Sample Final Exam

1.(20 points) Evaluate the following integrals:

> a) $\int(1+\sqrt{1+x})^{-1} d x$
> b) $\int x \ln \sqrt{1+x^{2}} d x$
> c) $\int_{0}^{\pi / 6} \tan ^{4} x \sec ^{2} x d x$
> d) $\int \frac{x}{\left(x^{2}+x+1\right)\left(x^{2}+1\right)} d x$
2. (15 points) Find the convergence radius for the series:

$$
\begin{array}{r}
\text { a) } \sum_{n=1}^{\infty}(1+n)^{2} x^{n} \\
\text { b) } \sum_{n=0}^{\infty} 4^{n} x^{n^{2}} \\
\text { c) } \sum_{n=2}^{\infty}(-1)^{n} \sin \frac{1}{n} x^{2 n-3}
\end{array}
$$

3. (15 points) Solve the second order differential equations:

$$
\begin{array}{cc}
\text { a) } y^{\prime \prime}-y^{\prime}=e^{x}, & y(0)=y^{\prime}(0)=0 \\
\text { b) } y^{\prime \prime}+y=\sec x, & y(0)=0, y^{\prime}(0)=1 \\
\text { c) } y^{\prime \prime}-2 y+2=0, & y(0)=1, y^{\prime}(0)=0
\end{array}
$$

4. (10 points) Solve the first order differential equations:

$$
\begin{gathered}
\text { a) } y^{\prime}+x y=x, \quad y(0)=\frac{1}{2} \\
\text { b) } y^{\prime}=(1+x) /(x y), x>0, y(1)=2
\end{gathered}
$$

5. (5 points) The series

$$
\sum_{n=0}^{\infty} 2^{n} \sin \left(\frac{1}{3^{n}}\right)
$$

a) diverges b) converges by the alternating series test c) converges by the root test d) converges by the comparison test e) converges by the integral test.
6. (5points)

$$
\begin{gathered}
\int_{0}^{x} e^{t^{2}} d x=\quad \text { a) } e^{x^{2}}-1 \\
\text { c) } \sum_{n=0}^{\infty} \frac{\sum_{n=0}^{\infty} x^{2 n} n!}{(2 n+1) n!} \\
\text { d) } \sum_{n=0}^{\infty} \frac{x^{2 n+1}}{(n+1)!} \\
\text { e) } \sum_{n=0}^{\infty} \frac{x^{n+1}}{(n+1)(2 n)!}
\end{gathered}
$$

7. (5 points) A body with mass 2 is attached to a spring with elastic constant 3 and friction coefficient 4 . The equation of motion for the string is
a) $2 x^{\prime \prime}+3 x^{\prime}-4 x=0$
b) $3 x^{\prime \prime}-4 x^{\prime}+2 x=0$
c) $6 x^{\prime \prime}+4 x=0$
d) $2 x^{\prime \prime}+4 x^{\prime}+3 x=0 \quad$ e) $4 x^{\prime \prime}+3 x^{\prime}+2 x=0$
8. (5 points) Choose the optimal estimate among the ones given:

$$
\sum_{n=101}^{\infty} n^{-\frac{3}{2}} \leq \quad \text { a) } 0.001 \text { b) } 0.01 \text { c) } 0.0033 \text { d) } 0.1 \text { e) } 0.33
$$

9.(5 points) The series

$$
\sum_{n=1}^{\infty} \frac{\cos (n \pi)}{n^{2 p}}, \quad p>0
$$

a) converges conditionally for all $p>0$.
b) converges absolutely for all $p>0$.
c) converges for $p>1 / 2$ and diverges for $p \leq 1 / 2$.
d) converges absolutely for $p>1 / 2$ and converges conditionally for $p \leq 1 / 2$.
e)converges absolutely for $p>1$ and converges conditionally for $p \leq 1$.
10. (5 points) The initial value problem

$$
y^{\prime \prime}+x^{2} y^{\prime}=0, \quad y(0)=0, y^{\prime}(0)=1 / 3
$$

is solved by the following power series:
a) $\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{3 n+1}}{(3 n+1) 3^{n} n!}$
b) $\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{3 n+1}}{(3 n+1) 3^{n+1} n!}$
c) $\sum_{n=0}^{\infty} \frac{(-1)^{n+1} x^{3 n+1}}{(3 n+1) 3^{n} n!}$
d) $\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{3 n+1}}{3 n!}$
e) none of the above.
11. (5 points) The function $f(x)=\ln \left(1+2 x+x^{2}\right)$ is best approximated near $x=0$ by a) 0 b) $2 x-x^{2}$ c) $2 x$ d) $2 x+2 x^{2}$ e) $2 x+x^{3}$
12. (5 points) The improper integral

$$
\int_{0}^{\infty} \frac{x+1}{x^{\frac{3}{2}}} d x
$$

is
a) convergent
b) convergent at 0 , divergent at ∞.
c) convergent at ∞, divergent at 0 .
d) divergent at both 0 or ∞.
e) none of the above.

