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1 Introduction

The aim of the paper is to develop the main Fourier Analysis techniques which are needed

in the study of optimal well -posedness and global regularity properties of the Yang-Mills

equations in Minkowski space-time Rn+1, for the case of the critical dimension n=4. We

recall, see [K-M3] for example, that the Yang-Mills equations can be expressed in the form,

Dµ
(A)Fαµ = ∂αFαµ + [Aµ , Fαµ] = 0. (1.1)

Here Fαβ = ∂aAβ − ∂bAb + [Aα , Aβ] represents the curvature of a connection 1 -form , or

gauge field, A = Aαdx
α with values in the Lie Algebra of a classical Lie group of matrices

such as SU(N) or SO(N). The equations 1.1 are invariant, up to a conjugation, under the

gauge transformations

Aα −→ OAαO
−1 − ∂αOO

−1,

with O elements of the correponding group. They are obtained by considering the critical

points corresponding to the Lagrangean 1
4
< Fαβ, F

αβ > with < , > the positive definite

Killing form of the Lie algebra. The equations have a finite number of conservation laws,

among them the total energy,

E(t) =
( ∫

Rn
|E(t, x)|2 + |H(t, x)|2

) 1
2

,
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which plays a leading role in questions of regularity. Here E and H represent the electric

and magnetic1 parts of the curvature F .

Observe that the Yang–Mills equations remain invariant under the scale transformations,

xα → λxα, A→ λ−1A, F → λ−2F.

The total energy of the rescaled field is λ
n−4

2 of the energy 2 of the original field. Thus the

total energy E is invariant under scale transformations in dimension n = 4, which is called

the critical dimension. The dimensons n ≤ 3 are subcritical while n > 4 are supercritical.

For convenience we call sc = 1 + n−4
2

= n−2
2

the critical Sobolev exponent associated to our

evolution problem. The reason for this is the fact that the H
n−2

2 norm of the initial A is

invariant under the above scale transformations. With this notation sc = 1 in the critical

dimension n = 4 and corresponds, roughly3 to the energy norm E .

Therefore, for n ≤ 3, sc < 1 the equations are subcritical. In this case , by performing

the above scale transformation, any global finite energy initial data set is equivalent to one

with arbitrary small finite energy. Thus, to prove a general global regularity result, for

arbitrary large data with finite energy, it suffices to study the question of local existence and

uniqueness of solutions corresponding to data having small global energy. This was achieved,

in the case of dimension n = 3 in [K-M3]. It is important to remark that in that case one

had roughly a room of order4 1
2
.

In general one cannot expect5 any existence and uniqueness result for data A possesing

less differentiabilty than the critical exponent s = sc. In particular , in the case of the

critical dimension n = 4, one cannot expect any existence and uniqueness result for data

possesing less differentiabilty than provided by the energy norm. Morever , any local in

time well-posedness result for finite energy data extends automatically , by the same scaling

1See [K-M3] for precise definitions.
2In other words if A(xα) is a solution of 1.1 so is Ã(xα) = λ−1A(λ−1xα) with curvature F̃ (xα) =

λ−2F (λ−1xα). Therefore the total energy Ẽ of Ã is λ
n−4

2 the total energy E of A.
3Expressed in terms of A the energy norm E contains not only the first derivatives of A but also lower

order terms.
4In terms of differentiability of the data , roughly speaking the optimal differentiability exponent for the

initial data should be compatible with having the initial connection A ∈ H
1
2 (R3) and its curvature H[A] in

H− 1
2 . The problem of optimal well-posedness, near s = 1

2 , remains open.
5In fact any local existence result in a class of data Hs, s < sc will automatically be global in time, in

view of the above scale transformations. It is however widely expected that the Yang -Mills in dimensions
n higher than 4 , and for that matter all supercritical equations, are not globally regular. Morover one
can easily show, by a simple iteration argument, that for data below the critical exponent, each consecutive
iterate will lose derivatives and thus any conceivable perturbation argument based on linear theory would
have to fail.
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argument, to a global one. The experience we have so far with critical problems , both in

the elliptic and hyperbolic case, suggests that one can only hope to obtain a well posedness

result, based on estimates, for small energy data. One hopes that once such a result is proved

one would need an additional ”nonconcentration” type argument, based on apriori estimates,

to reduce the case of large energy to small energy and thus obtain a global regularity result.

Here, on the other hand, we concentrate on the question of well-posedness forHs data6 for

s > 1, arbitrarily close to the critical exponent7. In this case the difference between small and

large data is concerns only the size of the life-span of the corresponding solutions8. However,

to avoid technical difficulties which are irrelevant at this point, we shall only consider the

question of well-posedness for small Hs data, s > sc in dimensions n ≥ 4.

An important idea, introduced in [K-M2] and [K-M3], in dealing with the question of

global regularity for gauge theories, is to make use of the Coulomb gauge. Expressed relative

to this gauge the nonlinear quadratic terms, more precisely those which contain derivatives

of the connection A, of the Yang-Mill equations exhibit the ” null structure” which allows

one to get the improved bilinear restriction estimates such as those first derived in [K-M1]

and used in [K-M3]. Since we are dealing here only with small data we may as well assume

the existence of a global Coulmb gauge9. Expressed relative to such a gauge the Yang-Mills

equations take the form:

∆A0 = 2[∂iA0, Ai] + [Ai, ∂0Ai] + [Ai, [A0, Ai]] (1.2)

�Ai + ∂t∂iA0 = −2[Aj, ∂jAi] + [Aj, ∂iAj] + [∂tA0, Ai] + 2[A0, ∂tAi] (1.3)

− [A0,∇iA0]− [Aj, [Aj, Ai]] + [A0, [A0, Ai]] (1.4)

∇iAi = 0. (1.5)

Here A0 is the temporal component, Ai the spatial component of the connection. Ignoring

all the nonlinear terms which contain the ”elliptic ” variable A0, which we expect to be much

simpler to treat, as well as the terms cubic in A, which do not contain derivatives10, and

6Relative to the initial connection A.
7In fact our results concern Hs-well -posedness in any dimension n ≥ 4 for s > sc.
8If a solution with homogeneous Hs data of size ε , s > sc , exists on a time interval [0, T ] , the rescaled

solution of size 1 , is defined in the time interval Tε. This type of arguments, typical to subcritical cases was
used, in the context of the Yang-Mills equations, in [K-M3]. See also Remark 1.8 below.

9This may not exist even if the total energy is small. In [K-M3] this difficulty was circumvented by using
local Coulomb gauges. This difficulty will simply be ignored here, as we concentrate our attention to the
question of estimates and appropriate function spaces.

10And can thus be treated by standard Strichartz type inequalities
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using also the divergence-curl type arguments discussed in [K-M3], see section 2, as well as

[K-M2], we can rewrite the system 1.2–1.5 in the form of a new system, in which the variables

are scalar functions 11 φI :

�φI = N I(φ, φ). (1.6)

Each N I is a linear combination, with constant real coefficients, of terms of the type

|Dx|−1Qij(φ
I , φJ) and Qij(|Dx|−1φI , φJ) where the ”null quadratic” forms Qij are defined

by:

Qij(u, v) = ∂iu∂jv − ∂ju∂iv. (1.7)

In this paper we restrict our attention to the model problem 1.6 in Rn+1, n ≥ 4, subject to

the initial conditions, at t = 0,

φ(0) = f0 ∈ Hs, φt(0) = f1 ∈ Hs−1. (1.8)

Observe that 1.6 has the same scaling properties as the original Yang-Mills equations . Thus

the critical exponent below which we do not expect well-posedness is sc = n−2
2

.

In [K-M8] it was proves that a similar but somewhat simpler system, derivable from the

Maxwell-Klein-Gordon equations, is locally well posed for small Hs data , for any s > 1 in

dimension n = 4. More precisely the system considered there had two species φ = (φI)I=1,···,L,

ψ = (ψI)I=1,···,M which satisfy systems of equations of the form

�ψ = |Dx|−1Q(φ, φ) (1.9)

�φ = Q(|Dx|−1ψ, φ) (1.10)

Here Q(φ, φ), Q(φ, ψ) denote linear combinations, , of the null forms 1.7

To deal with nonlinear wave equations with nonlinear terms containing derivatives one

has to rely on the ”hyperbolic” spaces12 Hs,θ. These spaces were first used in [K-M1], [K-M2]

and [K-M3] in the case of the exponent θ = 1. This exponent is however far from optimal,

it works well only in cases when one has room of order precisely 1
2

relative to the critical

Hs differentiabilty exponent of the data. To treat the case of exponents s close to critical

exponents one needs instead to take θ > 1
2

as close as possible to θ = 1
2
. This procedure

11Each scalar φI corresponds to a linear combination of either components of the matices Ai, i = 1, 2, . . . , n,
or singular integral operators of order 0 applied to these components. Thus the vector φ has the same scaling
properties as the connection A.

12See the formal definition below.
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works well in the case of equations of Wave Maps type, see [K-M4] and [K-S] but fails for

gauge field equations. It is easy to see that the property of the Hs,θ spaces needed in order

to prove a well posedness result for the model equation 1.6, for s > 1, is to show that if

φ = (φI) has all its components belonging to Hs,θ, s > 1, θ > 1
2

then the nonlinear terms

N I(φ, φ) ∈ Hs,θ. In vief of the structure of N this is roughly equivalent to proving the

bilinear estimates13,

Q
(
Hs, 1

2 , Hs−1, 1
2

)
⊂ Hs−1,− 1

2 (1.11)

Q
(
Hs, 1

2 , Hs, 1
2

)
⊂ Hs,− 1

2 (1.12)

with Q the null forms 1.7. The estimates are correct, in any dimension n ≥ 3 provided that

s ≥ n−1
2

, but fail14 for n−2
2
≤ s < n−1

2
. In [K-M6] and [K-M8] this fundamental difficulty was

circumvented by introducing new function spaces based on a dual, bilinear characterization,

see Remark 1.3. Here we shall introduce instead a different, more direct definition of these

spaces. The main new technical inovation of the paper are the bilinear restriction estimates

proved in the Appendix. These estimates generalize some of the bilinear estimates proved in

[K-M6] to the framework of Lq
tL

p
x spaces , with exponents q, p consistent with the traditional

Strichartz-Pecher estimates.

Notation: We shall denote the physical variables by x = (x0, x
′),with x0 = t the standard

time, and the corresponding Fourier variables by ξ = (ξ0, ξ
′). Sometimes we write τ = ξ0.

The space-time Fourier transform is denoted by the standard ,̂ its inverse by .̌ We denote

by Hs = Hs(Rn) the standard Sobolev norms relative to the space variables x ∈ Rn.

It is convenient to introduce the notation:

u � v iff |û| ≤ v̂

We shall say that a functional norm | |B depends only on the size of the Fourier transform

of functions in B if, whenever u ∈ B and |v̂| ≤ |û| it follows that v ∈ B and |v|B ≤ |u|B.

We denote by Lp(Lq) the mixed spaces of functions Lp
tL

q
x bounded in the norm |u|Lp(Lq) =

(
∫
|u(t, ·)|pLqdt)

1
p . We shall often deal with the the intersection of normed spaces, in that case

we take as norm for the new space the sum of the two given norms.

Our space-time norms will be defined with the help of the following symbols,

13Strictly speaking one should take exponents θ > 1
2

14The counterexample provided in [K-M6] applies also in this case.
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w(ξ) = w+(ξ) = 1 + |ξ|, w−(ξ) = 1 + ||ξ0| − |ξ′||.

We denote the corresponding operators by W = W+, and W−.

Using the above notation we define the function spaces where we look for solutions to

(1.6), (1.8). It is natural to look for spaces which are adapted to the wave equation. A good

first choice are the spaces Hs,θ with norm

|u|Hs,θ = |ws
+w

θ
−û|L2

These norms have been used in [K-M4], [K-S] to get optimal15 well-posedness results for the

equations of Wave-Maps type. It was shown in [K-M6], however, that they fail for Sobolev

exponents close to the critical ones. There, as well as in [K-M8], this difficulty was overcome

by introducing, in addition to the Hs,θ norms an auxiliary16 one (see the Remark 1.3 below).

Here we shall introduce instead a different, but closely related, auxiliary space which we

denote by Gs,θ. Roughly speaking we want a space of functions which, for s = n−1
2

, θ = 0,

should correspond to the space L1(L∞). On the other hand we also want it to depend only

on the size of the Fourier transform in the sense of the definition given above. For technical

reasons we also take Gs,θ to have slightly different scaling properties than Hs,θ. Keeping

these in mind we define,

u ∈ Gs,θ iff u � v for some v ∈ W−(D)−θW+(D)−s+n−1
2
−2δL1(L∞), (1.13)

with the norm

|u|Gs,θ = inf
u�v

∣∣∣∣W−(D)θW+(D)s−n−1
2

+2δv

∣∣∣∣
L1(L∞)

(1.14)

where δ is a fixed, positive, arbitrarily small constant. We then define the space F s,θ as

F s,θ = Hs,θ ∩Gs,θ (1.15)

with norm defined as the sum of the corresponding norms.

Proposition 1.1 The norms | |Hs,θ , | |Gs,θ , | |F s,θ depend only on the size of the Fourier

transform.

15In Hs spaces with s arbitrarily close to the corresponding critical exponent.
16See also [K-M7] where the problem of lack of direct estimates in Hs,θ spaces was first dealt with.

6



The proof follows easily from the definitions.

Remark 1.2 Observe that if û ≥ 0 and u ∈ W−(D)−θW+(D)−s+n−1
2
−2δL1(L∞) then u ∈

Gs,θ and

|u|F s,θ ≤ |W−(D)θW+(D)s−n−1
2

+2δu|L1(L∞) (1.16)

Remark 1.3 One can also work with a different version of the auxiliary spaces Gs,θ based

on the norm,

Ms,θ(u) = sup
∫
wθ
−w

s−n−1
2

+ |û||φ̂ · b|

where the supremum is taken relative to all φ, b with |φ|H0,θ ≤ 1, |b̂|L2
ξ′L

1
τ
≤ 1, θ > 1/2. This

auxiliary space was first introduced in [K-M6]. A related one was also used in [K-M7].

The critical Hs scaling exponent for the initial data is sc = n−2
2

. We shall work with

s ≥ sc + 4δ, with the δ chosen above. Our main result is

Theorem 1 Suppose that s ≥ sc + 4δ. Then the semilinear equation (1.8) is locally well-

posed for small17 initial data in Hs ×Hs−1.

In other words, given R > 0, sufficiently small, there exists T > 0 so that for any

|(f0, f1)|s ≤ R the equation (1.6) has an unique solution in the space F s, 1
2 ([−T, T ]× R). In

particular, this solution satisfies

|φ(t)|s + |φt(t)|s−1 ≤ c(R, T ) t ∈ [−T, T ]

To prove the theorem, we would like to rewrite the equation in a form suitable to a fixed

point argument. To do that, denote by φ0 the solution to the homogeneous wave equation
�φ0 = 0

φ0 = f0

∂tφ0 = f1

Also, define the operator V by V f = φ where φ is the unique solution to
�φ = f

φ0 = 0

∂tφ0 = 0

17The smallness assumption is not really necessary, see Remark 1.8 at the and of this section
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Then our equation can be rewritten as

φ = φ0 + V N(φ)

This is, however, not satisfactory since the right hand side does not have good global prop-

erties. A solution to that is to do a cutoff in time and to work on the localized equation

φ = χ(t)(φ0 + V N(φ))

Here we choose χ(t) to be a smooth compactly supported function in the interval (−1, 1)

with χ0 = 1 on [−1
2
, 1

2
].

The following Lemma gives some idea about the properties of V . It was proved in [K-M8],

but for the sake of completness we also sketch here the proof. This type of lemmas originate

in the work of Bourgain [B], see also [K-P-V].

Lemma 1.4 The operator V can be decomposed as V = V1 + V2 where V1 and V2 have the

following properties:

χ(t)V1 : Hs−1,θ−1 → Hs,N
c s+ θ >

3

2
, θ >

1

2
N arbitrary

(the subscript c above and in the sequel stands for ”compactly supported in time”.) and

|V̂2f | ≤
1

w+w−
|f̂ |

Proof: Let µ be a smooth cutoff function supported in [−2, 2] which takes the value 1

in the interval [−1, 1]. We shall use it to truncate V in a part near the characteristic cone

in the phase space and a part away from it. Set

V1 = µ(W−)V, V2 = (1− µ)(W−)V

For V2 one gets directly

|V̂2f | = |1− µ(w−)

ξ2
0 − ξ′2

f̂ | ≤ 1

w+w−
|f̂ |

Furthermore, an integration with respect to ξ0 yields

|(V2f)(0)|s + |(V2f)t(0)|s−1 ≤ c|f |Hs,θ
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(this is where the conditions s+ θ > 3
2
, θ > 1

2
are used) For V1 observe that

�V1f = µ(W−)f ∈ Hs

with Cauchy data

((V1f)(0), (V1f)t(0)) = −((V2f)(0), (V2f)t(0)) ∈ Hs ×Hs−1

Then V1f is Hs locally in time, with Fourier transform supported in a neighbourhood of

size 2 of the cone. Hence, after truncation in time we get an Hs function whose Fourier

transform decays rapidly away from the cone; this belongs to Hs,N for all N .

One can see that of the two components of V only V1 needs to be cut off. Hence, we

want to solve the equation

φ = χ(t)(φ0 + V1N(φ)) + V2N(φ) (1.17)

in the space F s, 1
2 . The estimates we need in order to achieve that are the following:

Proposition 1.5 a) The map (f0, f1) → χ0(t)φ0 is bounded from Hs ×Hs−1 into F s,θ for

any θ ∈ R.

b) The map f → χ0(t)V1f + V2f is bounded from F s−1,θ−1 into F s,θ, s+ θ > 3
2
.

Proposition 1.6 The map φ→ N(φ) is bounded from F s, 1
2 into F s−1,− 1

2 , s ≥ s0 + 4δ.

Since we are above the critical exponent, s > s0 = n−2
2

, we can in fact prove the following

stronger result:

Proposition 1.7 The map φ→ N(φ) is bounded from F s, 1
2 into F s−1,−1/2+δ/2, s > s0 + 4δ.

We therefore infer that the solution φ to (1.6) has the enhanced regularity property,

φ ∈ F s, 1
2
+δ. Then, in view of the energy inequality (2.20) below, we infer that the Hs

properties of the initial conditions are preserved for all t.

Observe that once we establish the above mapping properties the construction of our

solutions is straightforward. Indeed, if we take φ0 small then φ should be small. But the

nonlinearity is quadratic in φ; hence when φ is ”small”, the nonlinear term in (1.17) has a

small Lipschitz constant. Therefore one can proceed by a standard fixed point argument.

Furthermore, since the function in the fixed point argument is also Lipschitz in φ0, we also

obtain Lipschitz dependence of the solution φ in F s, 1
2
+ δ

2 as a function of the data (f0, f1) in

Hs ×Hs−1.
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Remark 1.8 The distinction between small and large data for local well-posedness is essen-

tial when trying to solve the problem at s = sc. However for s > sc the expectation is that

there is no difference between small and large data. The simplest way to see that is by scaling,

i.e. by rescaling large data into small data. Unfortunately we cannot use this principle here

because our initial data spaces are inhomogeneous18. The other simple way to treat large

data is to modify the truncation argument in Lemma 1.4; indeed, suppose that for small T

we replace χ(t) by χ(t/T ) and µ(w−) by µ(Tw−). Then for the operator χ(t/T )V1 + V2 we

get a norm of T
δ
2 from Hs−1,− 1

2
+ δ

2 into Hs, 1
2 . Hence the fixed point argument can be carried

through for large data by choosing T sufficiently small. One has to remark however that a

large data result for the model problem 1.6 is in no way connected with a large data result

for the original Yang-Mills equations. Indeed, in deriving our simplified model problem we

had to assume the existence of a global Coulomb gauge which requires a smallness condition.

In principle this difficulty could be circumvented by using some local version of the Coulomb

gauge, as in [K-M3], this however would introduce a new layer of technical complications

which would only obscure the main points of this paper.

2 The Hs,θ and the F s,θ spaces

We now summarize some properties of the spaces we work with. It is convenient to formulate

these properties in terms of continuous embeddings. Keeping track of all the indices for Lp

spaces is often tedious, therefore we are going to (non-uniquely) relabel the Lp spaces in Rm

with two indices,

L[p,s] := Lr,
1

p
− s

m
=

1

r

In terms of the Sobolev embeddings, this means that

W s,p ⊂ Lr

A simple rule for multiplication is

L[p,s]L[q,z] ⊂ L[r,s+z],
1

r
=

1

p
+

1

q

This may seem complicated. The advantage lies in the fact that for p we use only 1, 2 and

∞ and that the notation is independent of the dimension; below we use it in 1-d (time), n-d

(space) and n+ 1-d (space-time).

18We could have used the homogeneous spaces at the expense of adding yet other cases to our already
long list of dyadic estimates to be proved
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In the sequel we use Lp for the Lp norm in space-time. We recall that our mixed norms

Lp(Lq) were defined so that the first component is taken relative to time, the second relative

to the space variables.

Following are the properties of the Hs,θ spaces which have been proved in [Ta].

Theorem 2 a) Suppose that θ < 1/2. Then

Hs,θ ⊂ L[2,(θ−α)](L[2,(s+α)]) 0 ≤ α ≤ n− 1

2(n+ 1)
s < θ (2.18)

b) Suppose that θ > 1/2. Then

Hs,θ ⊂ L[2,(1/2−α)](L[2,(s+α)]) 0 ≤ α ≤ n− 1

2(n+ 1)
s < 1/2 (2.19)

The corresponding dual embeddings also hold. The two special limiting embeddings in the

above family are the energy estimates,

H0,θ ⊂ L[2,θ](L2) θ < 1/2, (2.20)

H0,θ ⊂ L∞(L2), 1/2 < θ (2.21)

and the Strichartz- Pecher estimate

Hs,θ ⊂ L2(L[2,s+ 1
2
])

n+ 1

2(n− 1)
< s <

n− 1

2
, θ > 1/2 (2.22)

Since the F spaces are smaller than the H spaces, it is important to show that in effect

they are not too small. In what follows we give two properties of this type. The first one

is roughly 1
2

derivative off the scale, but it is useful nevertheless, since it says that the F s,θ

spaces contain (locally) the Hs solutions to the homogeneous wave equation.

Proposition 2.1 The following embedding holds:

H
s,θ+ 1

2
c ⊂ F s,θ, s, θ ∈ R

(Here and below the subscript c stands for compactly supported in time)
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Proof: It suffices to do that for fixed s, θ. Hence, take s = n−1
2

+ 2δ and θ = 0. In view

of Proposition 1.1 it suffices to work with functions with positive Fourier transform. Then

by Remark 1.2 we only need to prove that

H
s, 1

2
c ⊂ L1(L∞)

Indeed, the Pecher estimates (2.22) give

H
s, 1

2
c ⊂ H

n−1
2

+δ, 1
2
+δ ⊂ L2

c(L
∞) ⊂ L1(L∞)

q.e.d.

A consequence of the next result is that the following embedding almost holds:

L1(L2) ⊂ F 0,− 1
2

One can think of this as half of the energy estimate for the wave equation.

Theorem 3 The following embedding holds:

L1(L2) ⊂ Gδ,− 1
2 , δ > 0

Proof:

We need to show that for f ∈ L1(L2) we can find u ∈ L1(L∞) so that

w(ξ)−
n−1

2
−δw

−1/2
− (ξ) |f̂(ξ)| ≤ û(ξ)

Since f ∈ L1(L2), it follows that f̂ ∈ L2
ξ′(L

∞
ξ0

) therefore setting g(ξ′) = supξ0 |f̂(ξ0, ξ
′)| ∈

L2(Rn),

|f̂(ξ)| ≤ g(ξ′).

On the other hand,
1

w−(ξ)
≤ 1

1 +
∣∣∣∣ξ0 − |ξ′|∣∣∣∣ +

1

1 +
∣∣∣∣ξ0 + |ξ′|

∣∣∣∣ . Therefore,

w(ξ)−
n−1

2
−2δw

−1/2
− (ξ) ≤ q+(ξ) + q−(ξ)

where

q±(ξ) = w(ξ)−
n−1

2
− δ

2
1

(1 +
∣∣∣∣ξ0 ± |ξ′|∣∣∣∣) 1

2
+ δ

2
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Hence, it suffices to prove that the inverse Fourier transforms u± of q±(ξ)g(ξ′) are in

L1(L∞).

A simple computation gives

u±(t, x) = ĥ(t)v±(t, x)

where h(t) is the inverse Fourier transform of
1

(1 + |ξ|) 1
2
+ δ

2

while v± are solutions of the

standard wave equations with data in H
n−1

2
+δ. Therefore h ∈ L2

t and , in view of the

Strichartz-Pecher estimates, u± ∈ L2(L∞). The conclusion follows. q.e.d.

Corollary 2.2 The following embedding holds,

L1(L2) ∩ L[1,ε](L2) ⊂ F 0,− 1
2

Proof: From the dual of the energy estimate (2.20) we get L[1,ε](L2) ⊂ H0,− 1
2
+ε ⊂ H0,− 1

2 .

Thus

L1(L2) ∩ L[1,ε](L2) ⊂ H0,− 1
2 ∩G0,− 1

2 = F 0,− 1
2 .

3 Proofs of the main Propositions

Proof of Proposition 1.5:

Taking into account the definition of the F s,θ spaces and the properties of V1, V2 in

Lemma 1.4, the conclusion follows from Theorem 2.1.

Proof of Proposition 1.6:

We need to prove that

N : F s, 1
2 → F s−1,− 1

2 (3.23)

where

N(φ) = Q(φ,D−1
x φ) +D−1

x Q(φ, φ)

Remark 3.1 The crucial fact to keep in mind during the calculations below is that in the end

we are interested only in the size of the Fourier transform. Hence, when writing multiplication

in physical space as convolution in Fourier space, without any restriction in generality we can

assume that all the Fourier transforms involved are nonnegative, and substitute the symbol

of the quadratic form Q, defined in (1.7), by its absolute value.
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To simplify assume for a moment that Dx is replaced by D in the above nonlinearity.

Then we need to prove the following estimates19 :

Q(F s, 1
2 , F s−1, 1

2 ) ⊂ F s−1,− 1
2 (3.24)

and

Q(F s, 1
2 , F s, 1

2 ) ⊂ F s,− 1
2 (3.25)

To continue observe that the symbol q(ξ, η) of Q is a linear combination of

qij(ξ, η) = ξiηj − ξjηi

and (see [K-M8]) it can be estimated by

|q(ξ, η)| ≤ (|ξ||η||ξ + η|)|
1
2 (w−(ξ)

1
2 + w−(η)

1
2 + w−(ξ + η)

1
2 )

Hence (3.24), (3.25) would follow from the following estimates:

F s− 1
2
, 1
2 · F s− 1

2
, 1
2 ⊂ F s−3/2,0 (3.26)

F s− 1
2
, 1
2 · F s− 1

2
,0 ⊂ F s−3/2,− 1

2 (3.27)

F s− 1
2
, 1
2 · F s+ 1

2
, 1
2 ⊂ F s− 1

2
,0 (3.28)

F s− 1
2
, 1
2 · F s+ 1

2
,0 ⊂ F s− 1

2
,− 1

2 (3.29)

F s− 1
2
,0 · F s+ 1

2
, 1
2 ⊂ F s− 1

2
,− 1

2 (3.30)

In addition, to treat the original nonlinearity,

Q(φ,D−1
x φ) +D−1

x Q(φ, φ)

we need to analyze what happens in the region where D−1
x behaves worse than D−1. In that

region the bad news is that we need to use one derivative from Qij to cancel the D−1
x ; the

good news is that we are away from the cone. Then for the first, respectively the second

term it suffices to prove the estimates

F s−1,0F s, 1
2 ⊂ F s−1,− 1

2 (3.31)

F s, 1
2F s−1, 1

2 ⊂ F s−3/2,0 (3.32)

As remarked before, we can assume that all the factors have nonnegative Fourier trans-

form, therefore the same holds for the products.

19the inclusion Q(F,G) ⊂ H is equivalent to the estimate |Q(u, v)|H ≤ c|u|F |v|G
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To advance further, we reduce our estimates to dyadic pieces. Consider a typical multi-

plicative estimate of the form

Fα · F β ⊂ F γ

with α, β, γ as in (3.26) - (3.32).

Take a ∈ Fα and b ∈ F β and suppose we want to prove that ab ∈ F γ. Decompose a and

b into dyadic pieces,

a =
j≥0∑
λ=2j

aλ, b =
j≥0∑
λ=2j

bλ

with aλ, βλ supported in the region λ
2
≤ |ξ| ≤ 2λ. Then their product can be decomposed

into

ab =
∑
λ

aλbλ +
∑
µ�λ

aµbλ +
∑
µ�λ

aλbµ

=
∑
µ≤λ

Sµ(aλbλ) +
∑
µ�λ

aµbλ +
∑
µ�λ

aλbµ (3.33)

where Sµ is the multiplier supported in the annulus
µ

2
≤ |ξ| ≤ 2µ.

Our strategy to prove estimates for ab is to prove first their dyadic counterparts, i.e. the

estimates for each term in (3.33); then, to put all these estimates together. If we denote by

ξ, respectively η the Fourier variable corresponding to each of the two factors then we have

three cases:

a) |ξ| ≈ |η| ≈ λ, |ξ + η| ≈ µ ≤ λ.

b) |ξ| ≈ |ξ + η| ≈ λ, |η| ≈ µ� λ.

c) |ξ + η| ≈ |η| ≈ λ, |η| ≈ µ� λ

Taking all 21 possible combinations, the dyadic counterparts of (3.26-3.32) are:

(i) For (3.26)(a),(3.28)(a) and (3.32)(a):

λ−sF
0, 1

2
λ · F 0, 1

2
λ → µ

1
2F 0,0

µ

(ii) For (3.27)(a),(3.29)(a), (3.30)(a), (3.31)(a):

λ−sF
0, 1

2
λ · F 0,0

λ → µ
1
2F

0,− 1
2

µ

(iii) For (3.26)(b)(c), (3.28)(b)(c) and (3.32)(b),(c):

µ−s− 1
2F

0, 1
2

λ · F 0, 1
2

µ → F 0,0
λ

15



(iv) For (3.27)(c),(3.29)(c),(3.30)(b) and (3.31)(b):

µ−s− 1
2F

0, 1
2

λ · F 0,0
µ → F

0,− 1
2

λ

(v) For (3.27)(c),(3.29)(c), (3.30)(b) and (3.31)(c):

µ−s− 1
2F 0,0

λ · F 0, 1
2

µ → F
0,− 1

2
λ

This is the appropriate place to justify our choice of spaces:

Remark 3.2 It is natural to try first to prove these estimates in the simpler Hs,θ spaces.

Looking at the proofs below, one can see that this works in all cases except for (iv); in this

case, the estimate in the Hs,θ spaces actually fails. This has to do with the interaction of

high and low frequencies, since if µ is about the same size as λ then the estimate is true. To

fix it observe that we have no λ’s to spare. From the energy estimate we roughly have the

embedding H0, 1
2 ⊂ L∞(L2) and the dual one L1(L2) ⊂ H0,− 1

2 . Hence, with s = n−2
2

, to prove

(iv) it suffices to have L∞(L2) · F
n−1

2
,0

µ ⊂ L1(L2). It thus appears natural to add to H
n−1

2
,0

an L1(L∞) structure by setting F
n−1

2
,0 = H

n−1
2 ∩L1(L∞). With some obvious modifications,

this is essentially the reason for our choice of spaces. Of course, we have to pay a price for

that, because now we need to get more information about the products. This is particularly

difficult in (i) where we need to use the new, sharper bilinear Strichartz estimate, presented

in the Appendix.

Now we prove the estimates (i-v) above. The guiding lines are as follows:

a) For the F 0, 1
2 spaces we fully rely on the embedding F 0, 1

2 ⊂ H0, 1
2 .

b) For the F 0,− 1
2 spaces we use only Theorem 3(b).

c) For the F 0,0 spaces we try to get away with the embedding F 0,0 ⊂ L2 whenever

possible.

Recall also that s ≥ n−2
2

+ 4δ. In effect it suffices to assume that equality holds.

Proof of (i): Use the energy estimate (2.20) for the first factor combined with the

Pecher type embedding (2.22) for the second factor to get

λ−sH
0, 1

2
λ ·H0, 1

2
λ ⊂ λ−2δHδ,1/2 ·H n−2

2
+δ,1/2 (distribute derivatives)

⊂ λ−2δL∞(L2) · L2(L[2, n−1
2

]) (energy + Pecher)

= λ−2δL2(L[1, n−1
2

]) = λ−2δL2(L[2,− 1
2
]) (relabel)

⊂ λ−2δD
1
2L2 (Sobolev embedding)
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which takes care of the L2 component of F 0,0. For the L1(L∞) part of F 0,0 we need to use

the sharp bilinear estimates of the next section( see the Corrolary of Theorem 4) which give

λ−sH
0, 1

2
λ ·H0, 1

2
λ ⊂ λ−2δH

n−2
4

+δ,1/2 ·H
n−2

4
+δ,1/2 ⊂ λ−2δDn/2L1(L∞)

Hence, we have proved the estimate20

µ1/2λ−s|Sµ(uλvλ)|F 0,0 ≤ λ−2δ|uλ|
H0, 12

|vλ|
H0, 12

(3.34)

Proof of (ii): The Pecher type embedding (2.22) gives

λ−sH
0, 1

2
λ · L2 ⊂ λ−2δH

n−2
2

+2δ,1/2 · L2 (distribute derivatives)

⊂ λ−2δ
(
L[2,δ](L[2, n−1

2
]) ∩ L2(L[2, n−1

2
])

)
· L2 (Pecher)

= λ−2δ
(
L1(L[1, n−1

2
]) ∩ L[1,δ])(L[1, n−1

2
])

)
= λ−2δ

(
L1(L[2,− 1

2
]) ∩ L[1,δ])L[2,− 1

2
]
)

(relabel)

⊂ λ−2δD1/2
(
L1(L2) ∩ L[1,δ](L2)

)
(Sobolev embedding)

therefore (ii) follows from the Corollary to Theorem 3 and the dual of the energy estimate

(2.20). Hence, we have proved the estimate

µ1/2λ−s|Sµ(uλvλ)|
F 0,− 1

2
≤ λ−2δ|uλ|

H0, 12
|vλ|L2 (3.35)

Proof of (iii): To estimate the L2 norm of the product use the energy estimate (2.20)

for the first factor combined with the Pecher type embedding (2.22) for the second factor

µ−s− 1
2H

0, 1
2

λ · H0, 1
2

µ ⊂ µ−2δH
0, 1

2
λ ·H

n−1
2

+2δ, 1
2

µ (distribute derivatives)

⊂ µ−2δL[∞,−δ](L2) · L[2,δ](L∞) = µ−2δL2 (energy + Pecher)

Hence,

µ−s− 1
2 |uλvµ|H0,0 ≤ µ−2δ|uλ|

H0, 12
|vµ|H0,1/2 (3.36)

We still need to obtain the L1(L∞) estimate. In view of Remark 1.2 it suffices to prove

that

µ−s− 1
2H

0, 1
2

λ · H0, 1
2

µ ⊂ D
n−1

2
+2δL1(L∞)

To prove this we use the Pecher type embedding (2.22) for both factors:

λ−
n−1

2
−2δµ−s− 1

2H
0, 1

2
λ ·H0, 1

2
µ ⊂ λ−δµ−2δH

n−1
2

+δ, 1
2

λ ·H
n−1

2
+2δ, 1

2
µ

⊂ λ−δµ−2δL2(L∞) · L2(L∞) (energy + Pecher)

= λ−δµ−2δL1(L∞)

20Recall the positivity of the Fourier transforms as well as Remark 1.2.
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Hence, we have proved the estimate

µ−s− 1
2 |uλvµ|G0,0 ≤ λ−δµ−2δ|uλ|

H0, 12
|vµ|H0,1/2 (3.37)

q.e.d.

Proof of (iv):

As we said before, it suffices to assume that both factors have positive Fourier transform,

and we only care about the size of the Fourier transform of the product. Distributing

derivatives, it suffices to prove the estimate

µ−2δ|uλvµ|F 0,−1/2 ≤ |uλ|H0,1/2|vµ|
G

n−1
2 +2δ,0

According to the definition of the G spaces, given vµ ∈ G
n−1

2
+2δ,0

µ there exists v′µ ∈ L1(L∞)µ

so that

|v̂µ| ≤ v̂′µ, |v′µ|L1(L∞) ≤ 2|vµ|
G

n−1
2 +2δ,0

Then

µ−2δ|uλvµ|F 0,−1/2 ≤ µ−2δ|uλv
′
µ|F 0,−1/2 (Proposition 1.1)

≤ µ−2δ|uλv
′
µ|[L1(L2)∩L[1,δ/2](L2)] (Theorem 3)

≤ µ−2δ|uλ|L[∞,−δ/2](L2)|v′µ|[L1(L∞)∩L[1,δ](L∞)]

≤ µ−δ|uλ|L[∞,−δ/2](L2)|v′µ|L1(L∞) (Sobolev embedding)

≤ µ−δ|uλ|H0,1/2|vµ|
G

n−1
2 +2δ,0 (energy)

Hence, we have proved the estimate

µ−s− 1
2 |uλvµ|F 0,−1/2 ≤ µ−δ|uλ|

H0, 12
|vµ|G0,0 (3.38)

Furthermore, due to the λ−δ gain in Theorem 3, the G part of this estimate is even better,

µ−s− 1
2 |uλvµ|G0,−1/2 ≤ λ−δµ−δ|uλ|

H0, 12
|vµ|G0,0 (3.39)

Proof of (v): ¿From the the Pecher type embedding (2.22),

µ−s− 1
2L2

λ · H0, 1
2

µ ⊂ µ−2δL2
λ · H

n−1
2

+2δ, 1
2

µ (distribute derivatives)

⊂ µ−2δL2 · [L2(L∞) ∩ L[2,δ](L∞)] (Pecher)

= µ−2δ[L1(L2) ∩ L[1,δ](L2)]
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Hence, by Theorem 3 we get

µ−s− 1
2 |uλvµ|

G0,− 1
2
≤ λ−δµ−δ|uλ|L2|vµ|

H0, 12
(3.40)

and from the dual of the energy estimate (2.20) we get

µ−s− 1
2 |uλvµ|

H0,− 1
2
≤ µ−δ|uλ|L2|vµ|

H0, 12
(3.41)

We now claim that the estimates (3.26-3.32) follow from their dyadic counterparts. What

we need to worry about is the the summation; just from the dyadic estimates we get a

logarithmic divergence. The key to the summation is that our estimates are off-scale, i.e.

that s is larger than the critical exponent s0 = n−2
2

.

To explain what happens return to (3.33). Observe that if a belongs to one of the H

spaces then |a|2H =
∑

λ |aλ|2H . On the other hand if b belongs to a G space we can only infer

that bµ ∈ G and, for all µ, |bµ|G ≤ |b|G. This is indeed an immediate consequence of the fact

that |b̂µ| ≤ |b̂| and Proposition 1.1.

We have to estimate the Gγ and the Hγ norms of the product. The first sum in (3.33) is

easiest to handle, since we have the dyadic estimates:

|Sµ(aλbλ)|F γ ≤ λδ|aλ|Hα|bλ|Hβ ≤ λδ|a|Hα|b|F β

Hence, we get

|
∑
λ

aλbλ|F γ ≤ |a|Hα|b|F β

∑
λ=2k

∑
µ=2j≤λ

λ−δ ≤ |a|Hα|b|F β

q.e.d.

The second and third parts of (3.33) are symmetric. It thus suffices to treat the second.

For the G norms this is again straightforward, since

|aλbµ|Gγ ≤ λ−δ|aλ|Hα|bµ|F β ≤ λ−δ|a|Hα|b|F β

and summing up the pieces yields the same result as above.

Finally, for the Hγ norm we need to take advantage of orthogonality property of the

dyadic decomposition, since in this case we only have the weaker estimate

|aλbµ|Hγ ≤ µ−δ|aλ|Hα|bµ|F β

Since the product aλbµ has Fourier transform in the region of frequency λ, we have

|
∑
λ

∑
µ�λ

aλbµ|2Hγ ≤ c
∑
λ

|
∑
µ�λ

aλbµ|Hγ
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≤ c
∑
λ

|aλ|2Hα

 ∑
µ�λ

|bµ|F βµ−δ

2

≤ c
∑
λ

|aλ|2Hα|b|2F β

= c|a|2Hα|b|2F β

Proof of Proposition 1.7:

A gain in the global estimates would follow from the corresponding gain in the dyadic

estimates. This is straightforward in the cases above where we already have a gain of of λ−δ;

half of that yields a δ/2 derivatives gain in the result.

Hence, it remains to consider only the dyadic estimates where we gain only a power of µ,

namely (3.36), (3.38) and (3.41). Take for instance (3.36); all other cases can be worked out

in a similar manner. For Proposition (1.7) we need the following enhanced version of (3.36):

µ−s− 1
2 |uλvµ|H0,δ ≤ µ−δ|uλ|

H0, 12
|vµ|H0,1/2 (3.42)

Again think of this as a convolution estimate in the Fourier space, in which both factors

are nonnegative. Recall that µ � λ. Since both λ norms are L2, we can take advantage

of orthogonality and reduce the problem to the case when the first factor has its Fourier

transform supported in a µ cube K. Then we have two cases:

a) If w−(ξ) ≤ cµ in K then w−(ξ + η) ≤ cµ. Hence a gain of µ−δ from (3.36) can be

converted into a gain of w−δ
− , q.e.d.

b) Otherwise, suppose that w−(ξ) = O(d) >> µ in K. Then w−(ξ + η) = O(d), and

(3.42) can be rewritten as

dδ− 1
2µ−s− 1

2 |uλvµ|L2 ≤ µ−2δ|uλ|
H0, 12

|vµ|L2
K

(3.43)

But from (a) we know that this holds when d ≈ µ, therefore it also holds for d > µ, q.e.d.

A Sharp bilinear Strichartz-Pecher estimates

Our main new result here is the following extension of the Strichartz-Pecher estimates

Theorem 4 Let 1 ≤ r, q, r <∞ and define α(r) = 1− 1
r
, γ(r) = n−1

2
α(r), s = n

2
α(r)− 1

2q
.

We assume the following:

0 ≤ 1

q
≤ min(γ(r), 1) and (

1

q
, γ(r)) 6= (1, 1) (A.44)

0 ≤ σ < σ0 = nα(r)− 2

q
(A.45)
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If φ is a solution of �φ = 0 subject to the initial conditions φ(0, x) = f(x), ∂tφ(0, x) = g

then

‖|D|−σ(φ2)‖Lq
t Lr

x
≤ c(‖f‖

Ḣs−σ
2

+ ‖g‖
Ḣs−σ

2−1)2 (A.46)

Moreover the conditions (A.44), (A.45) are optimal.

Corollary A.1 The result of the Theorem remains true if we replace the solutions φ of the

homogeneous wave equation, with Hs data, by the space Hs,θ with θ > 1
2
. In that case the

estimate A.46 becomes,

‖|D|−σ(φ2)‖Lq
t Lr

x
≤ cφ2

Hs−σ
2 ,θ (A.47)

Remark A.2 The case σ = 0 is precisely the classical Strichartz -Pecher inequality. The

case q = r = 2, n ≥ 3 was proved in [K-M4].

Proof:

If q > 1 and r < ∞ we can apply the standard Sobolev inequalities to reduce the proof

to the case q = γ(r). In this case s = n+1
4
α(r) and σ0 = α(r). If q = 1 observe that 1

q
= γ(r)

corresponding to r = r∗ = n−1
n−3

is forbidden. Just as in the previous case we may also apply

the Sobolev inequalities to reduce the proof to the case when r is arbitrarily close to r∗.

The general solution of �φ = 0, φ(0, x) = f(x), ∂tφ(0, x) = g with f ∈ Ḣs, g ∈ Ḣs−1 can

be written in the form, φ = φ+ + φ− where,

φ±(t, x) = exp i(x · ξ ± t|ξ|)f̂±(ξ) (A.48)

where f± ∈ Ḣs. Without loss of generality we shall estimate φ+ · φ− the other cases are

simpler. To avoid confusion we denote φ+ by φ , f+ by f , φ− by ψ and f− by g. In this

section we denote the space-time Fourier variables by τ, ξ with ξ = ξ1, . . . ξn.

We introduce the Littlewood-Paley decomposition of

φ =
∑
λ∈2N

φλ

φλ(t, x) =
∫

exp i(x · ξ + t|ξ|)Sλf̂(ξ)dξ (A.49)

and similarly for ψ. The dyadic operators Sλ are defined by

Ŝλf(ξ) = β(
ξ

λ
)f̂(ξ)

21



where β = β(s) is a nonnegative smooth function of one variable with compact support in
1
2
≤ s ≤ 2 such that

+∞∑
−∞

β(2−js) = 1 for all s > 0

We can decompose the product of φ · ψ,

φ · ψ =
∑

λ,µ∈2N

φλ · ψµ = P1 + P2 + P3 (A.50)

where

P1 =
∑

µ< 1
8
λ

φλψµ

P2 =
∑

µ>8λ

φλψµ

P3 =
∑

1
8
λ≤µ≤8λ

φλψµ

We first estimate P1; P2 is the same by symmetry. Clearly,

‖|D|−σP1‖Lq
t Lr

x
≤

∑
µ< 1

8
λ

‖|D|−σ(φλ · ψµ)‖Lq
t Lr

x

Now observe that the space-time Fourier transform of φλ · ψµ is supported in the region
λ
4
≤ |ξ| ≤ 4λ, λ

4
≤ |τ | ≤ 4λ. Therefore,

‖|D|−σ(φλ · ψµ)‖Lq
t Lr

x
≤ cλ−σ‖(φλ · ψµ)‖Lq

t Lr
x
.

We shall now apply the standard Strichartz-Pecher inequality corresponding to the case

σ = 0,

‖(φλ · ψµ)‖Lq
t Lr

x
≤ ‖(φλ)

2‖
1
2

Lq
t Lr

x
‖(ψµ)2‖

1
2

Lq
t Lr

x

≤ c‖fλ‖Ḣs‖gµ‖Ḣs

≤ cλ
σ
2 µ

σ
2 ‖fλ‖Ḣs−σ

2
‖gµ‖Ḣs−σ

2

Therefore,

‖|D|−σ(φλ · ψµ)‖Lq
t Lr

x
≤ cλ−

σ
2 µ

σ
2 ‖fλ‖Ḣs−σ

2
‖gµ‖Ḣs−σ

2
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and consequently, since for σ > 0 we have
∑

µ< 1
8
λ

(
µ

λ

)σ
2

<∞,

‖|D|−σP1‖Lq
t Lr

x
≤ c

∑
µ< 1

8
λ

(
µ

λ

)σ
2

‖fλ‖Ḣs−σ
2
‖gµ‖Ḣs−σ

2

≤ ‖f‖
Ḣs−σ

2
‖g‖

Ḣs−σ
2

as desired.

It remains to estimate P3. In fact it suffices to estimate the diagonal sum
∑

λ∈2N φλ · ψλ;

the remaining part of P3 can clearly be dealt with in the same way. The space-time Fourier

transform of φλψλ may be supported in the full region |τ | ≤ 2λ, |ξ| ≤ 2λ. For this reason

we decompose21

φλ · ψλ =
∑

µ≤2λ

Sµ(φλ · ψλ)

Now,

‖|D|−σ(φλ · ψλ)‖Lq
t Lr

x
≤

∑
µ

µ−σ‖Sµ(φλ · ψλ)‖Lq
t Lr

x
(A.51)

We shall prove the following estimate,

‖Sµ(φλ · ψλ)‖Lq
t Lr

x
≤ c

(
µ

λ

)σ0

‖fλ‖Ḣs‖gλ‖Ḣs (A.52)

Assume for a moment that (A.52) holds true. Then together with (A.51), and using the fact

that 0 ≤ σ < σ0,

‖|D|−σ(φλ · ψλ)‖Lq
t Lr

x
≤ c

∑
µ

(
µ

λ

)−σ+σ0

λ−σ‖fλ‖Ḣs‖gλ‖Ḣs

≤ c
∑
µ

(
µ

λ

)−σ+σ0

‖fλ‖Ḣs−σ
2
‖gλ‖Ḣs−σ

2

≤ c‖fλ‖Ḣs−σ
2
‖gλ‖Ḣs−σ

2

Therefore, summing over λ,

‖|D|−σP3‖Lq
t Lr

x
≤ c‖f‖

Ḣs−σ
2
‖g‖

Ḣs−σ
2
.

as desired.

It therefore remains to prove (A.51). Observe that by rescaling it suffices to prove it for

λ = 1. In other words we have to prove that if φ(t, x) = exp i(x · ξ + t|ξ|)f̂(ξ), ψ(t, x) =

21In the expression below Sµ is meant to be the dyadic projection in Rn+1, i.e. supported in the annulus
µ
2 ≤ |τ |+ |ξ| ≤ 2µ
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exp i(x · ξ + t|ξ|)ĝ(ξ) with f̂ , ĝ supported in the region 1
2
≤ |ξ| ≤ 2|ξ|, then, for every µ ∈ 2N,

µ ≤ 2,

‖Sµ(φ · ψ)‖Lq
t Lr

x
≤ cµσ0‖f‖L2‖g‖L2 . (A.53)

We shall prove instead the weaker estimate with σ0 replaced by α(r) = 1 − 1
r
. The two

exponents do in fact coincide for 1
q

= γ(r) < 1. If q = 1 and r = n−1+ε
n−3

we recall that

σ0 − (1− 1
r
) = ε · n−3

n−1+ε
. Thus, since σ0 − σ > 0 we can choose ε sufficiently small such that

σ < 1− 1
r

and check that the argument following (A.52) holds true when the exponent σ0 in

(A.52) is replaced by 1− 1
r
.

To prove (A.53) we first cover the region 1
2
≤ |ξ| ≤ 2 with cubes Qω centered at ω and

size µ. By choosing the set Mµ of centers ω to be evenly distributed we make sure that each

Qω intersects only ≈ c2n cubes, with c independent of µ. In fact for fixed ω ∈Mµ there are

only a finite number, independent of µ, of points ω′ ∈ Mµ for which |ω − ω′| ≤ C µ. Let hω

be a smooth partition of unity in a neighborhood of 1
2
≤ |ξ| ≤ 2 such each hω is supported

in Qω and,

|∂α
ξ h

ω(ξ)| ≤ cµ−|α|. (A.54)

We decompose f =
∑

Mµ
fω, g =

∑
Mµ

gω with (fω)ˆ = hωf̂ , (gω)ˆ = hωĝ. We also set

φω(t, x) =
∫

exp i(x · ξ + t|ξ|)hω(ξ)f̂(ξ)dξ

ψω(t, x) =
∫

exp i(x · ξ + t|ξ|)hω(ξ)ĝ(ξ)dξ

Therefore we write,

Sµ(φ · ψ) =
∑

ω,ω′∈Mµ

Sµ(φω · ψω′) (A.55)

Observe that for given µ all terms corresponding to |ω + ω′| > cµ the sum above are zero.

Without loss of generality we will restrict ourselves to the diagonal sum
∑

ω∈Mµ
Sµ(φω ·ψ−ω).

Thus,

‖Sµ(φ · ψ)‖Lq
t Lr

x
≤ c

∑
ω∈Mµ

‖(φω)2‖
1
2

Lq
t Lr

x
‖(φ−ω)2‖

1
2

Lq
t Lr

x
(A.56)

We are now in a position of applying the Strichartz-Pecher inequality to the two terms on

the right hand side of (A.56). However the standard version does not work; we need instead

a finer version which takes into account the smallness of the supports of fω, gω.
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‖(φω)2‖Lq
t Lr

x
≤ cµ1− 1

r

∑
|ω−ω′|≤c µ

‖fω′‖2
L2 . (A.57)

The inequality (A.53), with σ0 replaced by 1 − 1
r
, is an easy consequence of this. Indeed

assume (A.57) true, then from (A.56),

‖Sµ(φ · ψ)‖Lq
t Lr

x
≤ cµ1− 1

r

∑
|ω+ω′|≤cµ

‖fω‖L2‖f−ω′‖L2

≤ cµ1− 1
r ‖f‖L2‖g‖L2 .

To prove (A.57) we proceed as in the proof of the Strichartz-Pecher inequality. Without

loss of generality we may assume that h = hω is supported in a square of size µ centered at

the point ω0 = (1, 0 . . . , 0). Let T be the operator

Tf(t, x) =
∫

exp i(x · ξ + t|ξ|)h(ξ)f̂(ξ)dξ (A.58)

We shall show that T is a bounded operator from L2(Rn) to La
tL

b
x(R

n+1),

‖Tf‖La
t Lb

x
≤ cµ

1
2
− 1

b ‖f‖L2 (A.59)

for all a, b with 1 > 2
a

= (n− 1)(1
2
− 1

b
) or 1 = 2

a
< (n− 1)(1

2
− 1

b
).

Thus, since hf̂ =
∑
|ω′−ω0|≤cµ hh

ω′ f̂ and φω0 = Tf =
∑
|ω′−ω0|≤cµ Tf

ω′ we infer that,

‖φω0‖La
t Lb

x
= ‖Tf‖La

t Lb
x
≤ cµ

1
2
− 1

b

∑
|ω′−ω0|≤cµ

‖fω′‖L2 (A.60)

which, for 2q = a, 2r = b, implies (A.57).

To prove that T is a bounded operator from L2(Rn) to La
tL

b
x(R

n+1) it suffices to show

that TT ∗ is bounded from La′
t L

b′
x (Rn+1) to La

tL
b
x(R

n+1), where a′ and b′ are the exponents

dual to a,b. Now,

TT ∗F (t, x) =
∫

exp i(x · ξ + (t− s)|ξ|)h2(ξ)Fˆ(s, ξ)dsdξ (A.61)

which we rewrite in the form,

TT ∗F (t, x) =
∫
U(t− s)F (s, ·)ds, (A.62)

where U is the operator defined on functions f in Rn by,

U(t)f(x) =
∫

exp i(x · ξ + t|ξ|)h2(ξ)f̂(ξ)dξ. (A.63)
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The estimate (A.59) is equivalent to,

‖TT ∗F‖La
t Lb

x
≤ cµ1− 2

b ‖F‖La′
t Lb′

x
(A.64)

The proof of (A.64) reduces to the following estimates for Uµ:

‖Uµ(t)f‖L2 ≤ c‖f‖L2 (A.65)

‖Uµ(t)f‖L∞ ≤ cµ(1 + t)−
n−1

2 ‖f‖L1 (A.66)

Indeed interpolating between (A.65) and (A.66) we derive,

‖Uµ(t)f‖Lb ≤ cµ1− 2
b (1 + t)−

n−1
2

(1− 2
b
)‖f‖Lb′ (A.67)

Therefore, applying (A.67) to (A.60), we infer that,

‖TT ∗F (t, ·)‖Lb
x
≤ cµ1− 2

b

∫
(1 + |t− s|)−

n−1
2

(1− 2
b
)‖F (s, ·)‖Lb′

x
ds

In the case 1 > 2
a

= (n − 1)(1
2
− 1

b
) we apply the Hardy-Littlewood-Sobolev inequalities

relative to the t variable and derive 3.15. On the other hand, if 1 = 2
a
< (n− 1)(1

2
− 1

b
), the

convolution kernel (1 + |t|)−n−1
2

(1− 2
b
) is integrable and therefore,

‖TT ∗F‖L2
t Lb

x
≤ cµ1− 2

b ‖F‖L2
t Lb′

x

as desired.

It only remains to prove (A.66).

We write

Uµ(t)f = Kt ∗ f (A.68)

where

Kt(x) =
∫

exp i(x · ξ + t|ξ|)h2(ξ)dξ. (A.69)

Thus (A.66) is an immediate consequence of the following estimate,

|Kt(x)| ≤ c
µ

(1 + |t|+ |x|)n−1
2

. (A.70)

This is immediate in the region |x| ≤ 1
2
|t| by a simple integration by parts22 argument. In

fact we derive in that region,

|Kt(x)| ≤ c
(

µ

(1 + |t|)

)n
2

. (A.71)

22Recall also (A.54).
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On the other hand, in the region |x| ≥ 1
2
|t|,

Kt(x) =
∫ 1+2µ

1−2µ
eitλ

( ∫
|ξ|=λ

eix·ξh2(ξ)dσ(ξ)
)
dλ

To estimate this we claim that the following stationary phase result holds:

Lemma A.3 The following estimate holds for arbitrary functions h in the Sobolev space

W n−1,1(Sn−1):

|
∫
|ξ|=1

eix·ξh(ξ)dσ(ξ)| ≤ c
1

(1 + |x|)n−1
2

|h|W n−1,1(Sn−1)

Using this standard stationary phase result, (A.54) and the size of the support of h, for
1
2
≤ λ ≤ 2 and |x| > 1

2
|t| we get

|Kt(x)| ≤ c
µ

(1 + |x|)n−1
2

≤ c
µ

(1 + |x|+ |t|)n−1
2

which combined with (A.71) proves (A.70) as claimed.

Proof of Lemma A.3: After a smooth change of coordinates the estimate reduces to

the canonical form

|
∫

Rn−1
h(y)eiλy2

dy| ≤ c
1

|λ|n−1
2

|h|W n−1,1(Rn−1)

or, by a rescale argument,

|
∫

Rn−1
h(y)eiy2

dy| ≤ c|Dn−1h|L1(Rn−1)

This follows from its one dimensional counterpart, n − 1 = 1. To prove it write h(x) =∫
h′(y)sgn (x− y)dy. It thus suffices to show that

sup
y
|
∫

sgn (x− y)eix2

dx| ≤ C

This is obvious in the interval x ∈ [−1, 1], away from it the result follows by integration by

parts. q.e.d.

It only remains to prove the optimality of the conditions (4). When the space-time

Fourier transform of φ is concentrated on the upper cone τ = |ξ| the inequality (A.46) is

essentially equivalent to the standard Strichartz-Pecher inequality in which case (A.44) is
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known to be necessary. In what follows we assume (A.44) and show that the inequality

(A.46) is false for σ > σ0 = nα(r)− 2
q
. Let φ, ψ defined as before,

φ =
∫
ei(x·ξ+t|ξ|) 1

|ξ|s−σ
2
f(ξ)dξ

ψ =
∫
ei(x·ξ−t|ξ|) 1

|ξ|s−σ
2
g(ξ)dξ

where f, g are L2 functions. Then,

|D|−σ(φ · ψ)(t, x) =
∫ ∫

eix·ξeit(|ξ−η|−|η|) 1

(|τ |+ |ξ|)σ

f(ξ − η)g(η)

|ξ − η|s−σ
2 |η|s−σ

2
dηdξ (A.72)

Let,

ΓL =
{
η ∈ Rn/ | η

|η|
− e| ≤ O(L−1) , L2 ≤ |η| ≤ 2L2

}
(A.73)

where e = (1, 0, . . . , 0). Also let,

AL =
{
ξ ∈ Rn/

L

2
≤ |ξ| ≤ L

}
, (A.74)

and choose g the characteristic function of ΓL, f the characteristic function of the set AL−ΓL.

Observe that for |ξ| ≤ L, η ∈ ΓL, and L large

|ξ − η| − |η| =
ξ · η
|η|

+O(
|ξ|2

|η|
) =

ξ · η
|η|

+O(1)

= ξ · e+ ξ · ( η
|η|

− e) +O(1) = ξ1 +O(1)

Therefore for x = (x1, x
′)

t(|ξ − η| − |η|) + x · ξ = (t+ x1)ξ1 + x′ · ξ′ + tO(1) (A.75)

Consider the region RL in the t, x variables defined by,

|t+ x1| ≤ O(L−1) , |x′| ≤ O(L−1) , |t| ≤ O(1). (A.76)

such that, for some large, positive, C

C−1 ≤ t(|ξ − η| − |η|) + x · ξ ≤ C.

for all (t, x) ∈ RL , ξ ∈ AL, η ∈ ΓL and large L.
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Let I(t, x) be the integral on the right hand side of (A.68). For (t, x) ∈ RL and f, g

defined as above there exists a sufficiently small δ > 0 such that,

|I(t, x)| ≥ δL−σL−2(2s−σ)LnLn+1

and as a consequence,

‖I‖Lq
t Lr

x
≥ δL−4s+σ+2n+1L−

n
r (A.77)

On the other hand the L2 norms of f, g are of the size,

‖f‖, ‖g‖ ≤ O(L
n+1

2 ) (A.78)

Thus, for the inequality ‖I‖Lq
t Lr

x
≤ c‖f‖‖g‖ to hold true we need δL−4s+σ+2n+1L−

n
r ≤ cLn+1

which, for large L, requires,

σ ≤ 4s− n(1− 1

r
) = n(1− 1

r
)− 2

q
= σ0.

as desired.

Theorem 5 Let φ and ψ satisfy �φ = �ψ = 0 subject to the initial conditions φ(0, x) =

f1(x), ∂tφ(0, x) = g1 and ψ(0, x) = f2(x), ∂tψ(0, x) = g2. Then, with the same notation and

conditions as in Theorem 3.1, if s ≥ σ and σ = σ1 + σ2, 0 < σ1, σ2, we have,

‖|D|−σ(φ · ψ)‖Lq
t Lr

x
≤ c(‖f1‖Ḣs−σ1 + ‖g1‖Ḣs−σ1−1)(‖f2‖Ḣs−σ2 + ‖g2‖Ḣs−σ2−1). (A.79)

Proof: This asymmetric version of Theorem 4 can be proved in the same way. In

fact in the decomposition (A.50) we need only to take care of P1, P2. Indeed the P3 term

can be symmetrized and thus reduced to the same situation as in Theorem 4. Consider

P1 =
∑

µ< 1
8
λ φλψµ. Now, proceeding as before,

‖|D|−σ(φλ · ψµ)‖Lq
t Lr

x
≤ cλ−σλσ1µσ2‖fλ‖Ḣs−σ1‖gµ‖Ḣs−σ2

≤ c
(
µ

λ

)σ2

‖fλ‖Ḣs−σ1‖gµ‖Ḣs−σ2

and therefore,

‖|D|−σP1‖Lq
t Lr

x
≤ c‖f‖Ḣs−σ1‖g‖Ḣs−σ2 .

Theorem 6 Let φ1, φ2 ∈ H0,δ for some δ > 1
2
. Then, with the same notations and conditions

as in Theorem 3.2, we have

‖|D|−σ(|D|−s+σ1φ1 · |D|−s+σ2φ2)‖Lq
t Lr

x
≤ c‖φ1‖0,δ‖φ2‖0,δ (A.80)
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