Practice Midterm 2

Problem 1. Consider the matrix

$$
A=\left[\begin{array}{lll}
1 & 2 & 3 \\
2 & 1 & 0 \\
1 & 1 & 1
\end{array}\right]
$$

Calculate its characteristic polynomial. Determine bases for each of the eigenspaces of A. Diagonalize A if possible.

Problem 2. Find numbers x and y so that the product $\left[\begin{array}{cc}1 & 2 \\ 2 & 4 \\ -1 & 0\end{array}\right]\left[\begin{array}{l}x \\ y\end{array}\right]$ is as close as possible to the vector $\left[\begin{array}{l}20 \\ 40 \\ 80\end{array}\right]$.

Problem 3. Let $W \subset R^{4}$ be the subspace

$$
W=\operatorname{span}\left\{u_{1}, u_{2}, u_{3}\right\}, \quad u_{1}=\left[\begin{array}{l}
1 \\
2 \\
2 \\
0
\end{array}\right] u_{2}=\left[\begin{array}{l}
2 \\
0 \\
0 \\
1
\end{array}\right] u_{3}=\left[\begin{array}{l}
0 \\
1 \\
3 \\
1
\end{array}\right]
$$

Find an orthogonal basis for W.

Problem 4. Give an example of a $3 x 3$ matrix with eigenvalues $1,2 \pm 3 i$.

Problem 5.TRUE or FALSE (justify your answers)
a) If A is an $n \times n$ matrix so that $A^{2}=A$ then its only possible eigenvalues are 0 and 1 .
b) Let A be an $n \times n$ matrix. If there is an orthonormal basis in R^{n} consisting of eigenvectors of A then A must be symmetric.
c) Any triangular matrix is diagonalizable.
d) If A is a square matrix with $A^{T} A=I$ then its rows are orthogonal.

