaviour:

ẋ1 = x2, ẋ2 = −x1 + x2x3, ẋ3 = 1− x2
2 .

Technical asides:

simple: it is the contact flow for e−|x |
2/2(x2dx1 + dx3)

chaotic behaviour: positive Lyapounov exponents



These ordinary differential equations are called the Nosé–Hoover
system and have origins in molecular dynamics.

They were rediscovered by Sprott in a computer search for simple
systems with positive Lyapunov exponents. The system is simpler
than the famed Lorenz equations and easier remember for
mathematicians because of the simple contact form.

For a recent account and references see

Jafari–Sprott–Golpayegani Elementary quadratic chaotic flows with
no equilibria, Phys. Lett. A 377(2013).



Trouble with all this: Few real systems are purely completely
integrable or purely chaotic.

The simplest (?) flow exhibiting chaotic behaviour:

ẋ1 = x2, ẋ2 = −x1 + x2x3, ẋ3 = 1− x2
2 .

Completely integrable Chaotic
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A useful visualization: Poincaré section
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A useful visualization: Poincaré section

Question 1: Do we have equidistribution in the chaotic sea?

chaotic sea: the blue region



Although the movies and the picture suggest existence of invariant
sets of positive measure, failure of ergodicity for the Nosé–Hoover
was established only recently in

Legoll–Luskin–Moeckel Non-Ergodicity of the Nosé–Hoover
thermostatted harmonic oscillator, Arch. Ration. Mech. Anal.
184(2007).



Question 1: Do we have equidistribution in the chaotic sea?

Question 2: What happens in many degrees of freedom/infinite
dimensions?

A relevant example: Power spectrum of El Niño



The El Niño example comes from

Chekroun–Neelin–Kondrashov–McWilliams–Ghil, Rough parameter
dependence in climate models and the role of Pollicott–Ruelle
resonances, Proc. Nat. Acad. Sci. 111(2014)



Question 1: Do we have equidistribution in the chaotic sea?

Question 2: What happens in many degrees of freedom/infinite
dimensions?

A relevant example: Power spectrum of El Niño

Figure credit: Proc. Nat. Acad. Sci. 2014



To conclude:

Can we bring methods which have been successful in the
study of chaotic systems to the study of mixed systems?

What happens on the quantum level? (Mathematically, what
are possible results about eigenvalues and eigenfunctions.)

Can we visualize/understand complicated multidimensional
systems using ideas from chaotic dynamics?

Can we find complete integrability behind some interesting
mixed systems? (Just as random matrix theory models
quantum systems with underlying chaotic dynamics.)



For a recent result for mixed systems close to completely integrable
systems see

Guardia–Kaloshin–Zhang A second order expansion of the
separatrix map for trigonometric perturbations of a priori unstable
systems, http://arxiv.org/abs/1503.08301

For a survey of results on partially hyperbolic systems see
Hasselblatt–Pesin

https:

//www.math.psu.edu/pesin/papers_www/HP-survey.pdf

For surveys of problems in quantum chaos see Nonnenmacher

http://arxiv.org/abs/1005.5598

http://arxiv.org/abs/1105.2457

For results on eigenfunction statistics for (special) mixed systems:

Galkowski http://arxiv.org/abs/1209.2968
Riviere http://arxiv.org/abs/1209.3576

Gomes http://arxiv.org/abs/1504.07332.

http://arxiv.org/abs/1503.08301
https://www.math.psu.edu/pesin/papers_www/HP-survey.pdf
https://www.math.psu.edu/pesin/papers_www/HP-survey.pdf
http://arxiv.org/abs/1005.5598
http://arxiv.org/abs/1105.2457
http://arxiv.org/abs/1209.2968
http://arxiv.org/abs/1209.3576
http://arxiv.org/abs/1504.07332

