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Introduction

The unique continuation problem. Consider a partial differential operator P (x,D)

and an oriented hypersurface Σ. Denote the two sides of Σ by Σ+ and Σ−. Then a typical

formulation for an unique continuation result is

Let u be a solution for P (x,D)u = 0. Assume that u = 0 in Σ+. Then u = 0 near Σ in Σ−.

(1)

A principal aim of the work in this area is that, given an operator P , to determine the

class of hypersurfaces S for which the above unique continuation property (UCP) holds.

Most results of this type are in effect local. Hence, a more appropriate formulation of the

above property is

Let u be a solution for P (x,D)u = 0. Let x0 ∈ Σ and V be a neighbourhood of x0.

Assume that u = 0 in Σ+ ∩ V . Then u = 0 near x0 (in Σ−).

The Cauchy problem The unique continuation problem is related to the Cauchy prob-

lem. If P is a partial differential operator of order m and the surface Σ is noncharacteristic

then, given a smooth function u, we can define the Cauchy data of u on Σ as

(u|Σ,
∂u

∂ν |Σ
, · · · , ∂

m−1u

∂νm−1 |Σ
) (2)

The Cauchy problem for the operator P with initial data on Σ can be phrased as

Given functions (u0, u1, · · · , um−1) on Σ, find u in Σ− so that:{
P (x,D)u = 0 in Σ+

(u|Σ = u0,
∂u
∂ν |Σ = u1, · · · , ∂

m−1u
∂νm−1 |Σ = um−1 on Σ

(3)

We say that the above Cauchy problem is well-posed if for each Cauchy data

(u0, u1, · · · , um−1)

the equation (3) has an unique solution u.

Now one can see that the unique continuation property is equivalent to the uniqueness

in the Cauchy problem. In particular if the Cauchy problem is well-posed then the unique

continuation property also holds. Hence, it makes sense to study the unique continuation

problem only when the Cauchy problem is ill-posed.
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Stability estimates Take a typical unique continuation result of the form ” Let u ∈ H1

solve P (x,D)u = 0. Then u = 0 in ω implies u = 0 in Ω ⊃ ω. Then a simple compactness

argument shows the existence of a continuity modulus m such that

|u|L2(Ω) ≤ m(|u|H1(ω)) if |u|H1(Ω) ≤ 1 (4)

Such an estimate is called a stability estimate. In particular problems the interest is to

determine the behaviour of the best function m for which (4) holds.

Note that such an estimate says nothing of the regularity of the function u. However,

sometimes one can obtain a stronger version of (4), namely

|u|H1(Ω) ≤ m(|u|H1(ω)) if |u|L2(Ωε) ≤ 1 (5)

The latter estimate also says that if u ∈ H1(ω) ∩ L2(Ωε) then u ∈ H1(Ω).

If the function m can be taken linear then the restriction |u|L2(Ωε) ≤ 1 can be dropped,

and the following stronger estimate holds:

|u|H1(Ω) ≤ m(|u|H1(ω)) (6)

In accordance with the control theory terminology, we call (6) an observability estimate.

The meaning of this is that one can predict u in Ω by observing it in the smaller set ω.

Carleman estimates The oriented surface Σ can be represented as Σ = {φ = 0}, where

φ is a C2 function which vanishes simply on Σ and phi > 0 in Σ+. The most common

way of proving unique continuation results is by using Carleman estimates. The Carleman

estimates are just regular estimates for pde’s, with an additional feature, namely that they

contain a one parameter family of exponential weights. The simplest Carleman estimates,

say for the wave equation, have the form

τ |eτφu|2H1 ≤ c|eτφP (x,D)u|2L2 , τ ≥ τ0 (7)

for u supported in a fixed compact set.

How does one get unique continuation from the Carleman estimates ? Assume first that

u has compact support and that P (x,D)u = 0 in Σ+ = {φ > 0}. Then the RHS in (7) goes

to 0 as τ →∞. Hence the LHS also goes to 0, which implies that u = 0 in Σ+. Now go one

step further, and assume only that supp u ∩ Σ+ is compact. Then we can cutoff u in Σ− to
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make it have compact support, and the same argument works. Hence, we have proved that

(7) implies the following version of 1:

em Assume that supp u ∩ Σ+ is compact and that P (x,D)u = 0 in Σ+. Then u = 0 in Σ+

(8)

The relation between (1) and (8) can be seen in the following picture. Obtaining (1) near

some point x0 ∈ Σ reduces to (8) for a modified surface Σ′.

Why Carleman estimates ? Well, assume that we are attempting to show (1) and that

using some other devices (e.g. propagation of singularities) we have proved that u is smooth

near Σ. This still leaves room for functions u which decay rapidly near Σ. But, intuitively, one

cannot ”see” this behaviour with usual energy estimates. This is the task of the exponential

weight, which, as τ increases, ”highlights” the behavior of u exactly near Σ.

The conjugated operator Is proving an estimate such as (7) more difficult than proving

such an estimate without the exponential weight ? To investigate this let us try to eliminate

the exponential weight from (7). Thus, set v = eτφu. Then

eτφP (x,D)u = eτφP (x,D)e−τφv = Pτ (x,D, τ)v

Hence, (7) reduces to

τ |v|2H1 ≤ c|eτφPτ (x,D, τ)u|2L2 , τ ≥ τ0 (9)

Here Pτ has the form

Pτ (x,D, τ) = eτφP (x,D)e−τφ = P (x,D + iτ∇φ) (10)

i.e. it is the conjugate of P with respect to the exponential weight eτφ.

Thus, we have elliminated the exponential weight from the estimates at the expense of

replacing the operator P by the conjugated operator Pτ . Does this cause any troubles ?

At first sight it would seem that Pτ equals P modulo lower order terms, therefore one is

tempted to say that they have similar properties.

The critical fact is, however, that the estimate (7) is an uniform estimate in τ . Hence, we

cannot afford to treat the τ ’s in Pτ as lower order terms. In effect, as it turns out, τ should

have the same weight as a full derivative. Consequently, Pτ and P are structurally different,

and separate estimates are required for Pτ .
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Other types of unique continuation problem. Why assume from the begining that u

vanishes in an open set, and not in a smaller set ? For operators with nonanalytic coefficients

this seems to be intrinsically related to propagation of singularities. It appears that one needs

to know that each possible propagating singularity would have to intersect the set where u

is known to be 0. Consequently, there are two exceptions to this.

The first exception is for elliptic or subelliptic equations, for which there are no singulari-

ties which propagate. Then one can sometimes obtain a strong unique continuation property

(SUCP) which has the form

Let u be a solution for P (x,D)u = 0. Assume that u vanishes of infinite order at some

x0. Then u = 0 near x0

The SUCP has been extensively studied, and for a review containing the latest results

one could see [?]. It is not the aim of this monograph to consider the SUPC for elliptic

equations. However, we do consider it for parabolic equations in Chapter 3.10.

The second exception is for anisotropic equations, e.g. for the Schroedinger equation.

There the speed of propagation is infinite, therefore one can hope to get some results at

fixed time. To show a tipical result, fix t0 and let Σ ⊂ {t = t0} be an oriented surface.

Let u be a solution for P (x,D)u = 0. Assume that u vanishes of ”sufficiently high order”

in Σ+. Then u vanishes of ”sufficiently high order” near Σ in {t = t0}.
Results of this type are presented in Chapter 3.9.
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Chapter 1

Preliminaries

1.1 Partial differential operators

For a partial differential operator P (x,D) of order m in Rn of the form

P (x,D) =
∑
|α|≤m

cαD
α

we define its principal symbol as a function in T ∗Rn,

p(x, ξ) =
∑
|α|=m

cαD
α (1.1)

The characteristic set of the operator P is defined as

char P = {(x, ξ) ∈ R2n/p(x, ξ) = 0, ξ 6= 0}. (1.2)

The Hamilton field associated to a real symbol P is

Hp = pξ(x, ξ)
∂

∂x
− px(x, ξ)

∂

∂ξ

If the coefficients of P are at least C2 then the trajectories of the Hamilton field are uniquely

determined and are called bicharacteristic rays, or simply bicharacteristics. Observe that

char P is invariant with respect to the bicharacteristic flow. The bicharacteristics contained

in char P are called null bicharacteristics, and play a fundamental role in the study of partial

differential operators.

Given two symbols p and q we can define their Poisson bracket as

{p, q} = Hpq = −Hqp = pξqx − qξpx (1.3)
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If p is a real symbol, then the above Poisson bracket has a simple geometrical interpretation.

Namely, {p, q} is the derivative of q along the bicharacteristics of P .

Definition 1.1 The operator P is said to be of real principal type if its principal symbol

p(x, ξ) is real and ∇x,ξp(x, ξ) 6= 0 on char P .

If P is of real principal type then char P is a codimension 1 surface.

A second condition used throughout the book is the principal normality condition on P .

Definition 1.2 The operator P is principally normal if

|{p, p}| ≤ c|p||ξ|m−1 (1.4)

Of course, this condition is fulfilled whenever P has a real principal symbol, and also

whenever P is elliptic. This includes all the examples studied here.

1.2 Pseudoconvex functions and surfaces

If Σ is a C2 oriented hypersurface, we can represent it as a level set of a C2 function

Σ = {φ = 0}

where ∇φ 6= 0 on Σ and φ > 0 on Σ+. This representation is not unique. However, it is

unique modulo multiplication by C2 positive functions.

The strong pseudoconvexity condition is

Definition 1.3 Let S be a C2 hypersurface. Let φ be a real valued C2 function vanishing

simply on S. We say that S is strongly pseudoconvex with respect to P at x0 ∈ S if

Re{p̄, {p, φ}}(x0, ξ) > 0 whenever (1.5)

p(x0, ξ) = {p, φ}(x0, ξ) = 0 , ξ 6= 0 (1.6)

{p̄(x0, ξ − iτ∇φ), p(x0, ξ + iτ∇φ)}(x0, ξ)/τi > 0 whenever (1.7)

{p(x0, ξ + iτ∇φ) = {p(x0, ξ + iτ∇φ), φ}(x0, ξ) = 0, τ > 0} (1.8)
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In order for this definition to be correct, one needs to verify that it does not depends on

the choice of the function φ, i.e. that is invariant with respect to substitutions of the form

φ→ gφ, with g > 0.

Note that, given that P is principally normal, (1.6) is the limiting case of (1.8) as τ → 0.

Indeed, the linearization of pτ in τ at τ = 0 is

pl(x, ξ, τ) = p(x, ξ) + iτ{p, φ}(x, ξ)

Hence, if p(x0, ξ) = {p, φ}(x0, ξ) = 0 then

lim
τ→0
{p̄(x0, ξ − iτ∇φ), p(x0, ξ + iτ∇φ)}(x0, ξ)/τi = 2Re {p̄, {p, φ}}(x0, ξ)

Following is the definition of strongly pseudoconvex functions:

Definition 1.4 We say that the C2 function φ is strongly pseudoconvex at x0 with respect

to P at x0 if

Re{p̄, {p, φ}}(x0, ξ) > 0 whenever (1.9)

p(x0, ξ) = 0 , ξ 6= 0 (1.10)

{p̄(x, ξ− iτ∇φ), p(x, ξ+ iτ∇φ)}/τi > 0 on {p(x, ξ+ iτ∇φ) = 0, τ ≥ 0, (ξ, τ) 6= 0} (1.11)

The relationship between strongly pseudoconvex functions and surfaces is described next.

Theorem 1.5 Let P be a principally normal operator. Then

i) Any nondegenerated level set of a function which is strongly pseudoconvex with respect

to P is a strongly pseudoconvex surface with respect to P .

ii) Any surface which is strongly pseudoconvex with respect to P is a level surface for

some strongly pseudoconvex function with respect to P .

iii) The strong pseudoconvexity condition for both functions and surfaces is stable with

respect to small C2 perturbations.
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Proof : Parts (i),(iii) follow directly from the definitions. For (ii), let φ be as in

Definition . This implies that if c is sufficiently large then

1

τi
{pτ , pτ}(x0, ξ) + c(|{pτ , φ}|2 + τ−2|pτ |2) ≥ d(ξ2 + τ 2)m−1 (1.12)

Then we claim that the function ψ = eλφ satisfies (1.10), (1.11), provided that λ is sufficiently

large. Indeed, compute

1

τi
{p(x, ξ + iτ∇ψ), p(x, ξ + iτ∇φ)} =

1

τi
{p(x, ξ + iλτψ∇ψ), p(x, ξ + iτλψ∇φ)}

=
1

τi
{pλτ , pλτ}+ 2λ|pλτ |2

If we combine this with (1.12) then for λ > c we get

1

τi
{p(x, ξ + iτ∇ψ), p(x, ξ + iτ∇φ)}τ−2|pτ |2) ≥ d(ξ2 + τ 2)m−1 (1.13)

This implies (1.10), (1.11).

1.3 Pseudoconvexity revised: anisotropic operators

Consider the Schroedinger operator

P (x, ∂) = i∂t − A(t, x, ∂x)

where A is a second order elliptic operator. What is the principal symbol of P ? According

to 1.1, it should be a(x, t, ξ). However, the word ”principal” tends to indicate that this

symbol essentially describes the properties of the operator. This is outright false in this

setting, since the Schroedinger equation and a second order elliptic equation are completely

different. Consequently, it makes more sense to define the principal symbol as

p(x, ξ) = s+ a(t, x, ξ)

where s is the time Fourier variable.

This symbol, however, is no longer homgeneous of order 2. Or is it ? It actually is if we

twist a bit the meaning of the word homogeneous. Namely, redefine

λ(s, ξ) = (λ2s, λξ)

14



Of course, this changes the meaning of the order of a partial differential operator; in this

setting Dx has order 1, but Dt has order 2. If we take an operator of the form Dα0
t D

α′
x then

its order has to be 2α0 + |α′|. Thus, redefine

|α| = 2α0 + α1 + · · ·+ αn

We call the operators associated to this setting anisotropic operators.

Of course one can try to fit all other operators into this framework. For instance, in this

section the operator −∆t,x has order four and principal symbol s2. This would definitely be

misleading. The philosophy is that for each operator there exists a natural setting in which it

can be studied. Elliptic and hyperbolic equations, for instance, fit just fine into the classical

(isotropic) setting. On the other hand, the parabolic equations, the Schroedinger equation,

and the Euler-Bernoulli plate model correspond to the framework developed in this section.

The KdV equation fits into neither of these two and requires its own setting.

To avoid excessive generality we confine ourselves to the classical (isotropic) and the

parabolic setting. Based on this the interested reader can easily adapt the arguments to

other types of equations.

What is the Hamilton field associated to an anisotropic operator P in this context ? To

understand this, look at the order of the terms which appear in the classical Hamilton field.

The terms px
∂
∂ξ
, pξ

∂
∂x

have order m − 1. On the other hand, the terms pt
∂
∂s
, ps∂∂t have

order m− 2. It is natural now to drop the lower order terms and set

Hp = pξ
∂

∂x
− px

∂

∂ξ
(1.14)

The Poisson bracket is altered correspondingly,

{p, q} = Hpq = −Hqp = pξqx − qξpx (1.15)

(no time derivatives).

Look now at the definitions of the strongly pseudoconvex surfaces. In factors of the form

Dt + iτφt the second term has order 1 while the first has order two. Hence, to be consistent

with the previous reasoning, we drop the lower order term. Consequently, given also the

new choice for the Poisson bracket, the pseudoconvexity conditions will contain no time

derivatives of φ, therefore they are completely uncoupled in time. This implies that one can

apply these conditions to surfaces which live on time sections:
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Definition 1.6 Let S ⊂ {t = t0} be a C2 hypersurface. Let φ be a real valued C2 function

vanishing simply on S. We say that S is strongly pseudoconvex with respect to P at (t0, x0) ∈
S if

Re{p̄, {p, φ}}(x0, ξ) > 0 whenever (1.16)

p(x0, ξ) = {p, φ}(x0, ξ) = 0 , ξ 6= 0 (1.17)

{p̄(x0, ξ − iτ∇φ), p(x0, ξ + iτ∇φ)}(x0, ξ)/τi > 0 whenever (1.18)

{p(x0, ξ + iτ∇xφ) = {p(x0, ξ + iτ∇xφ), φ}(x0, ξ) = 0, τ > 0} (1.19)

Definition 1.7 We say that the function φ is strongly pseudoconvex with respect to P at x0

if

Re{p̄, {p, φ}}(x0, ξ) > 0 whenever (1.20)

p(x0, ξ) = 0 , ξ 6= 0 (1.21)

{p̄(x, ξ−iτ∇xφ), p(x, ξ+iτ∇xφ)}/τi > 0 on {p(x, ξ+iτ∇xφ) = 0, τ ≥ 0, (ξ, τ) 6= 0} (1.22)

1.4 Second order operators of real principal type

The most common class of operators arising in applications is the second order operators.

This section is devoted to a detailed examination of the pseudoconvexity condition for second

order operators of real principal type. The main result is

Theorem 1.8 Let P (x,D) be a second order operator of real principal type. a) Let Σ be a

noncharacteristic C2 hypersurface. Then Σ is strongly pseudoconvex with respect to P iff

Re{p, {p, φ}}(x0, ξ) > 0 whenever (1.23)

p(x0, ξ) = {p, φ}(x0, ξ) = 0 , ξ 6= 0 (1.24)
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Proof : We need to show that (1.8) (respectively (1.19) in the anisotropic case) is

always fulfilled. If

p(x, ξ + iτ∇φ) = {p(x, ξ + iτ∇φ), φ}

then iτ is a double root for the polymomial

q(z) = p(x, ξ + z∇φ)

If Σ is noncharacteristic, i.e. p(x,∇φ) 6= 0 then q is a second degree polynomial with real

coefficients. Hence, its double root has to be real, which implies that τ = 0.

If Σ is characteristic then q has degree at most one. Hence, in order to have a double

root it needs to be identically 0. This is equivalent to

p(x, ξ) = {p, φ}(x, ξ) = 0 (1.25)

On the other hand

1

τi
{p(x, ξ + iτ∇ψ), p(x, ξ + iτ∇φ)} = {p(x, ξ)− τ 2p(x,∇φ), pξ(x, ξ)∇φ}

= pξ(x, ξ)φxxpξ(x, ξ) + τ 2pξ(x,∇φ)φxxpξ(x,∇φ)

= {p, {p, φ}}(x0, ξ) + τ 2{p, {p, φ}}(x0,∇φ)

This should be positive for any τ ≥ 0, which is equivalent to

{p, {p, φ}}(x0, ξ) > 0, {p, {p, φ}}(x0,∇φ) > 0

Now the first inequality above is exactly the pseudoconvexity condition at τ = 0 (with ξ

satisfying (1.25) while the second is the pseudoconvexity condition at τ = 0, ξ = ∇φ (which

satisfies (1.25).

With small modifications the same argument aplies also to the anisotropic case, q.e.d.

1.4.1 A geometrical interpretation of pseudoconvexity

The second aim of this section is to give a simple geometrical interpretation of the pseudo-

convexity condition in this case. Rewrite the pseudoconvexity condition (1.24) as

H2
pφ > 0 whenever φ = Hpφ = 0
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Recall now that Hpφ, H
2
pφ represent the first, respectively the second derivative of φ along

the bicharacteristics of P . Then the above relation says that the null bicharacteristics of

P are either transversal to Σ or, if they are tangent to Σ then they are ”curved” toward

Σ+ = {φ > 0} (see the figure below).

1.5 Boundary value problems and the Lopatinskii con-

dition

Let K be a domain in Rn with C1 boundary ∂K. Given x0 ∈ choose local coordinates near

it so that at x0 we have xn = 0, dxn ∈ N ∗∂K (i.e. the plane xn = 0 is tangent to ∂K at x0)

1.5.1 The strong Lopatinskii condition

At each point γ′ = (x0, ξ
′
0) ∈ T ∗∂K decompose p(x0, ξ + iτ∇φ) as polynomial in ξn:

p(x0, ξ + iτ∇φ) = p−(x0, ξ
′
0, ξn))p+(x0, ξ

′
0, ξn)

∏
(ξn − ξ(j)

n )mj (1.26)

where the three factors stand for the roots with positive imaginary part, negative imaginary

part, respectively for the real roots. This decomposition extends uniquely to a smooth

decomposition in a conic neighbourhood of γ′,

p(x, ξ + iτ∇φ) = p−(x, ξ′, ξn, τ)p+(x, ξ′, ξn, τ)
∏
pj(x, ξ

′, ξn, τ)

When τ = 0 define for each j:

nj = min{k ≥ 0/ Dk
ξn{pj, φ}(ξ

(j)
n ) 6= 0}

and

lj =

{
0 if D

nj
ξn
{pj, φ}(ξ(j)

n ) < 0
1 if D

nj
ξn
{pj, φ}(ξ(j)

n ) > 0

Define p0(x0, ξ
′
0, ξn, τ) by

p0(x0, ξ
′
0, ξn, τ) =

{
p+(x0, ξ

′
0, ξn, τ)

∏
(ξn − ξ(j)

n )mj if τ > 0

p+(x0, ξ
′
0, ξn, τ)

∏
(ξn − ξ(j)

n )m
+
j if τ = 0

where m+
j = [mj+nj−lj

2
].
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Definition 1.9 We say that the boundary operators B satisfy the strong Lopatinskii condi-

tion with respect to S at x0 ∈ S∩∂K if their principal symbols bj(x0, ξ+ iτ∇φ) are complete

modulo p0(x0, ξ, τ) as polynomials in ξn for each τ ≥ 0, (ξ′, τ) 6= 0.

This definition includes the classical strong Lopatinskii condition for the case when P is

strictly hyperbolic with respect to dφ. That case is simpler due to the fact that nj = 0 and

furthermore, no real roots (for p(x, ξ + iτ∇φ) as a polynomial in ξn) can occur when τ > 0.

The definition applies as well to anisotropic problems.

Remark 1.10 a) If the strong Lopatinskii condition is fulfilled at some point x0 then it is

also fulfilled in a neighbourhood.

b) The strong Lopatinskii condition is stable with respect to small C1 perturbations of the

coefficients and of the boundary ∂K.

It is useful to note that the above definition is coordinate independent. Indeed, one can

reformulate it as it follows:

At each γ ∈ T ∗K∩∂K decompose p(γ+λN+iτdφ) as polynomial in λ. Here N ∈ Nx0∂K

(the conormal bundle of the boundary ∂K) and λ plays the role of ξn above. With this new

notations, it is clear that nj, lj, p0 are invariantly defined. Then the invariant formulation of

the above definition is

Definition 1.11 We say that the boundary operators B satisfy the strong Lopatinskii con-

dition with respect to dφ iff bj(x0, γ+λN + iτdφ) are complete modulo p0(x0, γ+λN + iτdφ)

as polynomials in λ for each τ ≥ 0.

1.5.2 The weak Lopatinskii boundary condition

With the same notations as in the previous section assume that at each γ′ = (x, ξ′) the

symbol p(x0) has at most one multiple root as polynomial in ξn, and that root is double.

1.5.3 Second order operators

Theorem 1.12 Assume that P is a second order operator of real principal type. Let B be

as above. Then B satisfies the strong Lopatinskii condition with respect to dφ iff either

i) The pair (P,B) generates a strongly well-posed hyperbolic problem and dφ is time-like.
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ii)
∂φ

∂ν
< 0 and B is the Dirichlet boundary condition.

iii)
∂φ

∂ν
< 0, B is any Neuman boundary condition and P is elliptic.

iv)
∂φ

∂ν
< 0, B is any Neuman boundary condition and

In this case one can choose local coordinates near x0 so that p(x0, ξ) has the form

p(x, ξ) = ξ2
n − r(x, ξ′)

a) The case τ > 0.

In this case the two roots are

ξn = −iτφn ± (r(x, ξ + iτ∇′φ))

At least one should have positive imaginary part. This clearly happens if φn < 0.

Suppose that φn ≥ 0. Then r(x, ξ + iτ∇′φ) 6 ∈R+. Hence, r(∇φ) > 0 and r(ξ) < 0 on

r(ξ,∇φ) = 0. This implies that R is hyperbolic and ∇′φ is time-like with respect to R, and

further that P is hyperbolic and ∂K is time-like.

In addition, p(x, ξ + iτ∇φ) should have no real roots when τ > 0 therefore, as argued

before for r, ∇φ is also hyperbolic with respect to P .

Consequently, either
∂φ

∂ν
< 0 or we are dealing with a strongly well-posed hyperbolic

initial-boundary value problem.

Conversely, assume that
∂φ

∂ν
< 0.

Then p0 has degree either 0 or 1. Furthermore, if it has degree 1 then it has the form

p0 = ξn − α, Im α > 0

In either case the strong Lopatinskii condition follows.

b) The case τ = 0.

In the region r < 0 we have two conjugate imaginary roots, therefore

p0 = ξn + i
√
−r

and the strong Lopatinskii condition follows.

In the region r = 0 we have either nj = 0 or nj = 1 and lj = 0. Hence m+
j = 1 therefore

p0 = ξn
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In the region r > 0 p has two factors,

p1,2 = ξn ± r1/2

Then

{p1, φ}+ {p2, φ} = 2φn < 0

therefore at least one is negative. Hence p0 has degree 0 or 1. In the first case, the Lopatinskii

condition follows. In the second, we need

l(x, ξ) 6= r1/2 if{r, φ} ≥ 0

and

l(x, ξ) 6= −r1/2 if{r, φ} ≤ 0

1.6 Notes

1.6.1 Characteristic vs. pseudoconvex surfaces

The pseudoconvexity condition for a surface Σ does not require that the surface be nonchar-

acteristic. However, if Σ is characteristic at some x0 then (1.8) should hold at x = x0, ξ = 0.

Note that p(x0,∇φ) = 0 implies that

{p, φ}(x0,∇φ) = 0

Then (1.8) at x = x0, ξ = 0 can be rewritten as

{p, p(x,∇φ)}(x0,∇φ(x0)) > 0 (1.27)

In other words, the surface Σ should change type at x0 along the bicharacteristic conormal

to Σ at x0.

1.6.2 Critical points for pseudoconvex functions

As far as pseudoconvex functions are concerned, another degenerate situation is when∇φ = 0

at some point x0. Then the pseudoconvexity condition for φ with respect to P necessarily

fails when ξ = 0, τ > 0. However, it could still hold except for this limiting case, therefore

it makes sense to use a weaker replacement for (1.22), namely
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{p̄(x, ξ − iτ∇xφ), p(x, ξ + iτ∇xφ)}/τi > c(|ξ|+ τ |∇φ|2m−2)

on {p(x, ξ + iτ∇xφ) = 0, τ ≥ 0, (ξ, τ) 6= 0} (1.28)

When x is in a sufficiently small neighbourhood of x0 this condition reduces to

pξ(x, ξ + iτ∇xφ)(D2φ(x0))pξ(x, ξ − iτ∇xφ) > c(|ξ|+ τ |∇φ|2m−2)

on {p(x, ξ + iτ∇xφ) = 0, τ ≥ 0, (ξ, τ) 6= 0}

A sufficient condition for this is

pξ(x0, ξ)(D
2φ(x0))pξ(x0, ξ) > 0 on {p(x, ξ) = 0, ξ ∈ C, ξ 6= 0} (1.29)

This condition is also necessary in the simplest case, when the Hessian D2φ(x0) is nonde-

generate. Then |∇φ| ≈ |x− x0|.
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Chapter 2

The pdo calculus

2.1 The τ- dependent spaces and operators

Treating τ as a derivative requires changing the Hs scale of spaces into Hs
τ defined by

u ∈ Hs
τ ⇐⇒ û(|ξ|2 + τ 2)s/2 ∈ L2

A partial differential operator of order m is, in this setting, an operator of the form

P (x,D, τ) =
∑

|α|+β≤m
cα,β(x)Dατβ

Its principal symbol is then

p(x, ξ, τ) =
∑

|α|+β≤m
cα,β(x)ξατβ

Define the following classes of symbols:

Spτ = {a(x, ξ, τ)/|Dα
xD

β
ξ a| ≤ cα,β(1 + |(ξ, τ)|)p−|β|}

CkSpτ = {a(x, ξ, τ)/|Dα
xD

β
ξ a| ≤ cα,β(1 + |(ξ, τ)|)p−|β|, |α| ≤ k}

We use the subscript cl to indicate the corresponding spaces of homogeheous symbols (e.g.

Sk,pcl ).

The pseudodifferential calculus for operators with symbols in these classes mirrors the

calculus for the corresponding classical framework. The main point is that the properties of

such operators hold uniformly τ . Following we include for reference some results:

Theorem 2.1 (mapping properties) Let a ∈ CkSmcl . Then

A(x,D, τ) : Hs+m
τ → Hs

τ |s| ≤ k
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Theorem 2.2 (composition) a) a ∈ CkSpcl, b ∈ Sm. Then

A(x,D, τ)B(x,D, τ)− (AB)(x,D, τ) : Hs+m+p
τ → Hs

τ |s| ≤ k

b) a ∈ C1Sjcl, b ∈ C1Sm, 0 ≤ j ≤ 1. Then

A(x,D, τ)B(x,D, τ)− (AB)(x,D, τ) : Hs+m+j+1
τ → Hs

τ 0 ≤ s ≤ 1− j

Theorem 2.3 (commutators) Let a ∈ C1Sjcl, b ∈ C1Skcl, 0 ≤ j ≤ k ≤ 1. Then

[A(x,D, τ), B(x,D, τ)]Hs+j−1
τ → Hs

τ 0 ≤ s ≤ 1− k

Theorem 2.4 (adjoints) Let a ∈ C1Sjcl, 0 ≤ j ≤ 1. Then

A∗(x,D, τ)− A(x,D, τ)∗ : Hs+j−1
τ → Hs

τ |s| ≤ 1− j

Theorem 2.5 (Garding’s inequality) Let a ∈ C1S2
cl so that

a(x, ξ, τ) + a(x, ξ, τ)∗ ≥ 2c(|ξ|2 + τ 2)

Then

Re (A(x,D)u, u) ≥ c|u|21,τ − d|u|20

2.2 The calculus for the L2 estimates

This section contains the main ingredients necessary for the L2 estimates.

2.2.1 An application of Garding’s theorem

We start with the following simple result:

Lemma 2.6 Assume that P,Q are partial differential operators with real C1 coefficients.

a) If P,Q have both order m then

|Im < Pu,Qu > | ≤ c|u|m,τ |u|m−1,τ

b) If P has order m and Q has order m− 1 then

|Im < Pu,Qu > | ≤ c|u|2m−1,τ
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Proof : Start from

2Im < Pu,Qu >= −i(< Pu,Qu > − < Qu, Pu >)

and integrate by parts.

The main result in this section is

Theorem 2.7 a) Let P,Q be partial differential operators of order m + 1, respectively m

with real C1 coefficients. Let R1, ...Rj be partial differential operators of order m with C0

coefficients. Assume that

{p, q} > c|(ξ, τ)|2m on Uchar Rj

while

p = q = 0 on Uchar Rj

Then there exists d > 0 so that

|u|m,τ ≤ 2Im < Pu,Qu > +d
∑
|Ru|2 (2.1)

for sufficiently large τ .

b) Let P,Q be partial differential operators of order m, respectively m − 1 with real C1

coefficients. Let R1, ...Rj be partial differential operators of order m with C1 coefficients.

Assume that

{p, q} > c|(ξ, τ)|2m−2 on Uchar Rj

while

p = q = 0 on Uchar Rj

Then there exists d > 0 so that

c|u|m−1,τ ≤ 2Im < Pu,Qu > +d
∑
|Ru|2−1,τ (2.2)

for sufficiently large τ .

Proof : a) Choose d sufficiently large so that

{p, q}+ pxξq − qxξp+ d
∑
|rj|2 > c|(ξ, τ)|2m (2.3)

Then we claim that (2.1) holds.
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First we reduce the problem to the smooth coefficient case. Consider approximations of

P,Q,Rj in the corresponding classes of operators, with smooth coefficients. Then (2.3) is

preserved, while the change in the RHS in (2.1) is negligible.

Now we prove that (2.3) implies (2.1) in the smooth coefficient case. We have

2Im < Pu,Qu > +d
∑
|Ru|2 =< Au, u >

where A is a partial differential operator of order 2m,

A(x,D) = −i(P ∗Q−Q∗P ) +
∑

R∗iRi

with principal symbol

A(x, ξ) = {p, q}+ pxξq − qxξp+ d
∑
|rj|2

By (2.3) Garding’s inequality gives

< Au, u >≥ c|u|2m,τ − c1|u|2m−1,τ

which implies (2.1) if τ is sufficiently large.

b) Choose d sufficiently large so that

{p, q}+ pxξq − qxξp+ d
∑
|rj|2(ξ2 + τ 2)−1 > c|(ξ, τ)|2m−2 (2.4)

Then we claim that (??) holds.

We argue as in case (a). First, the problem reduces to the smooth coefficient case. Then

we have

2Im < Pu,Qu > +d
∑
|Ru|2 =< Au, u >

where A is a pseudodifferential operator of order 2m− 2 with principal symbol

A(x, ξ) = {p, q}+ pxξq − qxξp+ d
∑
|rj|2(ξ2 + τ 2)−1

Then (??) follows from (2.4) by Garding’s inequality.

2.2.2 Regularization

Many of the Carleman estimates are formally obtained only for sufficiently smooth functions.

In order to lower the required a-priori regularity, we need to develop suitable regularization

devices. We start with a simple result:
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Theorem 2.8 Let P be a partial differential operator of order m with C1 coefficients. Let

u ∈ Hm−1 such that P (x,D)u ∈ L2. Then there exists a sequence uε ∈ Hm so that

uε → u in Hm−1

P (x,D)uε → P (x,D)u in L2

Proof : Let ε > 0 and set

uε = (1 + ε�)−1u

Clearly uε ∈ Hm, uε → u in Hm−1. On the other hand,

Pvε = (1 + ε�)−1Pτv + [Pτ , (1 + ε�)−1]v

The first RHS term converges to Pτv in L2. The second RHS term equals

(1 + ε�)−1[Pτ , L]ε(1 + ε�)−1v

which converges to 0 in L2 since by Theorem [?] [C1, L] is L2 bounded and

ε(1 + ε�)−1v → 0 in Hm

2.3 The calculus for estimates at other energy levels

2.3.1 Function spaces for the coefficients

Define the following family of spaces:

Definition 2.9 Let s ≥ 1. We say that a(x) ∈ Ξs iff

(i) a ∈ C1.

(ii) ∇a : Hs−1 → Hs−1.

If s > n/2 + 1 then it is easy to see that Ξs = Hs. If 1 < s ≤ n/2 + 1 then we have the

simple inclusion

C1 ∩Hs,p ⊂ Ξs, 1/p =
s− 1

n

However, the converse is false.
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2.3.2 Commutator estimates

Theorem 2.10 Let s ≥ 1, f ∈ Ξs. If a(x, ξ) ∈ Sr with |r| ≤ s then

[A, f ] : Hq → Hq−r+1, −s+ r+ ≤ q ≤ s− 1 + r− (2.5)

Proof : First reduction to the case r ≥ 0. Note that w.a.r.g. we can assume that a is

elliptic. Then the reduction follows from the formula

[A, f ] = A[A−1, f ]A+ S−∞f + fS−∞

Second reduction to the case q = s− 1. This follows by transposition and interpolation.

Third reduction to the case r = s, r = 0. This follows by analytic interpolation.

Fourth reduction to the case r = s. This follows from the formula

Ss[f, S0] = [f, Ss]− [f, Ss]

Conclusion Set s = k + α, k ∈ N+, 0 ≤ α < 1. Then decompose Ss =
∑
DkSα.

Consequently,

[f, Ss] =
∑

([f, Sα]Dk + Sα[f,Dk])

Now by Theorem 2.10 [f, Sα] maps Hα−1 into L2. Thus, it remains to prove that

[f,Dk] : Hs−1 → Hα

This reduces to

Dj∇fDk−j−1 : Hs−1 → Hα, j = 0, k − 1

and further to

∇f : Hα+j → Hα+j, j = 0, k − 1

which follows from the definition of Ξs.

The next theorem shows what happens when we try to obtain a second order calculus.

Theorem 2.11 Let f ∈ C2, and a ∈ Sj+1, |j| ≤ 1. Then the operator

R = [A(x,D), f ]− ifxAξ(x,D)

has the following mapping properties:

R : Hs → Hs+j−1, j+ − 1 ≤ s ≤ j−

Theorem 2.12 bmo1/2
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2.3.3 Regularization

Many of the Carleman estimates are formally obtained only for sufficiently smooth functions.

In order to lower the required a-priori regularity, we need to develop suitable regularization

devices. We start with a simple result:

Theorem 2.13 Let P be a partial differential operator with Ξr coefficients, and 1− s ≤ r ≤
s. Let u ∈ Hs+m−1 such that P (x,D)u ∈ Hs. Then there exists a sequence uε ∈ Hs+m so

that

uε → u in Hs+m−1

P (x,D)uε → P (x,D)u in Hs+m−1

Proof : Let ε > 0 and set

uε = (1 + ε�)−1u

Clearly uε ∈ Hs+m, uε → u in Hm+s−1. On the other hand,

Pvε = (1 + ε�)−1Pτv + [Pτ , (1 + ε�)−1]v

The first RHS term converges to Pτv in Hs. The second RHS term equals

(1 + ε�)−1[Pτ , L]ε(1 + ε�)−1v

which converges to 0 in Hs since by Theorem [] [Pτ , L] is bounded from Hm
τ into L2 and

ε(1 + ε�)−1v → 0 in Hm

The following theorem goes one step further.

Theorem 2.14 Let P (x,D, τ) be a partial differential operator with Ξr coefficients, and

1 − r ≤ s ≤ r, s0 = max{1 − r, s − 1}. Let v ∈ Hj+m−1 such that Pτv ∈ Hs. Then the

sequence vε ∈ Hs+m−1 defined by

uε = (1 + ε�)−1u

satisfies

uε → u in Hs+m−2
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Pτuε → Pτu in Hs−1

and for any smooth function z with compact support we have

|z2Pτvε|s ≤ c(|z2vε|s+m−1 + |vε|s0+m−1) (2.6)

Proof : As in the previous theorem we get

P (x,D)uε → P (x,D)u in Hs−1

Compute now

z2Puε = z2(1 + ε�)−1Pu+ εz2(1 + ε�)−1[P,�]uε

= (S0z2 + S−1z + S−2)Pu+ ε(1 + ε�)−1[P,�]z2uε + εS−1[P,�](1 + ε�)−1u

+ εS0[z2, [P,�]](1 + ε�)−1v

Since the coefficients ai of P are Ξr it follows that [P,�] is bounded from Hr+m−1 into Hr−1.

On the othe hand, the double commutator [z2, [P,�]] can be rewritten as

[z2, [P,�]] = [z2, [Ξr,�]Dm] = [Ξr,�]Sm−1 + [Ξr, S
0]Sm

Thus, by Theorem 2.10 it is mapping Hr+m−1 into Hr. Consequently, we get

|z2Puε|s ≤ c|z2uε|m+s−1 + cz(|zPu|s + |u|m+s−2)

q.e.d.

The following addition will also be useful.

Theorem 2.15 Assume that supp v ⊂ Σ+. Suppose A ∈ OPSmτ . Then

|φjAv|s+ j −m, τ,Σ− ≤ |v|s,τ

Proof : By interpolation and duality it suffices to consider the case when s,m are

integers satisfying s, s + m − j ≥ 0. Furthermore, by representing A as A = BDs with

B ∈ OPSm−sτ the problem reduces further to the case s = 0. Hence, we want to prove that

|φjAv|j −m, τ,Σ− ≤ |v|
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for j > m and v supported in Σ+. This is equivalent to

|Dj−mφjOPSmτ v|Σ− ≤ |v|

and after commuting Dm−j with φj the estimate reduces to

|φjOPSjτv|Σ− ≤ |v|

for j positive integer.

Choose new local coordinates so that φ(x) = xn. Without any restriction in generality

we can assume that the symbol of A ∈ Sjτ has the form

a(x, ξ, τ) = b(x)c(ξ, τ)

where b is smooth and c ∈ Sjτ . Then we can factor out c in the estimate, and what is left is

to prove that

|xjnC(D, τ)v|Σ− ≤ |v|

This can be reduced to the one dimensional case by taking the tangential Fourier transform.

In the one-dimensional case, the kernel K(x, y) of xjnC(x,D) satisfies

K(x, y) ≤ |x|j|x− y|−j−1

We are only interested in y > 0, x < 0. In this case we get

K(x, y) ≤ |x− y|−1

Then the estimate

|xjnC(D, τ)v|R− ≤ |v|R+

follows from the L2 boundedness of the Riesz transform.

Theorem 2.16 Let s > 0. Then

Hs
τ ⊂ Hs

0,τ +Hs
τ (Σ) (2.7)
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Proof : Consider local coordinates in which φ(x) = xn. Let a be a positive, smooth,

compactly supported function which equals 1 of infinite order at the origin. Then consider the

operator A with symbol a(xn|(ξ, τ)|). We claim that for u ∈ Hs
τ the desired decomposition

is

u = (1− A)u+ Au

First, prove that Au ∈ Hs
τ (Σ). For this we need to show that

(D, τ)jxjnA : Hs
τ → Hs

τ

or equivalent, that

DjxjnA : Hs → Hs

Taking the tangential Fourier transform reduces the problem to a one dimensional problem

of the form

B : Hs → Hs

where B has a symbol of the form b(xn, xnξn) with b smooth, compactly supported. Then

the above boundedness result is a consequence of Melrose’s calculus of totally characteristic

operators.

Next we prove that (1− A)u ∈ H0
s . This follows from the stronger statement:

x−jn (1− A) : Hs
τ → Hs−j

τ

This is equivalent to

x−jn (1− A)(D, τ)−j : Hs
τ → Hs

τ

The symbol of x−jn (1 − A)(D, τ)−j has again the form b(xn|(ξ, τ)|) where b is smooth and

compactly supported. Then its mapping properties can be easily obtained as above.

2.4 The boundary calculus

2.4.1 Interior and boundary bilinear forms

In the sequel we use the following classes of interior bilinear forms:

Definition 2.17 Let Σ ∈ R, µ ≥ 0. We say that an interior bilinear form B given by

B(u, v) =
∑
k

< Ak(x,D, τ)u,Ck(x,D, τ)v > (2.8)
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is of type (m− 1,Σ, µ), if for each k we have ak(x, ξ, τ) ∈ C1Sm,α−1
cl and bk ∈ C1Sm−1,β

cl for

some α, β such that α + β = 2Σ and |α− Σ| ≤ µ+ 1/2.

For an interior bilinear form as above we define the principal symbol as

b(x, ξ, τ) =
∑
k

ak(x, ξ, τ)ck(x, ξ, τ) ∈ C1S2(m−1+Σ)

If u is a function in K for which the first m − 1 boundary traces are well defined and

a(x, ξ, τ) ∈ C1Sm−1,p then we use the notation A(x,D, τ)u|∂K (or simply Au when no con-

fusion is possible) for the boundary operator A applied to u, i.e.

A(x,D, τ)u|∂K =
n∑
i=0

Ai(x,D
′, τ)Di

nu

Correspondingly, we define the following classes of boundary bilinear forms

Definition 2.18 Let Σ ∈ R, µ ≥ 0. We say that a boundary bilinear form B, acting on the

boundary traces of smooth functions u, v in K, defined by

B(u, v) =
∑

k∈K, finite
< Ak(x,D′, τ)u,Bk(x,D′, τ)v >∂ (2.9)

is of type (m− 1,Σ, µ) if ak ∈ C1Sm−1,α
cl and bk ∈ C1Sm−1,β

cl with α+ β = 2Σ and |α−Σ| ≤
µ+ 1/2.

According to the operator estimates in Taylor [54] 2.1, it is easy to see that if B is a boundary

bilinear form of type (m− 1,Σ, µ) then is bounded by

|B(u, v) ≤ c(|u|m−1,Σ+µ,∂|v|m−1,Σ−µ,∂ + |v|m−1,Σ+µ,∂|u|m−1,Σ−µ,∂) (2.10)

Define the principal symbol of a boundary bilinear form B by

B(x, ξ′, τ, ξn, ξ̃n) =
∑

ak(x, ξ′, ξn)bk(x, ξ′, ξ̃n)

For z = (z0, ..., zm−1) ∈ Cm−1, a(x, ξ, τ) ∈ CjSk,p denote

a(z) =
m−1∑
i=0

ai(x, ξ
′, τ)zi

To the boundary bilinear form above associate also

b(x, ξ′, τ)(z, z) =
∑
k

< ak(z), bk(z) >

Note that the symbol b(x, ξ′, ξn, ξ̃n) uniquely determines the bilinear form b(x, ξ′, τ)(z, z).
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Definition 2.19 We say that a boundary bilinear form B of type (m − 1,Σ, 0) is positive

definite if

B(z, z) ≥ c
m−1∑
j=0

|(ξ′, τ)|2(m−j−1−Σ)|zj|2 (2.11)

To an interior bilinear form B as in (2.8) attach the boundary bilinear form symbol

symbol

qB(x, ξ′, τ, ξn, ξ̃n) =
∑
k

QAk,Bk(x, ξ
′, τ, ξn, ξ̃n)

where

qP,Q(x, ξ′, τ, ξn, ξ̃n) =
i

2

p(x, τ, ξ′, ξn)q(x, τ, ξ′, ξ̃n) + p(x, τ, ξ′, ξ̃n)q(x, τ, ξ′, ξn)

ξn − ξ̃n
(2.12)

Note that qB is well-defined (i.e. a polynomial in ξn, ξ̃n) iff Re b(x, ξ, τ) = 0. If this happens

then qB is symmetric, i.e.

qB(x, ξ′, τ, ξ̃n, ξn) = qB(x, ξ′, τ, ξn, ξ̃n)

For a bilinear form B as in (2.8) define also its subprincipal symbol b1(x, ξ, τ) as the

(formal) subprincipal symbol of the operator

∑
k

C∗kAk

More precisely, let

b1(x, ξ, τ) =
∑
k

b1
Ak,Ck

(x, ξ, τ)

where

b1
A,C =

i

2
(aξcx − axcξ + ax,ξc− acx,ξ) (2.13)

2.4.2 Green’s formula and Garding’s type inequalities

Various formulas are called in the literature ”Green’s formula”. The common point is to

express an interior bilinear form with imaginary principal symbol of a certain order, say k,

in terms of an interior bilinear form of order k − 1 and a boundary bilinear form of order

k− 1. Next we state and prove several results of this type which are necessary in the sequel.

We start with
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Lemma 2.20 Let B be an interior bilinear form of type (m−1, 1/2, 0) with purely imaginary

symbol, of the form

B(u, v) =
∑

< Ak(x,D, τ), Bk(x,D, τ) >

where for each k the symbols ak(x, ξ, τ), ck(x, ξ, τ) are in C1Sm,−jcl respectively C1Sm−1,j
cl for

some j ∈ {0, 1}.
a) Then for each large enough τ we have

|Re (B(u, u)−QB(u, u))| ≤ c|u|2m,−1,τ (2.14)

where QB is a boundary bilinear form of type (m− 1, 0, 0) with principal symbol qB.

b) Assume in addition that the symbols ak, ck are smooth. Then

|Re (B(u, u)−B1(u, u)−QB(u, u))| ≤ d(|u|2m,−3/2,τ + |u|2m−1,−1/2,∂) (2.15)

where QB,Q is as in case (a) and B1 is an interior bilinear form of type (m− 1, 0, 0) whose

symbol has real part equal to Re b1(x, ξ, τ), i.e. the subprincipal symbol of B.

Proof : We prove both parts simultaneously. Denote

L = Op((1 + |ξ′|2 + τ 2)1/2)

Since the real part of the symbol of B is 0 it follows that B can be decomposed into a sum

of finitely many terms of the form

Z(u, u) = < A(x,D′, τ)Lm−j−1Dj
nu,C(x,D′, τ)Lm−k−1Dk

nu >

− < (AC)(x,D′, τ)Lm−k−1Dk
nu, L

m−j−1Dj
nu >

with 0 ≤ j, k ≤ m, j + k ≤ 2m− 1 and a ∈ C1S0,1
cl , c ∈ C1S0,0

cl , respectively

W (u, u) =< A(x,D′, τ)Lm−j−1Dj
nu, L

m−k−1Dk
nu >−< A(x,D′, τ)Lm−j−2Dj+1

n u, Lm−kDk−1
n >

with 0 ≤ j ≤ m− 1, 1 ≤ k ≤ m− 1 and a ∈ C1S0,1
cl (respectively the corresponding classes

of smooth symbols in case (b)). Then it suffices to prove the result for these two types of

quadratic forms.

For Z a simple computation gives

Re Z(u, u) = Re < FLm−j−1Dj
nu, L

m−k−1Dk
nu > (2.16)
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where

F = C(x,D, τ)∗A(x,D′, τ)− (AC)(x,D′, τ)∗

It is easy to see that qZ = 0. Then to conclude the proof in case (a) it suffices to note

that the operator F is L2 bounded (see Propositions 4.2.A,4.2.C in Taylor [53]). Then the

RHS term in (2.16) is controlled by the RHS term in (2.14).

In case (b) F is a pdo in OPS0,0 with principal symbol f(x, ξ, τ) given by

f = −i(cx,ξa+ cξax − (ac)x,ξ).

Hence, if we set dj(ξ, τ) = |(ξ′, τ)|m−j−1ξjn then the real part of the principal symbol of the

RHS in (2.16) is

djdkRe f = −djdk(Im aξc)x

On the other hand the symbol z1 is given by

z1(x, ξ, τ) =
i

2
((adj)ξcd

k − adj(cdk)ξ − (acdk)ξd
j + acdkdjξ)x

= i(djξd
k − dkξdj)(Re ac)x + djdk(−Im (aξc) + iRe (acξ))x

Hence the real part of the symbol of the RHS quadratic form in (2.16) equals the real part

of z1, which implies (b) for Z.

For W integration by parts gives

W (u, u) = < [A,L]Lm−j−1Dj
nu, L

m−k−1Dk
nu > + < iAxnL

m−jDj
nu, L

m−k−1Dk−1
n u >

+ i < ALm−j−1Dj
nu, L

m−kDk−1
n u >∂ (2.17)

The third RHS term is a boundary quadratic form with symbol ia(x, ξ′, τ)l(ξ′, τ)2m−j−k−1ξjnξ̃
k−1
n

which, after symmetrization, equals qW .

The proof for part (a) is concluded since the first two RHS terms are controlled by

|u|2m,−1,τ (i.e. the RHS in (2.14)); indeed, according to Taylor [53] Prop. 1.1.C, respectively

Prop. 4.2.A, the operators Axn , respectively [A,L] are L2 bounded.

For part (b) a computation similar to the one for Z shows that the principal symbol of

the quadratic form given by the first two RHS terms in (2.17) and the subprincipal symbol

w1 of W have the same real part. This concludes the proof of the Lemma.
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Lemma 2.21 Let B be an interior bilinear form of type (m−1,Σ, µ) with purely imaginary

principal symbol. Let α = max{0, µ− 1/2}. Then for each large enough τ we have

|Re (B(u, u)−QB(u, u))| ≤ c|u|m,Σ+µ−3/2,τ |u|m,Σ−µ−3/2,τ (2.18)

where QB,Q is a boundary bilinear form of type (m− 1,Σ− 1/2, α) with principal symbol qB.

In particular we have

|Re B(u, u)| ≤ c(|u|m,Σ+µ−3/2,τ |u|m,Σ−µ−3/2,τ + |u|m−1,Σ+α−1/2,∂|u|(Σ−α−1/2,∂) (2.19)

Remark 2.22 If we represent the bilinear form B as in (2.8) then, by the closed graph

theorem, the constant c in (2.21) is bounded by a sum of products of seminorms of the

symbols Ak, Bk in the corresponding spaces of homogeneous symbols as in Definition 2.17.

Proof : The problem reduces to the case Σ = 1/2 by the substitution v = LΣ−1/2u.

Next we reduce the problem to the case µ = 0.

Assuming Σ = 1/2 consider a term in B of the form

< A(x,D′, τ)Lm−i−1+αDi
nu,C(x,D′, τ)Lm−j−αDj

nu >, 1/2 ≤ α ≤ µ+ 1

where a(x, ξ′, τ), c(x, ξ′, τ) ∈ C1S0,0
cl , and i, j ≤ m, i+ j ≤ 2m− 1.

If α ≥ 1 then we can substitute it by α − 1 above without modifying the symbol of B

and qB, with an error of

< [A,L]Lm−i−2+αDi
nu,CL

m−j−αDj
nu > + < ALm−i−2+αDi

nu, [C,L]Lm−j−αDj
nu >

According to the commutator estimates in Taylor [53] 4.3 the two commutators above are

L2 bounded therefore the error is bounded by c|u|m,α−2,τ |u|m,−α,τ which, by interpolation, is

further controlled by the RHS in (2.18).

Iterating this argument the problem reduces to the case 0 ≤ α ≤ 1. Hence, it suffices to

prove the result in the case when µ = 0. If 0 ≤ α ≤ 1 then a similar argument allows us to

replace α with 1. Thus, we have reduced the proof of this Lemma to the previous Lemma.

Lemma 2.23 Let B be an interior bilinear form of type (m− 1, 0, 1/2) such that its symbol

satisfies

Re b(x, ξ, τ) ≥ c|(ξ, τ)|2(m−1)
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Then for large enough τ we have

Re B(u, u) ≥ c|u|2m−1,τ − d(|u|2m−1,−1/2,∂ + |u|2m,−3/2,τ ) (2.20)

Proof : Due to the previous lemma we can assume w.a.r.g. that B has real symbol. Using

Lemma ?? decompose the symbol b(x, ξ′, ξn) as

b(x, ξ′, ξn) = c(τ 2 + ξ2)2m−2 +
∑
j=1,2

b2
j(x, ξ

′, ξn)

where bj ∈ C1Sm−1,0, j = 1, 2, are real symbols.

Then Lemma 2.21 gives

|Re B(u, u)− c|u|2m−1,τ −
∑
j

|Bj(x,D, τ)u|20| ≤ d(|u|2m,−3/2,τ + |u|2m−1,−1/2,∂).

This implies (2.20), q.e.d.

Proposition 2.24 Let B be an interior bilinear form of type (m− 1, 0, 1/2) such that

Re b(x, ξ, τ) > 0 on char Pτ

Then for any large enough τ we have

Re B(u, u) ≥ c|u|2m−1,τ − d(|u|2m−1,−1/2,∂ + |Pτ (x,D, τ)u|20,−1,τ ) (2.21)

Proof : According to Lemma ?? there exists a symbol q ∈ Sm−1,−1
cl such that

Re (b(x, ξ, τ) + pτ (x, ξ, τ)q(x, ξ, τ)) > c|(ξ, τ)|2(m−1) (2.22)

Then we apply Lemma 2.23 to the bilinear form

B(u, u)+ < Q(x,D, τ)u, Pτ (x,D, τ)u >

of type (m− 1, 0, 1/2). Since

|u|m,−3/2,τ ≤ τ−1/2|u|m,−1,τ
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this implies

Re (B(u, u)+ < Q(x,D, τ)u, Pτ (x,D, τ)u >) ≥ c|u|2m−1,τ − d(|u|2m−1,−1/2,∂ + τ−1|u|2m,−1,τ )(2.23)

Since the boundary is noncharacteristic we can estimate the m− th order derivative of u

in the normal direction in terms of its first m− 1 normal derivatives and Pτ (x,D, τ)u, i.e.

|u|2m,−1,−τ ≤ c(|u|2m−1,τ + |Pτ (x,D, τ)u|20,−1,τ )

Combining the last inequality with (2.23) gives

B(u, u) ≥ (c− d

τ
)|u|2m−1,τ − d(|u|2m−1,−1/2,∂ + |Pτ (x,D, τ)u|20,−1,τ )

This implies (2.21) for large enough τ , q.e.d.

The next Proposition is in some sense a refinement of Lemma 2.21.

Proposition 2.25 Let B,W be interior bilinear forms of type (m − 1, 1/2, 0), respectively

(m− 1, 0, 0), such that

Re b(x, ξ, τ) = 0 (2.24)

and

Re (b1(x, ξ, τ) + w(x, ξ, τ)) > c|(ξ, τ)|2(m−1) on char Pτ (2.25)

Then for any large enough τ and for each u ∈ Hm(K) we have

Re (B(u, u) +W (u, u)−QB(u, u)) ≥ c|u|2m−1,τ − d(|Pτu|20,−1,τ + |u|2m−1,−1/2,∂) (2.26)

Proof : To simplify the exposition assume that B has the form

B(u, v) =
∑
k

< Ak(x,D, τ)u,Ck(x,D, τ)v > (2.27)

where ak(x, ξ, τ) ∈ C1Sm,−jcl and ck ∈ C1Sm−1,j
cl , j = 0, 1. This is the case for all the

applications in the sequel.

First note that the problem reduces to the case when the symbols ak, ck are smooth.

Indeed, substitute the symbols ak, ck in (2.27) with smooth ε-approximations with respect

to some suitably chosen seminorms in the classes of homogeneous symbols where they belong,
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so that (2.24) remains satisfied. Then the estimate in Lemma 2.21 and the remark following

it show that the term

Re (B(u, u)−QB(u, u))

changes at most by

O(ε)(|u|2m,−1,τ + |u|2m−1,−1/2,∂)

This is further bounded by

O(ε)(|u|2m−1,τ + |u|2m−1,−1/2,∂ + |Pτu|20,−1,τ )

which can be easily incorporated in the RHS in (2.26) if ε is small enough. Note also that

(2.25) is not altered after a small enough perturbation of B as above.

Hence, assume that the symbols ak, bk in the definition of B are smooth. Then the

subprincipal symbol b1(x, ξ, τ) of B is also smooth, i.e. in S
2(m−1),0
cl . Consider an interior

bilinear form B1 with symbol b1(x, ξ, τ).

Then the assumption (2.25) combined with Proposition 2.24 gives

B1(u, u) +W (u, u) ≥ c|u|2m−1,τ − d(|u|2m−1,−1/2,∂ + |Pτ (x,D, τ)u|20,−1,τ )

Hence in order to conclude the proof it suffices to prove that

|Re (B(u, u)−B1(u, u)−QB(u, u))| ≤ d(τ−1|u|2m−1,τ + (|Pτu|20,−1,τ + |u|2m−1,−1/2,∂) (2.28)

But if we take into account the inequalities

|u|m,−3/2,τ ≤ τ−1/2|u|m,−1,τ ≤ cτ−1/2(|u|m−1,τ + |Pτu|0,−1,τ )

then (2.28) is a consequence of Lemma 2.20.

The next Lemma gives a Garding’s type inequality for boundary bilinear forms with

positive definite symbol.

Lemma 2.26 Assume that the boundary bilinear form B of type (m − 1, 0, 0) is positive.

Then the following inequality holds

Re B(u, u) ≥ c|u|2m−1,0,∂ (2.29)

for each u ∈ H0
∂ and each large enough τ .
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Proof : Define the m-tuple of functions v = (v0, ...vm−1) by

vi = Lm−i−2ui

Then

|u|2m−1,0,∂ =
m−1∑
i=0

|vi|21,τ = |v|21,τ (2.30)

The quadratic form B can be written as a finite sum

B(u, v) =
m−1∑
i,j=0

∑
k

< Akij(x,D
′, τ)Ln−iDi

nu,C
k
ij(x,D

′, τ)Ln−jDj
nu >

where akij ∈ C1S0,α, ckij ∈ C1S0,−α for each i, j, k, for some |α| ≤ 1/2.

Then the ellipticity condition on the symbol of B gives

Re (
m−1∑
i,j=0

akij(x, ξ
′, τ)ckij(x, ξ

′, τ)zizj) ≥ c|z|2 z ∈ Cn (2.31)

Substituting u in terms of v we get

B(u, u) =
∑
i,j

<
∑
k

Ck
ij(x,D

′, τ)∗Akij(x,D
′, τ)Lvi, Lvj >

Define the symbols dij(x, ξ
′, τ) ∈ C1S0 by

dij(x, ξ
′, τ) =

∑
k

ckij(x, ξ
′, τ)akij(x, ξ

′, τ)

Then, according to the calculus for OPC1S0
cl operators (see Taylor [53], 4.2.A-B) it follows

that for the operators we have

Dij(x,D
′, τ) =

∑
k

Ck
ij(x,D

′, τ)∗Aki (x,D
′, τ) +Rij

where the remainders Rij are bounded from H−1/2
τ into H1/2. Hence we have

|B(u, u)− < D(x,D′, τ)Lv, Lv > | ≤ c|v|21/2,τ (2.32)

The ellipticity condition (2.31) on the symbol of B gives

d(x, ξ′, τ) + d(x, ξ′, τ)∗ ≥ cIm > 0
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Then Garding’s inequality for symbols with limited smoothness gives (see Taylor [53], 4.3.C.)

Re < D(x,D′, τ)Lv, Lv >≥ c|v|21,τ − d|v|21/2,τ

Combining this with (2.32) we obtain (with different constants c, d)

Re B(u, u) ≥ c|v|21,τ − d|v|21/2,τ ≥ (c− dτ−1)c|v|21,τ

According to (2.30) the conclusion of the Lemma follows if τ is large enough.

The next result shows how we can strengthen the previous Lemma if we have some

additional information on Pτ (x,D, τ)u.

Denote by ej(x, ξ, τ) the symbols

ej(x, ξ, τ) =
pτ
p−τ

(x, ξ, τ)|(ξ′, τ)|k−j−1ξj+1−k
n j = 0, k − 1.

where k = ord p−. Note that these symbols might not depend smoothly on (x′, ξ′, τ).

Lemma 2.27 Let B(u, v) be a boundary bilinear form of type (m− 1, 0, 0) such that

b(x, ξ, τ)(z, z) > 0 on e(x, ξ, τ)(z) = 0

Then the following inequality holds

B(u, u) ≥ c|u|2m−1,0,∂ − d(τ−1|u|2m−1,τ + |Pτu|2−1/2,τ ) (2.33)

for each large enough τ and each u ∈ Hm.

Proof : We claim that there exists a boundary bilinear form C(u, u) of type (m−1, 0, 0)

such that

(i) c(x, ξ, τ)(z, z) ≥ 0

(ii) b(x, ξ, τ)(z, z) + c(x, ξ, τ)(z, z) > 0

(iii) Re C(u, u) ≤ d(τ−1|u|2m−1,τ + |Pτu|2−1/2,τ )
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According to Lemma 2.26 this implies (2.33).

To prove our claim it suffices to show that for each (x0, ξ
′
0, τ0) we can find a boundary

bilinear form C(u, v) satisfying (i),(iii) globally, and

c(x0, ξ0, τ0, ξn) ≥ c
∑
|ej(x0, ξ0, τ0, ξn)|2.

Then a global choice for C can be found by summing up (multiples of) finitely many of these

local choices.

Extend the decomposition pτ (x0, ξ
′
0, τ0, ξn) = p−τ (x0, ξ

′
0, τ0, ξn)p0+

τ (x0, ξ
′
0, τ0, ξn) smoothly

to a conic neighbourhood V of (x0, ξ
′
0, τ0). This yields a local smooth extension of the

symbols ej in V . Let χ, η ∈ S0,0 be homogeneous cutoff symbols supported in a smaller

conic neighbourhood of (x0, ξ
′
0, τ0) so that η = 1 in supp χ.

Define the symbols fj(x, ξ, τ) = χ(x, ξ′, τ)ej(x, ξ, τ), respectively

q(x, ξ, τ) = η(x, ξ′, τ)p−(x, ξ, τ) + (1− η)(x, ξ′, τ)p−(x0,
|(ξ′, τ)|
|(ξ′0, τ0)|

(ξ0, τ), ξn)

The last definition insures that q = p−τ in supp χ, while it doesn’t go too far from its behavior

at (x0, ξ
′
0, τ0). Write q in the form

q(x, ξ, τ) =
k∑
j=0

aj|(ξ′, τ)|k−jξjn

with aj ∈ C1S0,0
cl , ak = 1. A simple computation shows that

DnF (x,D, τ)u = T (x,D, τ)F (x,D, τ)u+G(x,D, τ)Pτ (x,D, τ)u+Ru (2.34)

where

t(x, ξ, τ) = |(ξ′, τ)|


1 0 ... 0
0 1 ... 0
...

...
...

−a0 −a1 ... −ak−1

 g(x, ξ′, τ) =


0
0
...
χ


and the remainder R is bounded from Hm−1 into L2.

Note that the eigenvalues of t(x, ξ, τ) (which are the roots of p−) have negative imaginary

part, therefore the system (2.34) is parabolic from the boundary into the interior. Hence,

choosing a suitable scalar product in Rk, −iT has a positive symbol,

Re < it(x, τ, ξ′)z, z >≥ c|(ξ′, τ)||z|2
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Then the following version of Garding’s inequality holds

< iT (x,D′, τ)u, u >≥ c|u|21/2,τ − d|u|2−1/2,τ (2.35)

uniformly in xn. This can be easily proved as in [54],4.3. (even simpler, since the order of A

is 1 instead of 2 there). Thus,

d

dxn
|Fu(xn)|L2 ≥ c|Fu|21/2,τ − d|Fu|1/2,τ |GPτu+Ru|−1/2,τ ≥ −c(|Pτu|2−1/2,τ + τ−1|Ru|20)

which after integration in the normal direction gives

|Fu|2L2(∂K) ≤ c(|Pτu|2−1/2,τ + |u|2m−1,−1/2,τ )

But the symbol of the boundary quadratic form |Fu|2L2(∂K) is nonnegative and equals

k−1∑
j=0

|ej(z)|2

at (x0, ξ
′
0, τ0), q.e.d.

2.4.3 The strong Lopatinskii boundary condition

Let γ0 = (x0, ξ
′
0) ∈ T ∗∂K. Corresponding to the factorization (1.26) of p as a polynomial in

ξn at γ0 denote

pj(ξn) =
p(ξn)

(ξn − ξjn)mj
, p± = p+p−

Define the polynomials

hj,k(ξn) = pj(ξn)(ξn − ξjn)k k = m+
j ,mj − 1

Then the relaxed strong Lopatinskii condition at γ0 implies that the set of polynomials

Hj,k(ξn), Ej(γ0, ξn), Bj(γ0, ξn) is complete in the class of m − 1-degree polynomials in ξn.

Hence, ∑
j,k

|hj,k(z)|2 + |
∑

bj(z)|2 ≥ c|z|2 on Ez = 0 (2.36)

The following Proposition is the key to using the r-strong Lopatinskii condition:

Proposition 2.28 Let γ0 = (x0, ξ
′
0) ∈ T ∗∂K, and assume that the set of boundary opera-

tors Bj satisfy the r-strong Lopatinskii condition at γ0. Then there exists real polynomials

r(ξn), q(ξn) of degree m− 1 such that
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(i) q(ξn) = r(ξn){p, φ}(γ0, ξn) (mod p(γ0, ξn)) and r(ξn) > 0 whenever p(γ0, ξn) = 0,

ξn ∈ R.

(ii) Re qp(γ0,·),iq(z, z) +
∑ |bj(z)|2 > 0 on {e(γ0)z = 0}.

(iii) Proof : Start with the following simple construction, inspired from Sakamoto [40].

Lemma 2.29 Let m ∈ N . Then for each ε > 0 there exists a polynomial w of degree m− 1

so that

i) w(0) > 0 and

Qξm,iw(z, z)≥
m−1∑

j=[m/2]

|zj|2 − ε
[(m−1)/2]−1∑

j=0

|zj|2

where z = (z0, · · · , zm−1) ∈ Cm.

ii) w(0) < 0 and

Qξm,iw(z, z) ≥
m−1∑

j=[(m+1)/2]

|zj|2 − ε
[m/2]−1∑
j=0

|zj|2

Proof : For (i) let

w(ξn) =
m−1∑
j=0

λa(j)ξjn

where a(j) = (m+ j)2 −m2. Then

Qξm,iw(ξn, ξ̃n) =
0≤h,k≤m−1∑

m−1≤h+k≤2m−2

λa(h+k−m+1)ξhn ξ̃
k
n

Hence

Qξk,iw(z, z) ≥
m−1∑

k=[m/2]

λa(2k−m+1)|zk|2 − 2
0≤h<k≤m−1∑

m−1≤h+k≤2m−2

λa(h+k−m+1)|zh||zk|

If h < k then

a(h+ k −m+ 1) ≤ a(2h−m+ 1) + a(2k −m+ 1)− 2

therefore, if λ ≥ 1 we obtain

Qξk,iw(z, z) ≥
m−1∑

k=[m/2]

λa(2k−m+1)|zk|2 − cλ−1
m−1∑
j=0

a(2j −m+ 1)|zj|2
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where the constant c does not depend on λ ≥ 1. If we choose λ large enough this gives (i).

For (ii) replace the free term in w above (which is 1) by −λ−1. Then a similar argument

applies.

Proof of Proposition 2.28, continued :

Decompose {p, φ} at γ0

{p, φ} =
∑

sj(ξn)(ξn − ξ(j)
n )njpj(ξn) + s±p

±

where sj ∈ P (mj − nj − 1), sj(ξ
j
n) 6= 0 and s± ∈ P (m− n0 − 1, 0), m0 =

∑
deg pj =

∑
mj.

Look for q of the form

q =
∑

qj(ξn)(ξn − ξ(j)
n )njpj(ξn)

Then

QP,iQ(ξn, ξ̃n) =
∑
j

(ξn − ξ(j)
n )njpj(ξn)(ξ̃n − ξ(j)

n )njpj(ξ̃n)Q(ξn−ξjn)mj−nj ,iqj
(ξn, ξ̃n)

Recall that m+
j = [(mj + nj − lj)/2] where lj = 1 if (sjpj)(ξ

j
n) > 0 and lj = 0 otherwise.

Then, after a change of variable ξn → ξn − ξjn Lemma 2.29 implies that for each ε > 0 we

can find polynomials qj such that

sgn qj(ξ
(j)
n ) = sgn sj(ξ

(j)
n ) (2.37)

and

QP,iQ(z, z) ≥
∑
|Hj,k(γ0)z|2 − ε|z|2

Combined with (2.36) this gives

qp(γ0,·),iq(z, z) +
∑
|bj(z)|2 > 0 on{Ez = 0}

This concludes the proof of part (ii) of the Proposition.

For part (i) we still have to construct r. Look for r of the form

r(ξn) =
∑

rj(ξn)pj(ξn)

where rj has degree mj − nj − 1. Then it has to satisfy the condition

qj = rjsjpj (mod(ξn − ξjn)mj−nj) (2.38)
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Denote by M the abelian ring of polynomials in ξn modulo (ξn − ξjn)mj−nj . The polynomial

sjpj is invertible in M since (sjpj)(ξ
j
n) 6= 0. Then simply choose

rj = qj(sjpj)
−1

where all the operations are in M . Then (2.38) is fulfilled. In particular (2.37), (2.38) imply

that (pjrj)(ξ
j
n) > 0 which shows that r > 0 at the zeros of p, q.e.d.

2.4.4 An ”interpolation” inequality

Lemma 2.30 Let η be a compactly supported smooth function in Rn. Then there exists λ0

such that for each λ ≥ λ0 the following inequality holds

m−1∑
|α|=1

λα|ηm−αu|m−|α|,τ ≤ c(|η(m)u|m,τ + λm|u|0,τ ) (2.39)

whenever the RHS is finite.

Proof : First we prove (2.39) for m = 2. Using a partition of unit and a change of

coordinates which flattens the boundary the problem reduces to proving the same inequality

in a cube M of side 1 in Rn. Without any restriction in generality assume that

|∇η| ≤ (4n)−1/2 (2.40)

.

Decompose M ∩ supp φ into a countable disjoint union of dyadic cubes

M = ∪Mµ
j

where each cube Mµ
j has sides 2−j and |η(x)| ∈ [2−j, 2−j+2] for some x ∈ Mj. Then the

bound (2.40) on ∇η implies that

η(x) ∈ [2−j−1, 2−j+2] for x ∈Mj

Proving (2.39) in M reduces to proving that in each cube Mj we have

λ|ηDu|2L2 ≤ c(λ2|u|2L2 + |η2D2u|2L2) (2.41)

for λ ≥ λ0, with λ0, c independent of j. Rescale Mj into M . Then (2.41) reduces to

2jλ|ηjDu|2L2 ≤ c(λ2|u|2L2 + 22j|η2
jD

2u|2L2) (2.42)
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where 2−j−1 ≤ ηj ≤ 2j+2 in M . Hence (2.42) reduces to

λ|Du|2L2(M) ≤ c(λ2|u|2L2(M) + |D2u|2L2(M))

for large enough λ, which follows immediately from the interpolation inequality

|u|2H1(M) ≤ c|u|L2(M)|u|H2(M)

To prove (2.39) for m > 2 use induction. Apply (2.39) for m = 2 to Dm−2ηm−2u. After

some standard commutations this gives

λ|Dm−1ηm−1u|20,τ ≤ c(|Dmηmu|20,τ + λ2|Dm−2ηm−2u|20,τ )

Combining this with (2.39) for m− 1 gives (2.39) for m.

Consider the tangential pdo. Ln, n ∈ N , with the symbol

ln(x, ξ′) = (1 + n−1|(ξ′, τ)|)−s

Lemma 2.31 Let 0 < s ≤ m− 1. Then the following inequality holds

∑
1≤j≤s

|z(j)L(s−j)/s
n u|m−1,−j ≤ c(|zLnu|m−1 + |u|m−1,−s) (2.43)

uniformly in n ∈ N , whenever u ∈ Hm−1,−s and the RHS is finite.

Proof : To simplify the argument assume that s is integer. Then the above inequality

reduces to ∑
1≤j≤s

|z(j)L(s−j)/s
n u|0,−j ≤ c(|zLnu|0 + |u|0,−s) (2.44)

Furthermore, if we commute z(j) with L−j/sn the inequality reduces to

∑
1≤j≤s

|L−j/sn z(j)Lnu|0,−j ≤ c(|zLnu|0 + |u|0,−s)

Redenote u := L−1
n u. Then the last inequality becomes

∑
1≤j≤s

|L−j/sn z(j)u|0,−j ≤ c(|zu|0 + |L−1
n u|0,−s)

and further ∑
1≤j≤s

|z(j)u|20,−j + n−j/s|z(j)u|20 ≤ c(|zu|20 + |u|20,−s + n−1|u|20)
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But this is a consequence of the following two inequalities:

∑
1≤j≤s

n−j/s|z(j)u|20 ≤ c(|zu|20 + n−1|u|20) (2.45)

∑
1≤j≤s

|z(j)u|20,−j ≤ c(|zu|20 + |u|20,−s) (2.46)

The first is straightforward since our assumptions on z imply that

|z(j)| ≤ c|z|j/s, 1 ≤ j < s ≤ m− 1

For the second redenote u := Lsu where l(ξ, τ) = |(ξ′, τ)|. Then after some commutations

(2.46) reduces to ∑
1≤j≤s

|z(j)u|20,s−j ≤ c(|zLsu|20 + |u|20)

which is a consequence of Lemma 2.30; indeed, due to our assumptions on z we have z(j) =

z(s)zs−j1 qj where z1, qj are smooth functions.
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Chapter 3

Carleman estimates and unique
continuation

3.1 The ”classical” theory

3.1.1 The estimates

Let P be an operator of order m with C1 coefficients. There are two cases we want to

consider:

Theorem 3.1 Assume that P is of real principal type. Let K ⊂⊂ Rn and φ be a strongly

pseudoconvex function with respect to P in K. Then

τ |eτφu|2m−1,τ ≤ c|eτφP (x,D)u|2 τ > τ0 (3.1)

whenever u ∈ Hm−1 is supported in K.

A stronger version of this result holds in the elliptic case:

Theorem 3.2 Assume that P is elliptic. Let K ⊂⊂ Rn and φ be a strongly pseudoconvex

function with respect to P in K. Then

τ−1|eτφu|2m,τ ≤ c|eτφP (x,D)u|2 τ > τ0 (3.2)

whenever u ∈ Hm−1 is supported in K.

Proof of Theorem 3.1 : By Theorem 2.8 with it suffices to show that (3.1) holds for

u ∈ Hm.
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With the substitution v = eτφu the first inequality reduces to

τ |v|2m−1,τ ≤ c|Pτ (x,D)v|2 τ > τ0 (3.3)

Split Pτ into

Pτ = P r
τ + iτP i

τ

where both P r
τ and P i

τ have real symbols. Then the pseudoconvexity condition (1.8) can be

rewritten as

{prτ , piτ} > 0 on char Pτ

Hence, by Theorem 2.7 (a),

|v|2m−1,τ ≤ cIm < P r
τ v, P

i
τv > +d|Pτv|2−1,τ τ > τ0 (3.4)

which implies the desired conclusion.

Proof of Theorem 3.2 : The proof follows the same ideas as the proof of Theorem 3.1.

Since Im pτ no longer vanishes when τ = 0 we set

Pτ = P r
τ + iP i

τ

The pseudoconvexity condition gives again

{prτ , piτ} ≥ 0 on char Pτ

Then Theorem 2.7(b) gives

|v|2m,τ ≤ cτ Im < P r
τ v, P

i
τv > +d|Pτv|2 τ > τ0 (3.5)

which leads again to the desired conclusion.

3.1.2 Unique continuation

The Carleman estimates in the previous section lead to the following unique continuation

result:

Theorem 3.3 (Hörmander) Assume that P is either elliptic or has real principal symbol.

Let Σ be an oriented surface which is strongly pseudoconvex with respect to P . Then unique

continuation across Σ holds for Hm−1 solutions u to P (x,D)u = 0.
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Proof : By Theorem 1.5 we can represent the pseudoconvex surface Σ as a level set

of a function φ which is strongly pseudoconvex with respect to P .

Given x0 ∈ Σ and a neighbourhood W of x0, we want to prove that there exists a

neighbourhood V of x0 so that for any function u ∈ Hm−1
loc supported in {φ < φ(x0)} such

that P (x,D)u = 0 in W we have u = 0 in W .

Consider the function

ψ(x) = φ(x) + δ|x− x0|2 − φ(x0)− ε, ε, δ > 0

If δ is sufficiently small then, by Theorem 1.5, ψ is also strongly pseudoconvex with respect to

P at x0. Without any restriction in generality, assume that ψ is also strongly pseudoconvex

with respect to P in W . Choose ε > 0 small enough so that

{φ < φ(x0)} ∩ {ψ > −ε} ⊂ W (3.6)

Then let

V = {psi > 0}

Let z be a smooth cutoff function which equals 1 in [0,∞) and 0 in (−∞,−ε]. Then look at

the function w = z(ψ)u. By (3.6), w is supported in W . On the other hand,

P (x,D)w = z(ψ)P (x,D)u+ [P (x,D), z(ψ)]u = [P (x,D), z(ψ)]u ∈ L2

is supported in {ψ > 0}. Since w = u in V , we have reduced our problem to the following:

Suppose ψ is a smooth function which is strongly pseudoconvex with respect to P in

a compact set W in Rn. Let w ∈ Hm−1, supported in W so that P (x,D)w ∈ L2. If

P (x,D)w = 0 in {ψ > 0} then w = 0 in {ψ > 0}.
Now we are in a position to use the Caleman estimates. By (3.1) we have

τ |eτψw|2m−1,τ ≤ c|eτψP (x,D)w|2 τ > τ0 (3.7)

Let τ → ∞. Since P (x,D)w is supported in {ψ ≤ 0} it follows that the RHS in (3.7)

converges to 0. Hence the LHS converges to 0 as well. This implies that w = 0 in {ψ > 0},
q.e.d.
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3.1.3 Stability estimates

We start with a global result:

Theorem 3.4 Suppose φ is a smooth function which is strongly pseudoconvex with respect

to P in a compact set K in Rn. Then there exists c > 0 so that for any α < β < γ we have

|u|m−1,{φ>β} ≤ |P (x.D)u|1−µ{φ>α}|u|
µ
m−1,{φ>α}, µ >

γ − β
γ − α

(3.8)

whenever u ∈ Hm−1 is supported in K ∩ {φ < γ}.

Using the perturbation argument in the proof of Theorem 3.3 this implies the following

local result:

Theorem 3.5 Assume that P is either elliptic or has real principal symbol. Let Σ be an

oriented surface which is strongly pseudoconvex with respect to P . Given 0 < µ < 1 x0 ∈ Σ

and a neighbourhood W of x0, there exists a neighbourhood V of x0 so that for any function

u ∈ Hm−1
loc supported in {φ < φ(x0)} we have

|u|m−1,V ≤ |P (x.D)u|1−µW |u|µm−1,W , (3.9)

Proof of Theorem 3.4 : Let z be a smooth cutoff function which equals 1 in [α+ε,∞)

and 0 in (−∞, α]. Then

P (x,D)z(φ)u = z(φ)P (x,D)u+ [P (x,D), z(φ)]u = [P (x,D), z(φ)]u

Apply the Carleman estimates (3.1) to z(φ)u. We obtain

τ |eτφz(φ)u|2m−1,τ ≤ c(|eτφz(φ)P (x,D)u|2 + |eτφ[P (x,D), z(φ)]u|2) τ > τ0 (3.10)

therefore

eβτ |u|m−1,{φ>β} ≤ c(eγτ |Pu|{φ>α} + e(α+ε)τ |u|µm−1,{φ>α}

and further

|u|m−1,{φ>β} ≤ c(e(γ−β)τ |Pu|{φ>α} + e(α+ε−β)τ |u|µm−1,{φ>α}, τ > τ0

Now minimize the RHS with respect to τ to get (3.8) with µ = γ−β
γ−α−ε . The restriction τ > τ0

causes problems for the minimization only if

|Pu|{φ>α} > c|u|µm−1,{φ>α}

in which case (3.8) is trivial.
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3.2 Carleman estimates at other energy levels

The Carleman estimates in Theorems 3.1,3.2 and the unique continuation result in Theo-

rem 3.3 apply to functions u ∈ Hm−1. What can we do about functions which have less

regularity ? The idea is that similar estimates should hold at all energy levels, with one

constraint: the higher (lower) the energy level, the more regularity one needs to impose on

the coefficients.

To lift Theorem 3.1 at different energy levels we assume that the coefficients are in the

Ξs spaces defined in Section 2.3.

Theorem 3.6 Assume that P (x,D) is of real principal type, with coefficients of class Ξs.

Let K ⊂⊂ Rn and φ be a strongly pseudoconvex function with respect to P in K. Then

τ |eτφu|2m−1+r,τ ≤ c|eτφP (x,D)u|2r,τ (3.11)

for τ > τ0, 1− s ≤ r ≤ s, whenever u ∈ Hm−1+r is supported in K.

Consequently, this gives the following unique continuation result:

Theorem 3.7 Assume that P (x,D) is of real principal type, with coefficients of class Ξs,

s ≥ 1. Let Σ be an oriented surface which is strongly pseudoconvex with respect to P . Then

unique continuation across Σ holds for Hm−s solutions u to P (x,D)u = 0.

Proof of Theorem 3.6 : Suppose that u ∈ Hr+m−1. With v = eτφu rewrite (3.11) as

τ |v|2m−1+r,τ ≤ c|Pτ (x,D, τ)v|2r,τ (3.12)

Denote w =�r v. Then w ∈ Hm−1 and

Pτw =�r Pτv + +�r [Pτ ,�−r]�−r Pτw

Due to the commutator estimates in Theorem 2.10,

[Pτ ,�−r] : Hm−1
τ → Hr

τ

Consequently,

|Pτw| ≤ c|Pτv|r,τ + |w|m−1,τ (3.13)
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Now apply (3.3) to w and use (3.13) to get

τ |w|2m−1,τ ≤ c|Pτv|2r,τ

This implies (3.12) q.e.d.

One can see that even if the coefficients are merely C1, the estimates are still valid in the

range 0 ≤ s ≤ 1. It is possible to obtain other estimates for operators with C1 coefficients if

the coefficients are placed in a different position within the operator. Namely, suppose P is

an operator of the form

P =
|β|=m−j∑
|α|=j

Dαcα,βD
β

Theorem 3.8 Assume that P (x,D) is a partial differential operator of real principal type,

as above, with coefficients of class C1. Let K ⊂⊂ Rn and φ be a strongly pseudoconvex

function with respect to P in K. Then

τ |eτφu|2m−1+r,τ ≤ c|eτφP (x,D)u|2r,τ (3.14)

for τ > τ0, −j ≤ r ≤ 1− j, whenever u ∈ Hm−1+r is supported in K.

Proof : For j = 1 we can write

P =
|β|=m−1∑
|α|=1

cα,βD
α+β +R

where R contains m − 1 order terms which are bounded from Hm−1
τ into L2. Then the L2

estimate holds for P .

Next set w =�r v, and apply the L2 estimate to w. We have

Pτw =�r Pτv +D[�r, C1]Dm−1

The commutator is bounded from H1+r into H1, therefore the L2 estimate for w gives

τ |w|2m−1,τ ≤ c(|Pτv|2r + |v|2m+r−1)

and further

τ |v|2m+r−1,τ ≤ c(|Pτv|2r + |v|2m+r−1)

q.e.d. The estimate for higher values of j follows iteratively by the same method.
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An interesting example is contained in Section 4.1 where we consider the wave equation

written in divergence form.

Note that if

P (x,D) =
∑
|α|≤m

cαD
α

then

P (x,D)∗ =
∑
|α|≤m

Dαcα

therefore

Corollary 3.2.1 Assume that P (x,D) is of real principal type, with C1 coefficients. Let

K ⊂⊂ Rn and φ be a strongly pseudoconvex function with respect to P in K. Then

τ |eτφu|2 ≤ c|eτφP (x,D)∗u|21−m,τ , τ > τ0 (3.15)

whenever u ∈ L2 is supported in K.

3.3 Carleman estimates with cutoff and continuation

of regularity

One less common way of looking at the Carleman estimate (3.1) is as a regularity result:

Assume that P has Ξs coefficients. If a compactly supported function u ∈ Hm−s satisfies

Pu ∈ L2 then u ∈ Hm−1.

The usefulness of this is limited by the assumption that u has compact support. This

makes the above result a global one, while the interesting issue would be to have a local

version of this.

Definition 3.9 Let Σ be an oriented surface. We say that we have continuation of Hr+m−1

regularity across Σ for functions u ∈ Hs
loc with P (x,D)u ∈ Hr if, given x0 ∈ Σ, there exists

a neighbourhood V of x0 so that u ∈ Hs
loc(V ), P (x,D)u ∈ Hr

loc(V ) and u ∈ Hm+r−1
loc (V ∩Σ+)

implies u ∈ Hm+r−1
loc (V ).

Can we obtain results on continuation of regularity from (3.1) ? Not directly, since we

need to cutoff u, and the commutator of P with the cutoff function is an operator of order

m− 1. The solution is to tamper a bit with the proof of the Carleman estimates in order to

obtain the following version which includes the cutoff:
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Theorem 3.10 Assume that P is of real principal type, with C1 coefficients. Let K ⊂⊂ Rn

and φ be a strongly pseudoconvex function with respect to P in K. Then

τ |φ2eτφu|2m−1,τ,Σ+ ≤ c(|φ2eτφP (x,D)u|2Σ+ + τ 2|eτφu|2m−2,τ,Σ+ τ > τ0 (3.16)

whenever u ∈ Hm−1 is supported in K.

Note that this estimate is already localized in the region Σ+ = {φ > 0}. This, however,

is a disadvantage when it comes to proving it. The assumption u ∈ Hm−1 is optimal; if u

were less regular then P (x,D)u would not be defined.

Proof : (i) We show first that the conclusion of the Theorem holds if we assume in

addition that u is supported in Σ+. Setting as usual v = eτφu, (3.16) can be rewritten as

τ |φ2v|2m−1,τ,Σ+ ≤ c(|φ2Pτv|2Σ+ + τ 2|v|2m−2,τ,Σ+) τ > τ0 (3.17)

To obtain this, apply (3.4) to φ2v. This gives

c|φ2v|2m−1,τ ≤ B(φ2v) = 2Im < P r
τ φ

2v, P i
τφ

2v > +d(|Pτφ2v|2−1,τ τ > τ0 (3.18)

Now compute:

Pτφ
2=φ2Pτ +R−1, R−1 : Hm−2

τ → H−1
τ

P r
τ φ

2=φ2P r
τ − iφP i

τ + τR0, R0 : Hm−2
τ → L2

P i
τφ

2=φ2P i
τ − iφR0 +R1, R1 : Hm−2

τ → H1
τ

Using these relations we get

B(φ2v) ≤ 2Im < φ2P r
τ v, φ

2P i
τv > +τ |φ2P i

τv|2 + c(|φ2P r
τ v|2−1,τ + τ |v|2m−2,τ )

Combining this with (3.18) we get

c|φ2v|2m−1,τ ≤ 2Im < φ2P r
τ v, φ

2P i
τv > +τ |φ2P i

τv|2 + c(|φ2P r
τ v|2−1,τ + τ |v|2m−2,τ ) (3.19)

which implies (3.17).

(ii) Drop now the assumption supp u ⊂ Σ+. If v ∈ Hm−2
τ (Σ+) then we can find w ∈

Hm−2(Σ+) such that φjw ∈ Hm−2+j and v − w ∈ Hm−2
0 (Σ+). Consequently, applying the

first step (i) to v − w yields (3.16).

Since the aim of the Carleman estimates with cutoff is to study regularity properties of

solutions to pde’s, one can expect that what happens in the region τ > 0 is not as important.

Indeed, the following modification of Theorem 3.10 is also true:
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Theorem 3.11 Assume that P is of real principal type, with C1 coefficients. Let K ⊂⊂ Rn

and φ be a smooth function which is strongly pseudoconvex with respect to P on τ = 0 in K.

Then

τ |φ2eτφu|2m−1,τ,Σ+ ≤ c(|φ2eτφP (x,D)u|2Σ+ + τ 3|eτφu|2m−2,τ,Σ+) τ > τ0 (3.20)

whenever u ∈ Hm−1 is supported in K.

Again, assuming better regularity for the coefficients one can shift the energy levels in

Theorem 3.10 to obtain

Theorem 3.12 Assume that P is of real principal type, with Ξr coefficients. Let K ⊂⊂ Rn

and φ be a strongly pseudoconvex function with respect to P in K. Let 1 − s < r ≤ s,

r0 = max{−s, r − 1}. Then

τ |φ2eτφu|2m+r−1,τ,Σ+ ≤ c(|φ2eτφP (x,D)u|2r,τ,Σ+ + τ 2|eτφu|2m+r0−1,τ,Σ+ τ > τ0 (3.21)

whenever u ∈ Hm−s is supported in K and the right hand side is finite.

Proof : As usual make the substitution v = eτφu to reduce the estimate to

τ |φ2v|2m+r−1,τ,Σ+ ≤ c(|φ2P̃τ (x,D)v|2r,τ,Σ+ + τ 2|v|2m+r−2,τ,Σ+ τ > τ0 (3.22)

(i) Under the additional assumption that u ∈ Hm+r−1, supported in Σ+, we prove that

τ |φ2v|2m+r−1,τ ≤ c(|φ2P̃τ (x,D)v|2r,τ + τ 2|v|2m+r−2,τ τ > τ0 (3.23)

Set w =�r v. Then w ∈ Hm−1, therefore we can apply (3.19) to w to get

τ |φ2w|2m−1,τ,Σ+ ≤ c(|φ2Pτw|2Σ+ + τ 2|w|2m−2,τ,Σ+) τ > τ0 (3.24)

On the other hand Theorem 2.15 implies that

|φjw|m+j−2,τ,Σ− ≤ c|v|m+r−2,τ

Combining this with (3.24) yields

τ |φ2w|2m−1,τ ≤ c(|φ2Pτw|2 + τ 2|v|2m+r−2,τ ) τ > τ0 (3.25)
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To switch in the above inequality from w to v compute

φ2w=�r φ2v + Sr−1v

φ2Pτw=[Pτv,�r]φ2v − [[Pτv,�r], φ2]v+�r φ2Pτv + Sr−1φPτv + Sr−2Pτv

By theorem 2.10, [Pτv,�r] : Hm+r−1 → L2 and [[Pτv,�r], φ2] : Hm+r0−2 → L2. On the

other hand,

|φPτv|r−1,τ ≤ c(|Pτv|r−2,τ + |φ2Pτv|r,τ ) ≤ c(|v|m+r0−1,τ + |φ2Pτv|r,τ )

Applying this in (3.25) we get (3.21).

(ii) Now we want to use (3.23) to prove that (3.22) holds if u ∈ Hm+r−1, supported in

Σ+.

(a) If r ≥ 0 then (3.23) and (3.22) are identical.

(b) If 2−m ≤ r < 0 then (3.22) follows from (3.23) and the estimate

|φ2P̃τ (x,D)v|2r,τ ≤ c(|φ2P̃τ (x,D)v|r,τ,Σ+ + |v|m+r−2,τ (3.26)

This estimate follows in turn by duality from the inclusion

H−r ⊂ H−r0 +H−r(Σ) (3.27)

(c) If r < 2−m, then without any restriction in generality for (3.22) we assume that

|u|m+r−2,τ ≤ c|u|m−r−2,τ,Σ+

Afterwards, (3.22) follows from (3.23) and (3.26).

(iii) Next we want to remove the support assumption on u, i.e. to prove the result for all

v ∈ Hm+r−1.

(a) Suppose r ≥ 2−m. Decompose v ∈ Hm+r−2(Σ+) into v1 +v2 where v1 ∈ Hm+r−2
0 (Σ+)

and v2 ∈ Hm+r−2(Σ). Then apply (3.22) to v1 and transfer it to v using the better regularity

of v2.

(b) Suppose r < 2−m. Decompose v ∈ Hm+r−2 into v1 + v2 where v1, v2 ∈ Hm+r−2 are

supported in Σ+, respectively Σ−. Then (3.22) for v coincides with (3.22) for v1.

(iv) Now we want to relax the regularity assumption on u, namely to prove that the

result is still valid when u ∈ Hm+r0−1. First observe that the arguments in steps (ii),(iii)

rest unchanged, therefore it suffices to assume that u is supported in Σ+ and prove (3.23).
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Consider the approximating sequence vε for v given by Theorem 2.13. Apply (3.22) to

vε. We get

τ |φ2vε|2m+r−1,τ,Σ+ ≤ c(|eτφPτvε|2r,τ + τ 2|vε|2m−2,τ ) (3.28)

The trouble is now that the above LHS norm is in Σ+ while wε are not necessarily supported

in Σ+. This can be rectified using the support assumption on v. Namely, we have

|φ2vε|m+r−1,τ ≤ c(|φ2vε|m+r−1,τ,Σ+ + |v|m+r−2,τ ) (3.29)

Theorem 2.15 gives

|φ2vε|m+r−1,τ,Σ− ≤ c|v|m+r−2,τ

If m+ r − 1 ≥ 0 this implies (3.29). If m+ r − 1 < 0 then in addition we need to use (??).

Using (3.29), (3.28) gives

τ |φ2vε|2m+r−1,τ ≤ c(|φ2Pτvε|2r,τ + τ 2|v|2m+r−2,τ ) (3.30)

Now use (2.6) to get

τ |φ2vε|2m−1,τ ≤ c(|φ2Pτv|2 + τ 2|v|2m−2,τ ) (3.31)

and finally, let ε→ 0 to get (3.22), q.e.d.

Remark 3.13 Other variants of the above theorem hold if we substitute P by P ∗ or otherwise

if place the coefficients in a different position among the derivatives, as in Theorem 3.8.

As a consequence of Theorem 3.12 we get the following result on continuation of regu-

larity:

Theorem 3.14 Assume that P is of real principal type, with Ξs coefficients. Let Σ be a

strongly pseudoconvex surface with respect to P . Let 1 − s < r ≤ s, r0 = max{−s, r − 1}.
Then we have continuation of the Hm+r−1 regularity across Σ for functions u ∈ Hm−s

loc

satisfying Pu ∈ Hr
loc.

Remark 3.15 In effect, one can use the weaker estimates as in Theorem 3.11 to obtain the

same result under the relaxed assumption that the strong pseudoconvexity condition for the

surface Σ holds when τ = 0.
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3.4 Boundary value problems

Let Ω be a domain in Rn with smooth boundary . The question we want to adress in this

section is what type of Carleman estimates can one obtain for distributions u in Ω. Of

course, such estimates should include some information about the Cauchy data of u on the

boundary. The following sections study this problem in three increasingly difficult situations.

First, we assume that the entire Cauchy data is known on the boundary; then we consider

the case where we know only some boundary traces. In the second case, the corresponding

boundary operators are first required to satisfy a strong Lopatinskii-type condition; finally,

the case when only a weak Lopatinskii condition holds is considered.

3.4.1 Estimates involving all the Cauchy data on the boundary

To warm up, consider first the case when we have complete information about the boundary

traces of u. Then

Theorem 3.16 Assume that P (x,D) is of real principal type, with C1 coefficients. Let

K ⊂⊂ Rn and φ be a strongly pseudoconvex function with respect to P in K. Then

τ |eτφu|2m−1,τ ≤ c|eτφP (x,D)u|2 + τ |eτφTr u|m−1,∂,τ (3.32)

for τ > τ0 whenever u ∈ Hm−s is supported in K.

Proof of Theorem 3.16 :

We would like to use Theorem 2.7(a) for v = eτφu. However, in order to do that we first

need to extend v to a small neighbourhood of the domain Ω. Consider an extension, denoted

still v, such that

|v|m−1,τ,Ωc ≤ c|Tr v|m−3/2,τ,∂ (3.33)

If we apply Theorem 2.7(a) to the extended v and separate the Ω and the Ωc parts then we

get

c|v|2m−1,τ,Ω ≤ 2Im < P r
τ v, P

i
τv >Ω +d(|Pτv|2−1,τ,Ω + |v|m−1,τ,Ωc) + 2Im < P r

τ v, P
i
τv >

c
Ω

Use now Theorem 2.20 for the integration by parts in the last RHS term. Then we obtain

c|v|2m−1,τ,Ω≤2Im < P r
τ v, P

i
τv >Ω +d(|Pτv|2−1,τ,Ω + |v|2m−1,τ,Ωc)

+QP rτ ,P
i
τ
(v, v)
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By (3.33) we get

c|v|2m−1,τ,Ω ≤ 2Im < P r
τ v, P

i
τv >Ω +d(|Pτv|2−1,τ,Ω + |v|m−3/2,τ,∂) +QP rτ ,P

i
τ
(v, v) (3.34)

Now bound the last RHS term as

QP rτ ,P
i
τ
(v, v)≤c|v|2m−1,τ,∂

Consequently, this gives

c|v|2m−1,τ,Ω ≤ 2Im < P r
τ v, P

i
τv >Ω +d(|Pτv|2−1,τ,Ω + |v|m−1,τ,∂) (3.35)

and further

cτ |v|2m−1,τ,Ω ≤ (|Pτv|2Ω + τ |v|2m−1,τ,∂)

i.e. (3.32).

Theorem 3.16 can be shifted to other energy levels as in the proof of Theorem 3.6.

Theorem 3.17 Assume that P (x,D) is of real principal type, with coefficients of class Ξs.

Let K ⊂⊂ Rn and φ be a strongly pseudoconvex function with respect to P in K. Then

τ |eτφu|2m−1+r,τ ≤ c|eτφP (x,D)u|2r,τ + τ |eτφTr u|m−1+r,∂,τ (3.36)

for τ > τ0, max 1− s,−1/2 ≤ r ≤ s, whenever u ∈ Hm−s is supported in K.

Remark 3.18 Why the restriction r > −1/2 ? What happens is that below that level the

Cauchy data of u on is no longer well-defined. This can, however, be fixed by making an

appropriate choice of the norms. The invariant way of doing it appears to be with Melrose’s

spaces Hs,k
b . Thus, a better reformulation of (3.32) is

τ |eτφu|2
Hm−1,r
b,τ

≤ c|eτφP (x,D)u|2
H0,r
b,τ

+ τ |eτφTr u|m−1+r,∂,τ (3.37)

The analogue of Theorem 3.12 is also true:

Theorem 3.19 Assume that P is of real principal type, with Ξs coefficients. Let K ⊂⊂ Rn

and φ be a strongly pseudoconvex function with respect to P in K. Let max 1− s,−1/2 <

r ≤ s and r0 = max r − 1, 1− s. Then

τ |φ2eτφu|2m+r−1,τ,Σ+ ≤ c(|φ2eτφP (x,D)u|2r,τ,Σ+ + τ 2|eτφu|2m+r0−1,τ,Σ+ τ > τ0 (3.38)

whenever u is supported in K and the right hand side is finite.
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Proof : To obtain (3.38) if u is supported in Σ+ apply (3.35) to φ2v and then continue

as in step (i) of the proof of Theorem 3.10. To get the same result in general, follow the

same procedure as in step (ii) of Theorem 3.10.

As a consequence, we obtain the following regularity result:

Theorem 3.20 Assume that P is of real principal type, with Ξs coefficients in a domain

Ω ⊂ Rn with smooth boundary. Let Σ be a strongly pseudoconvex surface with respect to P .

Let 1− s < r ≤ s.

a) Then we have continuation of the Hm+r−1 regularity across Σ for functions u ∈ Hm−s
loc

satisfying Pu = 0, Tru ∈ Hm+r−1.

b) If r > −1/2 then we have continuation of the Hm+r−1 regularity across Σ for functions

u ∈ Hm−s
loc satisfying Pu ∈ Hr, Tru ∈ Hm+r−1.

The particular case when Σ = gives:

Theorem 3.21 Assume that P is of real principal type, with Ξs coefficients in a domain

Ω ⊂ Rn with smooth boundary. Suppose that is strongly pseudoconvex with respect to P at

x0. Let 1− s < r ≤ s. If u ∈ Hm−s solves P (x,D)u = 0 and Tr u are Hm+r−1 at x0 then u

is Hm−r+1 at x0.

3.4.2 The strong Lopatinskii condition

Suppose now that we have a set of boundary operators Bi which satisfies the strong Lopatin-

skii condition with respect to dφ (described in Section 1.5.1). We denote by mi the order of

Bi. The Carleman estimate in this case has the form

Theorem 3.22 Let P be a partial differential operator of real principal type. Let K ⊂⊂ Rn

and φ be a strongly pseudoconvex function with respect to P in K. Assume that the boundary

operator B satisfies the strong Lopatinskii condition with respect to dφ. Then

τ(|eτφu|2m−1,τ + |eτφTr u|2m−1,τ,∂) ≤ c(|eτφP (x,D)u|2 + τ |eτφBu|2m−1,τ,∂) τ > τ0 (3.39)

whenever u ∈ Hm−1 is supported in K.

This estimate is also valid at other energy levels. This leads to an unique continuation

result for solutions to {
P (x,D)u = 0 in K
B(x,D)u = 0 in ∂K

(3.40)
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Theorem 3.23 Assume that P (x,D) is of real principal type, with coefficients of class Ξs,

s ≥ 1. Let Σ be an oriented surface which is strongly pseudoconvex with respect to P . Assume

that the boundary operator B satisfies the strong Lopatinskii condition with respect to dφ.

Then unique continuation across Σ holds for Hm−s solutions u to (3.40).

Correspondingly, we get the Carleman estimates with cutoff,

Theorem 3.24 Let P be a partial differential operator of real principal type. Let K ⊂⊂ Rn

and φ be a strongly pseudoconvex function with respect to P in K. Assume that the boundary

operator B satisfies the strong Lopatinskii condition with respect to dφ. Then

τ(|φ2eτφu|2m−1,τ,Σ+ + |φ2eτφTr u|2m−1,τ,Σ+,∂≤c(|φ2eτφP (x,D)u|2Σ+ + |φ2eτφBu|2m−1,τ,∂,Σ+

+τ 2|eτφu|2m−2,τ,Σ+) τ > τ0 (3.41)

whenever u ∈ Hm−1 is supported in K.

Again, the analogue estimates at other energy levels are also valid. These estimates lead

to results on continuation of regularity.

Theorem 3.25 Assume that P is of real principal type, with Ξs coefficients in a domain

Ω ⊂ Rn with smooth boundary. Let Σ be a strongly pseudoconvex surface with respect to P .

Assume that the boundary operator B satisfies the strong Lopatinskii condition with respect

to dφ. Let 1− s < r ≤ s.

a) Then we have continuation of the Hm+r−1 regularity across Σ for functions u ∈ Hm−s
loc

satisfying Pu = 0, Bu ∈ Hm+r−1.

b) If r > −1/2 then we have continuation of the Hm+r−1 regularity across Σ for functions

u ∈ Hm−s
loc satisfying Pu ∈ Hr, Bu ∈ Hm+r−1.

Proof of Theorems 3.22,3.24 :

We proceed as in the proof of Theorem 3.17 up to (3.34). Now by hypothesis we know

that

QP rτ ,P
i
τ
(z, z) < 0 on Bz = 0

Consequently, if we choose c sufficiently large then we get

QP rτ ,P
i
τ
(z, z)− c|Bz|2 < 0
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which, by Theorem 2.29 implies that

−QP rτ ,P
i
τ
(v, v) + c|Bv|2 > d|Tr v|2

Combine this with (3.34) to get (3.39).

To obtain (3.41) start again with (3.34), but applied to φ2v. Then use the above argument

for the term QP rτ ,P
i
τ
(φ2v, φ2v) and then continue as in the proof of Theorem 3.10.

3.4.3 The weak Lopatinskii condition

Many interesting problems do not satisfy the strong Lopatinskii condition, which implies

that the strong estimates do not hold. However, in most cases there is some hope that some

weaker estimates hold. Such estimates in the general case are highly technical and beyond

the purpose of this monograph. Thus, the aim of this section is to merely highlight the main

ideas, without providing complete proofs. On the other hand, some proofs are provided later

for such estimates in special cases.

Based on the computations done for the case of the strong Lopatinskii condition, define

Definition 3.26 We say that the set of boundary operators Bi satisfies only the weak Lopatin-

skii condition with respect to dφ if there exists a multiplier Q ∈ Sm−1,0 of the form

q = rpiτ (mod prτ )

so that

(i) r > 0 on char pτ

(ii) QP,Q(z, z) ≥ 0 on Bz = Ez = 0.

This may seem complicated; however, the following simple case suffices for most applica-

tions:

QP rτ ,P
i
τ
(z, z) = 0 on Bz = Ez = 0 (3.42)

The result one can generally expect in this case is

Theorem 3.27 Let P be a partial differential operator of real principal type. Let K ⊂⊂ Rn

and φ be a strongly pseudoconvex function with respect to P in K. Assume that the boundary

operator B satisfies the weak Lopatinskii condition with respect to dφ.
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a) Then

τ(|eτφu|2m−1,τ ≤ c|eτφP (x,D)u|2 τ > τ0 (3.43)

whenever u ∈ Hm−1 is supported in K.

b) the coressponding estimate with cutoff is also valid,

τ(|φ2eτφu|2m−1,τ,Σ+ ≤ c|eτφP (x,D)u,Σ+|2 τ > τ0 (3.44)

whenever u ∈ Hm−1 is supported in K.

Proof (sketch) : To keep things simple suppose that (3.42) holds.

a) Start again from (3.34). This time we know that

QP rτ ,P
i
τ
(z, z) = 0 on Bz = 0

Consequently, there exist other sets C,F of boundary operators such that

QP rτ ,Q(z, z) =< Bz,Cz > + < Ez, Fz >

which, by Theorem 2.21

implies that

| −QP rτ ,P
i
τ
(v, v)+ < Bv,Cv > + < Ez, Fz > | ≤ |Tr u|2−1/2,τ

Combine this with (3.34) to get

τ(|eτφu|2m−1,τ ≤ c(|eτφP (x,D)u|2 + τ |Tru|−1/2,∂) τ > τ0 (3.45)

To elliminate the second RHS term one needs to have an enhanced trace regularity result:

Theorem 3.28 Suppose that the symbols Bj are complete modulo P0. Then there exists

ε > 0 such that

|Tru|−1/2,∂ ≤ τ−ε(|u|m−1,τ + |Pτu|)

For (3.44), as usual, apply the same procedure to φ2v.

The results on unique continuation and continuation of regularity follow:
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Theorem 3.29 Assume that P (x,D) is of real principal type, with coefficients of class Ξs,

s ≥ 1. Let Σ be an oriented surface which is strongly pseudoconvex with respect to P .

Assume that the boundary operator B satisfies the weak Lopatinskii condition with respect to

dφ. Then unique continuation across Σ holds for Hm−s solutions u to (3.40).

Theorem 3.30 Assume that P is of real principal type, with Ξs coefficients in a domain

Ω ⊂ Rn with smooth boundary. Let Σ be a strongly pseudoconvex surface with respect to P .

Assume that the boundary operator B satisfies the weak Lopatinskii condition with respect to

dφ. Let 1− s < r ≤ s.

a) Then we have continuation of the Hm+r−1 regularity across Σ for functions u ∈ Hm−s
loc

satisfying Pu = 0, Bu = 0.

b) If r > −1/2 then we have continuation of the Hm+r−1 regularity across Σ for functions

u ∈ Hm−s
loc satisfying Pu ∈ Hr, Bu = 0.

3.5 Operators with (partially) analytic coefficients

It is by now clear that there is no significant change in the unique continuation properties

if the regularity of the coefficients is upgraded from C1 to C∞. However, it does make a

significant difference if the coefficients have instead some analyticity. A fundamental result,

in this context, is

Theorem 3.31 (Holmgren) Assume that P is a partial differential operator with analytic

coefficients. Then we have unique continuation across any noncharacteristic surface for

solutions u to P (x,D)u = 0.

The aim of this section is to consider the more general case when the coefficients are

analytic only with respect to some of the variables. As before, we use some type of Carleman

estimates. The fundamental difference is that the exponential weight in the estimates is

no longer scalar, but it is a pseudodifferential operator. In particular, we give a proof of

Holmgreen’s theorem based on Carleman estimates.

Let F be an analytic foliation of an open subset Ω of Rn. Let P (x,D) be a partial

differential operator whose coefficients are C1 overall and analitic in the leaves of the foliation.

We consider the following two cases:

(E) P is elliptic in the conormal bundle of the foliation N∗F .
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(H) P is of real principal type in N∗F and N∗F is invariant with respect to the null

bicharacteristic flow.

Then

Theorem 3.32 Let P be a partial differential operator of order m as above which satisfies

either (E) or (F). Let Σ be an oriented hypersurface which is strongly pseudoconvex with

respect to P in the conormal bundle of the foliation N∗F . Then we have unique continuation

across Σ for Hm−1 solutions u to P (x,D)u = 0.

One can choose local coordinates

x = (xa, xb).

so that the foliation F is generated by the functions xa. Then the leaves are the hyperplanes

xa = const and the conormal bundle of the foliation is

N∗F = {(x, ξ) ∈ T ∗Ω; ξa = 0}

In these coordinates the coefficients of the partial differential operator P (x,D) are analytic

in xa and C1 in xb. The conditions (E), (F) have the form

(E) p(x, 0, ξb) is elliptic.

(H) p(x, 0, ξb) = 0 implies pξb(x, 0, ξb) 6= 0 and pxa(x, 0, ξb) = 0.

The important issue in the above theorem is the replacement of the strong pseudocon-

vexity condition in Hörmander’s theorem. Here we use the same condition, but on a smaller

subset of the cotangent bundle, namely on the set {ξa = 0}. The motivation for that becomes

apparent if one examines the Carleman estimates below; the pseudodifferential weight there

roughly cuts off the region {|ξa| > 0}.

3.5.1 The Carleman estimates

For ε, τ > 0 define the symbol

qφε,τ (x, ξ) = e−
ε
2τ
|ξa|2+τφ (3.46)

In the sequel we use the notation Qφ
ε,τ (D, x) for the operator

Qφ
ε,τ (D, x)u = e−

ε
2τ
|Da|2(eτφu)
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Let r > 0, A ⊂ Rna , convex, bounded , B ⊂ Rnb , bounded. Let Kr = B(A, r) × B

be the set in which we want to obtain the Carleman estimates. In order to have a clean

calculus and a proof as simple as possible we make the following symplifying assumption on

the coefficients:

” The coefficients of P can be extended as bounded analytic functions in xa to B(A, r) +

iCn”

This can always be achieved locally by making suitable changes of coordinates.

Theorem 3.33 Assume that P satisfies (E) in a domain Kr in Rn. Let φ be a smooth

function, analytic in xa, which is strongly pseudoconvex with respect to P in {ξa = 0}. Then

for each small enough ε > 0 there exist δ > 0 and c > 0 such that for any large enough τ we

have

τ−1|Qφ
ε,τ (D, x)u|2m,τ ≤ c(|Qφ

ε,τ (D, x)P (x,D)u|20 + |eτ(φ−δ)u|2m−1,τ ) (3.47)

whenever u ∈ Hm−1 is supported in K0.

Theorem 3.34 Assume that P satisfies (H) in a domain Kr in Rn. Let φ be a smooth

function, analytic in xa, which is strongly pseudoconvex with respect to P in {ξa = 0}. Then

for each small enough ε > 0 there exist δ > 0 and c > 0 such that for any large enough τ we

have

τ |Qφ
ε,τ (D, x)u|2m−1,τ ≤ c(|Qφ

ε,τ (D, x)P (x,D)u|20 + |eτ(φ−δ)u|2m−1,τ ) (3.48)

whenever u ∈ Hm−1 is supported in K0.

Remark 3.35 One can shift this estimate to various energy levels if the appropriate regu-

larity of the coefficients holds. Even if the coefficients are no better that above, one can lower

the regularity of u in xa.

Proof of Theorems 3.33,3.34 in a special case :

We prove now the above theorems in the special case when the coefficients of P are

independent of xa and φ is a quadratic polinomial. On one hand the proofs are extremely

simple in this case, and on the other hand this provides some insight into the problem, which

is useful later on. Since the two proofs are similar, we present only the proof of Theorem 3.34.

Set

v = Qφ
ε,τ (D, x)u
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Then after conjugation we obtain

Qφ
ε,τ (D, x)P (x,D)u = Pε,τ (x,D, τ)v

where

Pε,τ (x,D, τ) = P (xb, D + iτ∇φ− ε(∇2φ)Da)

Hence Pε,τ is an operator of order m and moreover, if ε is small, it is a small perturbation

of Pτ in OPC1Smτ . Then the strong pseudoconvexity condition on φ implies the following

uniform inequality:

{prε,τ , piε,τ} > 0 on char Pε,τ ∩ {ξa = 0}

Consequently, Theorem 2.24 implies the following uniform estimate

c|v|2m−1,τ ≤ 2Im < P r
τ v, P

i
τv > +d(|Pτv|2−1,τ + |Dm−1

a v|2) τ > τ0 (3.49)

which further gives

τ |v|2m−1,τ ≤ c(|Pτv|2 + τ |Dm−1
a v|2) τ > τ0 (3.50)

Now split the last RHS norm in the regions |ξa| < δτ , respectively |ξa| > δτ . We get

τ |Dm−1
a v|2 ≤ δm−1τ 2m−1|v|2 + τ 2m−1e−εδ

2τ |eτφu|2 (3.51)

Combining this with (3.47) we get (3.50), q.e.d.

The similar results in the general case are considerably more technical, since this time

we need to conjugate analytic functions by Qε,τ .

Compute first

Qε,τ (D, x)xαa = (xa + i
ε

τ
Da)

αQε,τ (D, x)

Hence, formally we get

Qε,τ (D, x)P (x,D) = Pτ (xa + i
ε

τ
Da, xb, D)Qε,τ (D, x)

The operator Pτ (xa + i ε
τ
Da, xb, D) is not well-defined on any Sobolev space unless the coef-

ficients of P are polinomials in xa. Even then, it could have arbitrarily high order therefore

any computation may seem hopeless at this point.

What we need is a slightly different viewpoint, and this is provided by the Weyl calculus.

The critical observation is that

(xa + i
ε

τ
Da)

α = Opw((xa + i
ε

τ
ξa)

α)
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Hence if we set

Pτ (x,D) = cα(x)(D, τ)α

then we have, still formally,

Qε,τ (D, x)P (x,D) = (Opw(cα(xa + i
ε

τ
ξa, xb))(D, τ)α)Qε,τ (D, x)

The functions cα(za, xb) are well-defined as bounded holomorphic functions for za in Kr.

Extend them as smooth bounded functions supported in K2r. Then the operator

Pε,τ = pw(cα(xa + i
ε

τ
ξa, xb))(D, τ)α

is well-defined.

Our strategy is now to (i) show that Pε,τ is a ”good enough” conjugate of P with respect

to Qε,τ (or of Pτ with respect to e−
ε
2τ
|Da|2) and (ii) to prove that Pε,τ is ”close” to Pτ in an

apropriate sense. This is achieved in the sequel.

The following three Lemmas deal with the conjugation. Let Ω be a compact convex

subset of Rn
a and r > 0. Denote by Z the space of functions f in Cna so that

a) f is supported in B(Ω, 2r) + iRna .

b) f is holomorphic in B(Ω, r) + iRna .

c) f is smooth and rapidly decreasing at ∞.

Let χ(xa) be a cutoff function supported in B(A, 2r), which is 1 in B(A, r).

Define the remainder

R(f) = χ(xa)(Op
w(f(x+

1

τ
ξ))e−

τ
2
|Da|2 − e−

τ
2
|Da|2f(x)

Lemma 3.36 Let f ∈ Z. Then

|Raw(x)| ≤ ce−
τ
2
r2|w| (3.52)

for τ ≥ 1, w supported in Ω, x ∈ B(Ω, r).

Next let us turn our attention from scalar functions to operators. Let

P (x,D, τ) =
∑
|α|≤m

cα(x)(D, τ)α
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be a partial differential operator with bounded, compactly supported coefficients. Suppose

that the coefficients cα can be extended, as functions of xa, to functions in F .

Define the candidate for the conjugated operator by

Pε =
∑
|α|≤m

OPw(cα(xa + i
ε

τ
, xb))(D, τ)α

and the remainder

R(P ) = e−
ε
2τ
|Da|2P (x,D)− χ(xa)Pε,τe

− ε
2τ
|Da|2 (3.53)

Lemma 3.37 Let P (x,D, τ) be a partial differential operator as above. Then there exists

c > 0 so that

|R(P )w| ≤ ce−
τ
8ε
r2|w|m,τ (3.54)

for τ ≥ 1 and w supported in Ω.

For the case (H) we need a bit more

Lemma 3.38 Let P (x,D, τ) be a partial differential operator as above. Assume in addition

that P satisfies (H). Then there exists c > 0 so that

|R(P )w| ≤ ce−
τ
8
r2(|Pw|+ |w|m−1,τ ) (3.55)

for τ ≥ 1 and w supported in Ω.

Proof of Lemma 3.36 :

Look at the kernel K(x, y) of Ra. We have

K(x, y) =
∫

(a(
x+ w

2
+ i

1

τ
ξ)− a(y))ei(x−w)ξe−

τ
2

(w−y)2dwdξ

With the change of variable

z =
x+ w

2
+ i

1

τ
ξ

this becomes

K(x, y) =
∫

(a(z)− a(y))e−
τ
2

(x−y)2eτ(z−y)(2x−z−z̄)dz dz̄

Write

a(z)− a(y) = b(z, y)(z − y)
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with b holomorphic in the same domain as a. Then we can integrate by parts with respect

to z̄ to obtain

K(x, y) =
∫
∂̄zb(z, y)e−

τ
2

(x−y)2eτ(z−y)(2x−z−z̄)dz dz̄

Now the integrand is supported in Re z 6∈ B(Ω, r). In this domain we estimate the expo-

nential. It is easier to do that in the original coordinates, in which

K(x, y) =
∫

(∂̄zb(
x+ w

2
+ i

1

τ
ξ, y)ei(x−w)ξe−

τ
2

(w−y)2dwdξ

There we know that x ∈ B(Ω, r) and (x+w)/2 6 ∈B(Ω, r). Since Ω is convex this implies

w 6 ∈B(Ω, r). But y ∈ Ω, hence |w − y| ≥ r. This implies

K(x, y) ≤ ce−
τ
2
r2

q.e.d.

Lemma 3.37 is a straightforward consequence of Lemma 3.36, therefore we continue with

Proof of Lemma 3.38 : Use Cauchy’s integral formula to write p(xa, xb, D) as a

superposition of

p(xa, xb, D) =
∫
K(xa, z)R(z, xb, D)dz

where K is analytic in xa in B(Ω, r) + iRna and

|R(z, xb, ξ)| ≤ c|P (x, ξ)| (3.56)

By Lemma 3.36 we get the uniform estimate

|(e−
ε
2τ
D2
aK(z)−Kε(z)e−

ε
2τ
D2
aRw| ≤ ce−

τ
8
r2 |R(z)w| (3.57)

Then (3.55) follows after integration from (3.57) since

|R(z)v| ≤ c|Pv|+ |v|m−1,τ

The last estimate is a consequence of (3.56). ( keep in mind C1 coefficients.

Now we want to prove that Pε is a small perturbation of P in an appropriate sense. For

this we no longer need the analyticity assumption on the coefficients. Thus assume that P

and Pε are as above, but with the coefficients cα ∈ C1
xb

(S(Cna). Fix K a compact subset of

Rn.
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Lemma 3.39 Let P, Pε be operators of order m as above. Then

|(P − Pε)v| ≤ c
ε

τ
|Dav|m,τ

and

|(P − Pε)v|−1,τ ≤ c
ε

τ
|Dav|m−1,τ

Proof :

Compute

Pε − P =
ε

τ
(Qm,εDa +Rm,ε) (3.58)

Now the result follows since the m-th order operators Qm,ε, Rm,ε are bounded from Hm
τ into

L2 and from Hm−1
τ into H−1

τ .

To see that the RHS above is small in an appropriate sense, we use the following

Lemma 3.40 Assume that v = e−
ε
2τ
D2
aw. Then

ε

τ
|Dav| ≤ c|v|+ e−

τ2

ε |w|

The next Lemma deals with the inner products arising in the proof of the Carleman

estimates:

Lemma 3.41 Let (P, Pε), (Q,Qε) be operators of order m as above with real symbols. Then

|Im(< Pεu,Qεu > − < Pu,Qu >)| ≤ c
ε

τ
(|v|2m,τ + | ε

τ
Dav|m,τ )

and further

|Im(< Pεu,Qεu > − < Pu,Qu >)| ≤ c
ε

τ
(|v|2m,τ + e−

τ
ε |w|m,τ )

Proof :

Use the formula (3.58) and integrate by parts.
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For the case (H) we need a stronger estimate. Fix x0
a ∈ A and set

Pm(xb, D) = P (x0
a, xb, D)

Now introduce the following translation invariant (in xa) norm:

|v|2X = |Pmv|2 + |Dav|2m−1,τ

This norm is related to the operators Pε, P by

Lemma 3.42 Let Pε be as above. Then

|v|X ≤ c|Pv|2 + |Dav|2m−1,τ (3.59)

and

|v|X ≤ c(|Pεv|+ |(Da, τ)v|m−1,τ ) + |χ(
ε

τ
Da)v|X (3.60)

Proof of Lemma 3.42 : a) Set

Q(x,Db) = P (x,Db, 0, 0)

Then it suffices to prove that

|Pmv| ≤ c(|Qv|+ |v|m−1,τ ) (3.61)

On the other hand, condition (H) gives

|Pm(x, ξb)| ≤ c|Q(x, ξb)|

which implies (3.61).

b) Set

qm,ε(za, xb, ξb) = p(z, xb, 0, ξb, 0)

Then (3.60) would follow from

|Pmv| ≤ c(|Qm,εv|+ |v|m−1,τ + | ε
τ
DaPmv| (3.62)

Due to the condition (H),

|qm,ε| ≤ c|p0|
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Write

qm,ε(z, xb, ξb) = q0,ε(z, xb, ξb)pm(xb, ξb)

Then

q0,ε > 0 if |Im z| ≤ c

Let χ be a bounded smooth symbol supported away from 0 so that

p0,ε = q0,ε(z, xb, xib) + χ(Im z) ≥ c > 0

Then at the operator level we get

|(Pm,ε + χ(
ε

τ
Da)P0)v − P0,εP0v| ≤ c|v|m−1,τ

This implies (3.62) provided that P0,ε is invertible. Indeed, both Q0,ε and Q−1
0,ε are bounded

operators and their product is

Q−1
0,εQ0,ε = 1 +O(τ−1)

Hence if τ is large enough then Q0,ε is invertible and has a bounded inverse, q.e.d.

Lemma 3.43 Let (P, Pε), (Q,Qε) be operators of order m as above with real symbols. As-

sume in addition that they satisfy (H’) with respect to P0. Then

|Im(< Pεu,Qεu > − < Pu,Qu >)| ≤ c
ε

τ
(|v|2X + | ε

τ
Dav|2X) (3.63)

and further

|Im(< Pεu,Qεu > − < Pu,Qu >)| ≤ c(
ε

τ
|Pεv|+ δτ |v|m−1,τ + e−cδτ (|Pw|+ |w|m−1,τ ) (3.64)

Proof of Lemma 3.43 :

Here we want to start with a more precise description of Pε, Qε which is a consequence

of our assumption (H):

Pε = P0,εPm + Pm−1,εDa +Rm−1 (3.65)

and

P − Pε =
ε

τ
[(P0,εPm + Pm−1,εDa +Rm−1)Da + +P0,εPm + Pm−1,εDa +Rm−1] (3.66)
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where Rm−1 : Hm−1
τ → L2. Now use these relations to estimate

Im(< Pεu,Qεu > − < Pu,Qu >)

All the parts can be directly bounded in terms of the RHS in (3.63) except for ε
τ

times terms

of the form
(i) Im < P0,εPmv,Q0,εDaPmv >
(ii) Im < P0,εPmv,Qm−1,εD

2
av >

(iii) Im < P0,εPmDav, Pm−1,εDav >
(iv) Im < Pm−1,εDav, Pm−1,εD

2
av >

where all the symbols involved are real.

(i) The expression above equals

< RPmv, Pmv >

where

R = P ∗0,εQ0,εDa −DaQ
∗
0,εP0,ε

The pdo calculus implies that

R = O(1) +O(ε/τ)Da +R−1Da

where R−1 : L2
a(H

−1
b )L2 → 0 as operator in L2, qed.

(ii) Rewrite the expression in there as

Im < P0,εP1|D|m−1v,Q0,εD
2
a|D|m−1v >=

< R0P1|D|m−1v, |D|m−1v > + < R1|D|m−1v, |D|m−1v >

where

R1 = [P1, P
∗
0,εQ0,ε]D

2
a = DaO(1)Da

and

R0 = P ∗0,εQ0,εD
2
a −D2

aQ
∗
0,εP0,ε = O(1)Da +DaO(1/τ)Da

(iii) This can be easily reduced to (ii) by moving a Da derivative from the left to the

right.

(iv) Integrate by parts while avoiding having m Db derivatives together. Then the ex-

pression is bounded by

|Dav|2m−1 + |Dav|m−1|
ε

τ
D2
av|m−1
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The last term comes from the commutator of the coefficients, which has order ε
τ
.

Now (3.64) follows from (3.63) and Lemma 3.42 if we cut off at Da ≈ τ
√

δ
ε
.

Proof of Theorem 3.33 : The pseudoconvexity condition gives

{Re pτ , Im pτ} > 0 on pτ = 0, ξa = 0

By Theorem 2.7 (b) this implies that

c|v|2m,τ ≤ τ Im < P r
τ v, P

i
τv > +d(|Pτv|2 + |Dav|m−1,τ ) (3.67)

By Lemmas 3.39,3.41 this gives

c|v|2m,τ ≤ 2τ Im < P r
ε,τv, P

i
ε,τv > +d|Pε,τv|2 + c1(ε|v|m,τ + |ε, τ

D a
v|m,τ + |Dav|m−1,τ )

and further, if ε is sufficiently small,

|v|2m,τ ≤ c(τ |Pε,τv|2m,τ + |τ−1Dav|2m,τ

Now suppose v = e−
ε
τ
D2
aw and use Lemma 3.40 for the last RHS term to get

|v|2m,τ ≤ c(τ |Pε,τv|2m,τ + e−cε|w|2m,τ

Using Lemma 3.37 it follows that

|v|2m,τ ≤ c(τ |e−
ε
τ
D2
aPτw|2m,τ + e−cε|w|2m,τ

which implies the desired conclusion.

Proof of Theorem 3.34 :

Again, by Theorem 2.7 (b) the pseudoconvexity condition gives

τ |v|2m−1,τ ≤ 2Im < P r
τ v, τ

−1P i
τv > +d(τ |Pτv|−1,τ + τ |Daw|2m−2,τ )

Use Lemmas 3.39, 3.43 to substitute Pτ by Pε,τ as before and obtain

τ |v|2m−1,τ ≤ c(|Pε,τv|2 + τ |Daw|2m−2,τ ) +
ε

τ
(|v|2X + | ε

τ
Dav|2X)

The next step is to substitute the X norm using the norm of Pε,τu. This can be done using

(3.60) to get

τ |v|2m−1,τ ≤ c(|Pε,τv|2 + τ |Daw|2m−2,τ ) +
ε

τ
(|(Da, τ)v|2m−1,τ + |χ(

ε

τ
Da)

ε

τ
Dav|2X)

If v = e−
ε
τ
D2
aw then Lemma 3.40 gives

τ |v|2m−1,τ ≤ c(|Pε,τv|2 + τe−cετ |w|2m−1,τ ) + τ |D−1
a w|2X)

which, again by (3.60) yields the desired conclusion.
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3.5.2 Unique continuation

Theorem 3.44 Let F be an analytic foliation of an open subset Ω of Rn. Let P (x,D) be a

partial differential operator whose coefficients are C1 overall and analitic in the leaves of the

foliation, satisfying either (E) or (H). Let Σ be an oriented hypersurface which is strongly

pseudoconvex with respect to P in N∗F . Then we have unique continuation across Σ for

solutions u to P (x,D)u = 0.

Proof : Suppose we are in case (E). If we apply the usual argument involving a

perturbation of the surface S and the cutoff of u then the problem reduces to

Suppose φ is a quadratic function which is strongly pseudoconvex with respect to P in the

set {ξa = 0}. Let u ∈ Hm−1 be a function supported in a δ ball, with δ sufficiently small, so

that Pu ∈ L2 and Pu = 0 in {φ > 0}. Then u = 0 in {φ > 0}.
If we apply the Carleman estimate (3.47) to u in suitable local coordinates and let τ →∞

then we obtain

|Qφ
ε,τu|m−1,τ → 0 as τ →∞ (3.68)

Let v be a function whose Fourier transform has compact support. Consider the function

g : R→ R,

g(t) =
∫
δ(t− φ(x))u(x)v(x)dx

Its Fourier transform is the entire function

ĝ(z) =< v, eτφu >

Clearly

|ĝ(z)|m−1.τ ≤ cec|z|, z ∈ C

while

|ĝ(z)|m−1.τ ≤ c(1 + |z|m−1), z ∈ R

On the other hand, (3.68) shows that ĝ is bounded on the negative imaginary axis. Hence,

we can use the Phragmen-Lindelof Theorem to conclude that

|ĝ(z)|m−1.τ ≤ c(1 + |z|m−1), Im z < 0.

This implies that g(t) = 0 when t > 0. Hence, if h is a smooth function compactly supported

in R+ then ∫
g(t)h(t) = 0
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whic is equivalent to ∫
u(x)v(x)h(φ(x))dx = 0

This holds for any v whose Fourier transform has compact support, and, by density, for any

v. Consequently we get u = 0 in supp h(φ(x)), i.e. u = 0 in φ > 0, q.e.d.

3.5.3 Stability estimates

As explained in the introduction, any unique continuation result is accompanied by a certain

stability estimate. The challenge is then to obtain the best possible stability estimate. As

opposed to the Holder stability estimates corresponding to the standard Carleman estimates,

the stability estimates corresponding to the unique continuation results in this section are

considerably more delicate. We start with a local result:

Theorem 3.45 Let F be an analytic foliation of an open subset Ω of Rn. Let P (x,D) be a

partial differential operator whose coefficients are C1 overall and analitic in the leaves of the

foliation, satisfying either (E) or (H). Let Σ be an oriented hypersurface which is strongly

pseudoconvex with respect to P in N∗F .

Then for each x0 ∈ Σ and each neighbourhood W of x0 there exists a neighbourhoods V

of x0 so that

|u|Hm−2(V ) ≤ c
|u|Hm−1(W )

(ln 1 +
|u|Hm−1(W )

|Pu|L2(W )
)

(3.69)

whenever u ∈ Hm−1 is supported in Σ+ P (x,D)u = 0.

The inequality (3.69) can be rewritten as

|u|Hm−2(V ) ≤ c
1

| ln |Pu|L2(W )|
whenever |u|Hm−1(W ), |Pu|L2(W ) ≤ 1/2 (3.70)

One can see that this inequality is weaker than the usual one (see (3.8)).

The above result is purely local. We belive, however, that the same stability result should

also hold globally. Nevertheless, if one tries to iterate it directly to obtain a global result,

then the function (| lnx|+ 1)−1 is replaced by one of its iterates, of the form

(1− ln(1− ln(1− ln ...(1− lnx)−1...)−1)−1)−1

The global result we can prove is only a bit weaker:
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Theorem 3.46 Let K0 ⊂⊂ K1 ⊂ K2 be bounded subsets of Rn for which iterated application

of the unique continuation result in Theorem 3.44 yields

If u ∈ Hm−1

loc is supported in K2 and Pu = 0 in K1 then u = 0 in K1.

Then for any ε > 0 we have

|u|Hm−2(K0) ≤ c
|u|Hm−1(K1)

(ln 1 +
|u|Hm−1(K1)

|Pu|L2(K1)
)1+ε

(3.71)

whenever u ∈ Hm−1 is supported in K.

The idea of the proof is to obtain first an enhanced local low frequency estimate and then

to iterate it, but only for the low frequencies. We continue with the crucial low frequency

estimate.

Theorem 3.47 Let F be an analytic foliation of an open subset K of Rn. Let P (x,D) be

a partial differential operator whose coefficients are C1 overall and analytic in the leaves of

the foliation, satisfying either (E) or (H). Let φ be an analytic function which is strongly

pseudoconvex with respect to P in N∗F .

Let a(ξ) be a smooth, compactly supported symbol, of Gevrey class α. Let b(x) be a cutoff

function of Gevrey class which is 1 in {|x| < 1} and 0 in {|x| > 2}. Then given R > 0 there

exists r > 0, c > 0 so that for each x0 ∈ K and u supported in K ∩ φ < φ(x0) such that

|u|m−1 = 1, |A(
Da

µ
)b(R−1(x− x0))Pu| ≤ e−µ

α

(3.72)

we have

|A(
Da

τ
)b(r−1(x− x0))u|m−1 ≤ e−τ

α

τ < cµα (3.73)

In other words, this theorem gives a local stability estimate in the region φ0−3δ ≤ φ ≤ φ0

only for frequencies smaller than c| ln |Pu||. Surprisingly, the bound we obtain for these

frequences is e−c| ln |Pu||
α
, which is incomparably better than the | ln |Pu||−1 that we need in

order to prove Theorem 3.45, and almost as good as the |Pu|c that one obtains from the

classical Carleman estimates.

Proof of Theorem 3.47 :

The idea of the proof is to cutoff u near the surface x0 and then to use one of the estimates

(3.47) or (3.48).
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Next we use a perturbation argument. Given x0 ∈ K we consider the function

ψ(x) = φ(x) + γ|x− x0|2

The pseudoconvexity condition is stable with respect to small C2 perturbations. Therefore

there exists γ0 independent of x0 so that ψ also satisfies the pseudoconvexity condition in

the hypothesis of the theorem in the domain K for γ < γ0. Fix γ ≤ γ0.

Then there exists δ independent of x0 so that

{φ ≤ 0} ∩ {ψ > −8δ} ⊂ B(x0, R)

Given δ there exists some r > 0, independent of x0, so that

B(x0, 2r) ⊂ {ψ > −δ}

In the sequel we assume without any restriction in generality that ψ(x0) = 0.

Let χ be a smooth cutoff function which is 0 on (−∞,−8δ] and 1 in [−7δ,∞). Then

P (χ(ψ)u) = χ(ψ)Pu+ [P, χ(ψ)]u

where the operator [P, χ] is supported in {−8δ < φ < −7δ}. If u is supported in {φ ≤ 0}
then χu is supported in B(x0, R). Consequently, we can apply our Carleman estimates, say

(3.47) to χu to obtain

τ |Qψ
ε,τ (D, x)χ(ψ)u|2m−1,τ ≤ c(|Qψ

ε,τ (D, x)χ(ψ)P (x,D)u|20 + +|[P, χ(ψ)]u|2 + |eτ(ψ−d)u|2m−1,τ )

(3.74)

To continue, we need a better estimate for the norm of Pu in the RHS. This is given by the

following

Lemma 3.48 Suppose that (3.72) holds, and that ψ is quadratic in xa. Then

|Qψ
ε,τ (D, x)χ(ψ)P (x,D)u| ≤ e−µ

α

, τ < cµα

Proof : Without any restriction in generality assume that χ also cuts off the region ψ > δ.

By splitting it off in Fourier variable we obtain

|Qψ
ε,τ (D, x)χ(ψ)P (x,D)u| ≤ ce−cµ

2τ−1

+ |Aµ/2eτφχ(ψ)Pu|

≤ ce−cµ
2τ−1

+ eδτ−µ
α

+ |Aµ/2eτφχ(ψ)(1− Aµ)Pu| (3.75)

83



To estimate the last term look at the Fourier transform of eτφχ(ψ). Since ψ is quadratic in

x we can decompose it at fixed x0 into

ψ(x) = φ(x0) + A(x− x0) +Q(x− x0)

By looking at the power series we get

∂ke
Aτ(x−x0)
|x=x0

≤ (cτ)k

∂ke
τQ(x−x0)
|x=x0

≤ (cτ)k/2(k!)1/2

On the other hand, for χ(ψ) we have

∂kχ(ψ)|x=x0 ≤ ck(k!)1/α

Putting the three estimates together we get

∂keτφχ(ψ)|x=x0 ≤ eτφck(τ k + (k!)1/α)

Then for its Fourier transform we get the bound

̂eτφχ(ψ) ≤ |ξ|−keδτck(τ k + (k!)1/α)

If we minimize this expression with respect to k we obtain

̂eτφχ(ψ) ≤ eδτ−c|ξ|
α

ck(τ k + (k!)1/α) |ξ| > Cτ

Hence, if τ < c|µ| then

|Aµ/2eτφχ(ψ)(1− Aµ)| < eδτ−cµ
α

Then, going back to (3.75) we obtain

|Qψ
ε,τ (D, x)χ(ψ)P (x,D)u| ≤ e−cµ

α

τ < cµα

which concludes the proof of the Lemma.

Suppose now that d > 8δ (if not, we go back to when we have chosen δ and choose a

smaller one; since the function ψ is a small perturbation of φ, it is not difficult to see that

d > 0, and therefore δ > 0, can be chosen independently of x0) Taking also into account

Lemma 3.48, from (3.74) we obtain

|Qψ
ε,τ (D, x)χ(ψ)u|m−1,τ ≤ ceδτ max{e−cµα , e−7δτ} (3.76)

Think now of τ as −iz, with z on the positive imaginary axis. We would like to extend this

estimate to the upper half-space. This is done in the following
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Lemma 3.49 Let h be an analytic function in the upper halfspace, satisfying

|h(z)| ≤ cmax{e−µ, e−7δIm z}z ∈ R ∪+iR+ (3.77)

Then there exists some d > 0 which does not depends on µ so that

|h(z)| ≤ ce−6δIm z |z| < dµ, Im z ≥ 0 (3.78)

Proof : Let f be the bounded harmonic function in the fourth quadrant, which satisfies

f(z) = max{µ, 7δIm z}z ∈ R ∪ −iR

Then

|h(z)| ≤ cef(z)

therefore we need to prove that there exists some δ > 0 so that

f(z) ≤ 6δIm z |z| < dµ (3.79)

The difficulty is that we want d not to depend on µ. The solution is to scale µ away. Set

f1(z) = (µ)−1f(zµ). Then

f1(z) = max{1, 7δIm z}, z ∈ R ∪ −iR

Hence, there exists d > 0 so that

f1(z) ≤ 6δIm z |z| < d

which implies (3.79).

As a consequence of the lemma, we get

|Qψ
ε,−iz(D, x)χ(ψ)u|m−1,τ ≤ ce−5δIm z, |z| ≤ dµα, Im z ≥ 0 (3.80)

Let η be a smooth cutoff function which equals 1 in [−3δ,∞) and 0 in (−∞, 4δ], of

Gevrey class α. Then we would like to obtain an estimate for

F = A(
βDa

µ
)η(ψ(x))u(x)
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The idea is to foliate F with respect to the level sets of ψ:

F =
∫
η(t)A(

βDa

µ
)δ(t− φ(x))u(z)dt

Using the Fourier transform in t this further gives

F =
∫ ∞
−∞

η̂(zA(
βDa

µ
)e−izφudz (3.81)

The plan is to get a good estimate of F by making a suitable modification of the integration

contour in the upper half-plane. To do that, we need to get good estimates for η̂ in the lower

half-plane and for A(βDa
µ

)e−izφu in the upper half-plane.

Since η is of Gevrey class α and is supported in [−4δ,∞), its Fourier transform satisfies

η̂(z) ≤ ce−4δIm ze−|z|
α

, Im z < 0 (3.82)

From (3.80), on the other hand, we obtain

|A(
βDa

µ
)η(ψ(x))e−izφu(x)| ≤ e(−6+cεβ2)Im z |z| = dµ, Im z ≥ 0 (3.83)

Hence, change the path in (3.81) to the contour in the following figure:

Then estimate F using the bounds in (3.83), (3.82). We obtain

F ≤ ce−cµ
α

(3.84)

Let now η1 be a smooth cutoff function which equals 1 in [−δ,∞) and 0 in (−∞, 2δ]. Then

η1A(
βDa

µ
)u = η1A(

βDa

µ
)η(φ)u+ η1A(

βDa

µ
)(1− η(φ))

We use (3.84) for the fist RHS term, while for the second we estimate its kernel. Since a is

of Gevrey class α we can estimate its Fourier transform by

â(x) ≤ de−c|x|
α

Hence the kernel k(x, y) of η1A(βDa
µ

)(1− η(φ)) given by

k(x, y) =
µ

β
â(
µ

β
(x− y))η1(φ(x))(1− η(φ(y)))
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satisfies

|k(x, y)| ≤ de−cµ
α

(with a different c). Therefore we obtain

|η1A(
βDa

µ
)u| ≤ ce−cµ

α

(3.85)

which, given our choices for r, δ, η1, implies (3.71), q.e.d.

Proof of Theorem 3.45 :

Given the neighbourhood W of x0 choose R so that B(x0, R) ⊂ W . Then let r be

as in Theorem 3.47 and V = B(x0, r). Without any restriction in generality assume that

|u|m−1 = 1 and that |Pu| = e−µ in B(0, r). In V decompose u as

u = A(
βDa

µ
)u+ (1− A(

βDa

µ
))u

Then use (3.71) for the first term and (3.72) for the second term. We obtain

|u|m−2,V ≤ d(e−cµ
α

+ µ−1) ≤ dµ−1

Due to the choice of µ in (3.72) this implies (3.69), q.e.d.

Proof of Theorem 3.46 :

The strategy of the proof is to iterate the local low-frequency result.

A. We claim that there exist R, r > 0 and a finite collection of points {xi}i=1,N satisfying

the following conditions:

i) xk ∈ K0 \Bk for all k.

ii) Lemma 3.47 holds at xk for solutions u supported in K0 \Bk.

iii) K0 ⊂ BN

where Bk ∪i<k B(xi, r/2).

Indeed, by hypothesis we can find a finite partition

K0 = ∪Aj

and associated functions φj which are strongly pseudoconvex in Aj so that the unique con-

tinuation result in K0 is a consequence of iterating the unique continuation in Aj across level

sets of φj. In other words, we can choose φj so that φj ≥ 0 in Aj and φj ≤ 0 in K0 \∪i≤jAj.
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Then for R > 0 choose r > 0 small enough so that Theorem 3.47 holds for φj and x0 ∈ Aj
for all j.

Now we can choose xk inductively following the following algorithm:

a) x1 is the maximum point for φ1 in A1.

b) Suppose xk−1 ∈ Aj.
ba) If Aj 6 ⊂Bk then choose xk ∈ Aj a maximum point for φj in Aj \Bk.

bb) Else, there exists some h > j so that ∪l<hAl ⊂ Bk but Ah 6 ⊂Bk. Then choose

xk ∈ Ah a maximum point for φh in Ah \Bk.

B. Now we use Lemma 3.47 for the points xi obtained in part A. Define the functions

u1 = u, uj = (1− b(2
r
(x− xj−1)))uj−1. Let

µ1 = ln(|Pu|K1)

and

µj = cµαj

with c as in Lemma 3.47. We infer that we can apply iteratively Lemma 3.47 to conclude

that

|A(
Da

µj
)b(r−1(x− xj))uj|m−1 ≤ e−µ

α
j

For j = 1 this follows directly from Lemma 3.47. For the induction argument, observe first

that the sequence uj stays bounded in Hm−1 by construction. Hence, we only need to prove

that  |A( Da
µj−1

)gPuj−1| ≤ e−µ
α
j−1

|A( Da
µj−1

)b(r−1(x− xj−1))uj−1|m−1 ≤ e−µ
α
j−1

implies

|A(
Da

µj
)gPuj| ≤ e−µ

α
j

According to the definition of uj we have

A(
Da

µj
)gPuj = A(

Da

µj
)gPuj−1 + A(

Da

µj
)[b(

2

r
(x− xj−1)), P ]uj

The first RHS term is bounded by e−µ
α
j−1 . For the second, denote

v = b(r−1(x− xj−1))uj−1
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Then we need to prove that

|A(
Da

µj
)f(x)Dm−1v| ≤ c(|A(

Da

µj−1

)v|m−1 + e−cµj |v|m−1

which after factoring out the derivatives reduces to

|A(
Da

µj
)f(x)v| ≤ c(|A(

Da

µj−1

)v|+ e−cµj |v|

and further to

|A(
Da

µj
)f(x)(1− A(

Da

µj−1

)| ≤ e−cµj

This follows since f is of Gevrey class so that its Fourier transform decays like e−c|ξ|
α

at

infinity.

3.6 Elliptic equations: singular weights and strong

unique continuation

This section is devoted to a class of Carleman estimates with singular weight function, for

second order elliptic equations and for parabolic equations.

Note that if an operator is not elliptic and the weight function blows up at a point then

the pseudoconvexity condition would be violated on all bicharacteristics passing through the

singular point. Hence, weight functions which blow up at a point can be allowed only for

elliptic equations.

As it turns out, even for elliptic equations the strong pseudoconvexity condition fails

near the singular point, therefore we need to contend ourselves with (possibly degenerate)

pseudoconvexity.

3.6.1 Second order elliptic operators

We start with a simple estimate for the Laplacian

Theorem 3.50 Let u ∈ H2 be supported in {|x| ≤ ρ} and away from 0. Then

(τ + 1)2||x|−τ−1u| ≤ ρ2||x|−τ∆u|2 τ ∈ R (3.86)

89



Proof : Since only a degenerate pseudoconvexity condition holds here, we need to

carry out a more detailed computation than usual. Set v = |x|−τ−2u. Then (3.125) reduces

to

||x|v|21,τ |x|−1 ≤ c|Pτ (x,D)v|2 τ > τ0 (3.87)

where Pτ is the conjugated operator, which in this case has the form

Pτ (x,D) = (Di − iτxi|x|−1)2x2

Split Pτ into its self-adjoint and its skew-adjoint part,

P r
τ = xD2x− (τ + 1)2

P i
τ = −i(τ + 1)(xD +Dx)

Compute

[P r
τ , P

i
τ ] = −i(τ + 1)xD2x(xD +Dx)− (xD +Dx)xD2x = 0

Then we have

|Pτ (x,D)v|2 = |P r
τ (x,D)v|2 + |P i

τ (x,D)v|2 (3.88)

Now the L2 estimate for v follows from the following simple computation

|(xD +Dx)v|2 = |(xD +Dx− 2i|x|ρ−1)v|2 − 4ρ−2||x|v|2 + 4ρ−1 < [xD +Dx, i|x|]v, v >

= |(xD +Dx− 2i|x|ρ−1)v|2 − 4ρ−2||x|v|2 + 8ρ−1 < |x|v, v >

≥ 4ρ−2||x|v|2

Remark 3.51 A small change in the last estimate above allows on to obtain the following

stronger inequality:

(τ + 1)2| 1

log ρ− log |x|
u|2 ≤ ||x|−τ∆u|2 τ ∈ R, ε > 0 (3.89)

Once we have obtained an estimate for u, we can easily take advantage of the elliptic

part of the conjugated operator to estimate the gradient of u as well.

Corollary 3.6.1 Under the same assumptions as in Theorem 3.59 the following estimate

holds:

τ 2(||x|−τ−1u|2 + ||x|−τ∇u|2 ≤ cρ2||x|−τ∆u|2 τ ∈ R (3.90)
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Proof : With the same notations as in the proof of Theorem 3.59, we need to get the

L2 estimate for ∇x2v. Compute

|∇x2v|2 =< D2x2v, x2v >=< P r
τ v, x

2v > + < [(τ + 1)2 + n− 4]v, x2v >

therefore

|∇x2v|2 ≤ c(|Pτv||x2v|+ τ 2||x|v|2) ≤ c(ρ2|Pτv|2 + τ 2||x|v|2)

which implies that

|∇x2v|2 ≤ cρ2|Pτv|2

q.e.d.

Based on (3.90) we obtain the following strong unique continuation result:

Theorem 3.52 Let x0 ∈ Rn and let u be an H2 function which satisfies the differential

inequality

|∆u(x)| ≤ c(|u(x)|+ |∇u(x)|) (3.91)

near x0. If u vanishes of infinite order at some x0 ∈ Rn then u = 0 near x0.

Proof : Without any restriction in generality assume that x0 = 0. If ρ is sufficiently

small, then by cutting off u we reduce the problem to the case when u is supported in

B(0, 2ρ) and satisfies (3.91) in B(0, ρ). Apply then (3.90) to u. We obtain

||x|−τu|2 + ||x|−τ∇u|2 ≤ cρ2(||x|−τu|2 + ||x|−τ∇u|2) + cρ−τ

If ρ is sufficiently small this gives

|( ρ
|x|

)τu|2 + |( ρ
|x|

)τ∇u|2 ≤ c

which as τ →∞ yields

u = 0 in B(0, ρ)

q.e.d.

One is tempted to infer that a similar result should hold in the variable coefficient case

where |x| is substituted by the Riemmanian distance. Unfortunately, this doesn’t work in

general; it appears that an additional condition on the curvature is required.
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The obstacle is that the pseudoconvexity is degenerate for the function ln |x|, and even a

small perturbation may destroy it. However, we can fix that by adding a bit more convexity

on φ.

Suppose that φ = φ(− ln |x|). Then let ψ be a function which satisfies

ψ′(y)e−2ψ(y)) = e−2(φ(y)+y)

Lemma 3.53 Suppose that φ is increasing and convex. Then

a) ψ is increasing and convex.

b) ψ′ > φ′ + 1.

Proof : We prove (b) first. We have

e−2ψ(y) = 2
∫ ∞
y

e−2(φ(z)+z)dz =
1

φ′(y) + 1
e−2(φ(y)+y) −

∫ ∞
y

φ′′(z)

φ′(z)2
e−2(φ(z)+z)dz

≥ 1
φ′(y)+1

e−2(φ(y)+y)

and (b) follows. For (a) compute

ψ′′ = 2(ψ′)2 − 2φ′e2(ψ−φ(y)−y) = 2ψ′(ψ′ − φ′ − 1)

Part (c) is straightforward.

Theorem 3.54 Let φ be an increasing convex function, and ψ be as above. Then we have

|(y−1 + ψ′′)1/2e2ψ(y)−φ(y)u|+ ≤ |eτφ∆u| (3.92)

(where y = − ln |x|)

Proof : Set

v = e2ψ−φu

and

Pφ = eφD2e−2ψ+φ

To estimate |Pφv| we split again Pτ into a selfadjoint and a skew-adjoint part. We have

Pφ = eφ−ψeψD2e−ψeφ−ψ

= eφ−ψD2eφ−ψ − |∇ψ|2e2(φ−ψ) + ieφ−ψ(∇ψD +D∇ψ)eφ−ψ

= eψ−φD2eψ−φ − (ψ′)2|x|−2e2(φ−ψ) + ieφ−ψ(|x|−2ψ′xD +Dxψ′|x|−2)eφ−ψ

=
|x|√
ψ′
D2 |x|√

ψ′
− ψ′ + i(xD +Dx)
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Hence,

P r
φ =

|x|√
ψ′
D2 |x|√

ψ′
− ψ′

P i
φ = iτ(xD +Dx)

Note that

ixD(
|x|√
ψ′

) =
|x|√
ψ′
− |x|( 1√

ψ′
)′ =

|x|√
ψ′

(1 +
ψ′′

2ψ′
)

Then we can compute the commutator

[P r
τ , P

i
τ ] =

|x|√
ψ′

(
ψ′′

ψ′
D2 +D2ψ

′′

ψ′
)
|x|√
ψ′

+ 2ψ′′

Hence,

|Pτv|2 = |P r
τ v|2 + |P i

τv|2+ < [P r
τ , P

i
τ ]w,w >

= |(P r
τ +

ψ′′

ψ′
)v|2 + |P i

τv|2 + 4ψ′′ − (
ψ′′

ψ′
)2

4ψ′′ − (
ψ′′

ψ′
)2 = ψ′′(4− 2(1− (φ′ + 1)(ψ′)−2e2(ψ−φ−y)) = 2ψ′′(1 + 4(φ′ + 1)(ψ′)−1) ≥ 2ψ′′

Thus,

2ψ′′e2(ψ−φ) = 2|x|−2(ψ′ − φ′ + 1)

Corollary 3.6.2 Let φ be an increasing convex function, and ψ be as above. Then we have

|(τ−1/2y−1 + (ψ′)1/2)eτ(2ψ(y)−φ(y))u|+ ≤ |eτφ∆u| (3.93)

Now we can tackle the variable coefficient case,

P (x,D) = Dig
ijDj

where the positive definite matrix gij is C1.

Theorem 3.55 Let φ be an increasing convex function, and ψ be as above. Assume that

φ′′ > cφ′e−y

If ε is sufficiently small then we have

|(y−1 + ψ′′)1/2e2ψ(y)−φ(y)u|+ ≤ |eτφP (εx,D)u| (3.94)
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Proof : The proof is easier if we use some special coordinates near the origin. Ideally, one

would like to use the geodesic coordinates with respect to the origin. However, this is not

possible for C1 coefficients. What we can do, though, is to reduce the problem to the case

when the balls B(0, r) are the geodesic balls for the metric g. This can be easily achieved

by multiplying P by the lipschitz function |∇r|2. This leads to replacing gij by

g̃ij = gij|∇gr|−2

Then

|∇g̃r|2 = 1

which concludes our reduction.

Set

v = e2ψ−φu

and

Pφ = eφD2e−2ψ+φ

To estimate |Pφv| we split again Pτ into a selfadjoint and a skew-adjoint part. We have

Pφ = eφ−ψeψP (x,D)e−ψeφ−ψ

= eφ−ψP (x,D)eφ−ψ − |∇ψ|2e2(φ−ψ) + ieφ−ψ(∇ψ ·D +D · ∇ψ)eφ−ψ

=
|x|√
ψ′
P (x,D)

|x|√
ψ′
− ψ′ + i(x ·D +D · x)

To accomodate C1 coefficients, we need to break a bit the symmetry and set

P r
φ =

|x|√
ψ′
Dig

ijDj
|x|√
ψ′
− ψ′ + (∂ig

ij)xj

P i
φ = igij(xiDj +Dixj)

Note that P r is still self-adjoint, but P i is no longer skew adjoint. Again

ixD(
|x|√
ψ′

) =
|x|√
ψ′
− |x|( 1√

ψ′
)′ =

|x|√
ψ′

(1 +
ψ′′

2ψ′

but this time we need to compute (P i)∗P r − P rP i. This is quite similar to the constant

coefficient case, except for the derivatives which fall on the metric g. We obtain

C = P rP i − (P i)∗P r

=
|x|√
ψ′

[(
ψ′′

ψ′
P (x,D) + P (x,D)

ψ′′

ψ′
)
|x|√
ψ′

+ 2ψ′′ +
|x|√
ψ′
Di(xl∂

jgil

+ xl∂
jgil − xl∂lgijDj

|x|√
ψ′
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Hence,

|Pτv|2 = |P r
τ v|2 + |P i

τv|2+ < Cw,w >

≥ |(P r
τ +

ψ′′

ψ′
)v|2 + |P i

τv|2 + 2ψ′′(1 +
φ′

ψ′
)− c(||x|1/2∇eψ−φv|2 + ||x|−1/2eψ−φv|2

and further

|Pτv|2 ≥ |(P r
τ +

ψ′′

ψ′
)v|2 + |P i

τv|2 + 2ψ′′(1 +
φ′

ψ′
)− cε(||x|3/2(ψ′)1/2∇v|2 + ||x|1/2|ψ′|1/2v|2)

Suppose now that

ψ′′(y) ≥ cψ′(y)e−y

Then the negative RHS terms can be absorbed if ε is sufficiently small. This yields

c|Pτv|2 ≥ |(P r
τ +

ψ′′

ψ′
)v|2 + |P i

τv|2 + 2ψ′′(1 +
φ′

ψ′
)

q.e.d.

3.6.2 Parabolic operators

Consider the backwards heat operator,

P (D) = iDt −D2
x

Then

Theorem 3.56 Let u ∈ H2 be supported in a fixed neighbourhood of 0. Then

|t−τe−
x2

8τ u|21,τt−1 ≤ c|t−τe−
x2

8τ P (D)u|2 τ > τ0 (3.95)

Proof :

Proof : Since only a degenerate pseudoconvexity condition holds here, we need again

to carry out a more detailed computation than usual. Set v = t−τ−1e−
x2

8t u. Then (3.125)

reduces to

|v|21,τt−1 ≤ c|Pτ (x,D)v|2 τ > τ0 (3.96)
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where Pτ has the form

Pτ (x,D) = [i(Dt − iτ t−1 +
x2

8t2
− (D − iτ x

4t
)2]t

Split Pτ into its self-adjoint and its skew-adjoint part,

P r
τ = −tD2

x −
x2

16t
+ τ + 1/2

P i
τ = i(

tDt +Dtt

2
− (xD +Dx)

4
)

Then a simple computation gives

[P r
τ , P

i
τ ] = 0

Hence, we have

|Pτ (x,D)v|2 = |P r
τ (x,D)v|2 + |P i

τ (x,D)v|2

Now we estimate v as in the elliptic case, using

Lemma 3.57 Suppose that v is supported in B(0, ρ). Then

ρ−1||x|v| ≤ |P i
τv|

The proof is identical. The estimate on ∇v follows also as in the elliptic case.

The variable coefficient case can be studied using a modification of the above argument.

Suppose P (x,D) is an operator of the form

P (x, t, ∂) = ∂t + ∂ia
ij(x, t)∂j

where we assume that P (0, 0, ∂) = ∆.

What we are looking for is an estimate of the following type

|eτφ(x,τt)u|X < c|eτφ(x,τt)P (εx, ε2t, ∂)u| (3.97)

where φ is a modification of the weight in the constant coefficient case,

φ0(x, s) = − ln s− x2

8s

and X will be specified below.

96



Set

� (x, s) = fracx+ s1/2t

and introduce the following classes of functions

f ∈ Φq ⇐⇒ |∂αx∂βs f | ≤ cα,β �q−|α|−2β), 0 < |α|+ β, q ∈ R

Note that φ0 ∈ Φ0.

Then we have

Theorem 3.58 There exist φ ∈ φ0 + Φ1/2 and c, τ0 > 0 so that (3.97) holds for τ > τ0

provided that ε is small enough, with

|v|2X = τ | �1/2 ∇v|2 + τ 3| �3/2 v|2

Proof : With the usual notation v = eτφ(x,τt)u the estimate reduces to

|v|2X ≤ |Pτv|2 (3.98)

where the conjugated operator Pτ is

Pτ = P r
τ + P i

τ +R

with

P r
τ = ∂ia

ij(x, t)∂j + τ 2(φ2
rxia

ijxj − φs) + 2τφr (3.99)

P i
τ = ∂t − aij(φrxi∂j + ∂jxiφr)− 2φr (3.100)

and

R = φrxia
ij
j (3.101)

The last term R is negligible since it is controlled by the X norm. Hence, in the sequel we

set it equal to 0. For the rest, we need the following

Lemma 3.59 Assume that φ = φ0 + ψ with ψ ∈ Φ1/2. Then the following estimate holds:

||Pτv|2 − |P r
τ v|2 − |P i

τv|2− < 4ψrrx∂v, x∂v > −τ 3 < fv, v > | ≤ c(ε+ τ−1)|v|X

where

f =
ψ

4s2
− 4ψr

s
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First we show how to conclude the proof of the Theorem using the Lemma. We need to

make a choice for ψ. We claim that ψ can be chosen in Φ1 so that

a) ψrr > 0

b) f >�3

Such a choice is, for instance,

ψ(r, s) =
(ds+ r)3/2

s

for sufficiently large d.

With this choice for φ the above lemma gives

τ 3| �3/2 v|+ |P r
τ v|2 + |P i

τv|2 ≤ c(|Pτv|+ (ετ + 1)| �1/2 ∇v|2

Then the conclusion follows if we show that

| �1/2 ∇v|2 ≤ c(τ 2| �3/2 v|2 + τ−2| �−1/2 P r
τ v|2)

Indeed,

| �1/2 ∇v|2 ≤<� aij∂iu, ∂ju >≤<� v, ∂ia
ij∂jv > +| �1/2 ∇v|| �3/2 v|

which gives

| �1/2 ∇v|2 ≤ c(τ 2| �3/2 v|2 + τ−2| �−1/2 ∂ia
ij∂jv|2) ≤ c(τ 2| �3/2 v|2 + τ−2| �−1/2 P r

τ v|2)

q.e.d.

We conclude with

Proof of Lemma 3.59 : We have

|Pτv|2 = |P r
τ v|2 + |P i

τv|2 + 2Re < P r
τ v, P

i
τv >= |P r

τ v|2 + |P i
τv|2 + 2Re < Rv, v >

where

R = P r
τ P

i
τ − P i∗

τ P
r
τ

Hence, we need to estimate R. Recall that

P r
τ = ∂ia

ij(x, t)∂j + τ 2(φ2
rxia

ijxj − φs)− 2τφr (3.102)

P i
τ = ∂t − τaij(φrxi∂j + ∂jxiφr) + 2τφr (3.103)
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Then R = R1 +R2 +R3 +R8 where

R3 = τ 3(−∂s + 2φrxia
ij∂j + 4τφr)(φ

2
rxia

ijxj − φs)

R2 = τ 2(−8φ2
r + 2(∂s − 2φrxia

ij∂j)φr = τ 2(−8φ2
r + 2φrs − 2φrφrrxia

ijxj)

R1 = +2τ(φr∂ia
ij(x, t)∂j + ∂ia

ij(x, t)∂jφr)− τ(φr∂ia
ikakj∂j + ∂ia

ikakj∂jφr + 2∂ia
ikakj∂j)

R0 = −τ(xjxkφrr∂ia
ijakl∂l∂ia

ijxjxkφrra
kl∂l∂ia

ijakl∂lxjxkφrr)

R8 = ετ(∇Φ−1O(1)∇+ Φ−1∇O(1)∇∇O(1)∇Φ−1) = ετ(∇O(�)∇+O(�2)∇

Now we consider separately each term, taking into account our assumption on φ. For R0 use

the fact that φ0 is linear in r, therefore xixjφrr ∈ Φ−1. Hence,

R0 = −4τ∂ia
ijxjxkφrra

kl∂l + τO(�2)∇

For R1 use the fact that aikakj − aij = O(εx). Then

R1 = ετ(∇O(�)∇+O(�2)∇) +O(�2)∇

For R2 observe first that it vanishes if φ = φ0. The remainder consists of terms which contain

at least one ψ therefore is one order higher. Hence,

R2 ∈ τ 2Φ−3

R3 also vanishes if φ = φ0. Then by the same token

R3 = linearisation in ψ + τ 3Φ−2

The linearization in ψ is τ 3 times

−(∂s +
r

s
∂r +

1

s
)(
r

s
ψr + φs)−

4

s
ψr

Assuming that ψ is 1/2 homogeneous this gives

1

4s2
ψ − 4

s
ψr

therefore

R3 = τ 3(
1

4s2
ψ − 4

s
ψr) + τ 3Φ−2

Summing together the information above about each of the components of R we obtain the

conclusion of the Lemma, q.e.d.
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3.6.3 Notes

Eliptic:

Parabolic:

The symbolic calculus:

prτ = aijξiξj − τ 2|∇φ|2

piτ = 2τaijξiφj

Their Poisson bracket is

{prτ , piτ} = 4τξiφ
ijξj + 2τ 3φi∂i|∇φ|2 (3.104)

= −2τprτφ
i|∇φ|−2∂i|∇φ|2 + 2τξi(2φ

ij − aijφk|∇φ|−2∂k|∇φ|2)ξj (3.105)

3.7 Anisotropic operators

The Carleman estimates in Section 3.1 are valid as well for anisotropic operators, with the

appropriate modifications of the meaning of the notations, as described in Section 1.3. The

aim of this section is to describes some features specific to anisotropic operators.

3.7.1 Estimates with singular weight function

We start with the following result:

Theorem 3.60 Assume that φ(t, x) is strongly pseudoconvex with respect to P . Let f(t) ∈
C∞, f ≥ 1. Then

τ |eτf(τt)φu|2m−1,τ ≤ c|eτf(τt)φP (x,D)u|2

for µ ≥ 1, τ > τ0 and v with compact support.

Proof : As usual this follows from the stronger estimate

Lemma 3.61 Under the assumptions of the theorem we have

|v|2m−1,τ ≤< P r
τ v, P

i
τv > +|Pτv|2−1,τ
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Proof : The above estimate is stable with respect to small C1 changes in the coefficients.

(the novelty here is that functions of the form f(τt) map Hs
τ into itself, uniformly in τ .)

Consequently, we assume in the sequel that the coefficients of P are smooth.

Theorem 3.62 Assume that φ(t, x) is strongly pseudoconvex with respect to P . Let g ≥ 1

be a function with the property that

|g(j)(x)| < cjg
j(x), j = 1,m

Then

gτ |eτg(t)φu|2m−1,τ ≤ c|eτg(t)φP (x,D)u|2 (3.106)

for τ > τ0 and v with compact support. Furthermore, the constant c depends only on cj.

Proof : W.a.r.g. assume that c1 = 1/2. Let ψ be a smooth nonnegative function

supported in [1/2, 1] so that ∑
ψ(2−jx) = 1

Set

ψj(x) = ψ(2−jx), Ψj(x) = ψj−1(x) + ψj(x) + ψj+1(x)

Now define

�j= 2jτ

gj(�j t) = 2−jΨj(g(t))g(t) + (1−Ψj(g(t)),

uj = ψj(g(t))u

Then the following bounds are straightforward:

|g(k)
j | < cτ−j

Consequently, if τ is sufficiently large we can apply Theorem 3.54 to the pair �j, gj, uj to

get the uniform estimate

�j |e�jgj(�jt)φuj|2m−1,�j
≤ c|eτgj(�jt)φP (x,D)uj|2

Observe, furthermore, that 2jgj(�j t) = g(t) ∈ [2j−1, 2j+1] in supp uj. Hence, we obtain

2jτ |eτgφuj|2m−1,2jτ ≤ c|eτgφP (x,D)uj|2 (3.107)
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On the other hand,

P (x,D)uj = P (x,D)ψju = ψjP (x,D)u+ [P (x,D), ψj]Ψju

therefore

|eτgφP (x,D)uj| ≤ |eτgφψjP (x,D)u|+ c2j|eτgφΨju|m−1,2jτ (3.108)

Combining (3.118) with (3.119) we obtain

2jτ |eτgφφju|2m−1,2jτ ≤ c(|eτgφφjP (x,D)u|2 + |eτgφΦju|2m−1,2jτ (3.109)

For sufficiently large τ the summation in j gives

τ
∑
j

2j|eτgφφju|2m−1,2jτ ≤ c
∑
j

|eτgφφjP (x,D)u|2 (3.110)

which implies (3.117), q.e.d.

The similar estimate with cutoff is also valid:

Theorem 3.63 Assume that φ(t, x) is strongly pseudoconvex with respect to P . Let g ≥ 1

be a function with the property that

|g(j)(x)| < cjg
j(x), j = 1,m

Then

gτ |φ2eτg(t)φu|2m−1,τ ≤ c|φ2eτg(t)φP (x,D)u|2 + τ 2|eτφ(x)g(t)u|2m−2 (3.111)

for τ > τ0 and v with compact support. Furthermore, the constant c depends only on cj.

3.7.2 The regularity of the coefficients

In the isotropic case, the minimal regularity of the coefficients required in order to obtain

the Carleman estimates is C1 ( perhaps Lipschitz).

A natural question is what is the corresponding regularity of the coefficients in the ani-

zotropic case.

The Carleman estimates follow from the stronger estimate

c|v|2m−1,τ ≤< P r
τ v, P

i
τv > +d|Pτv|2−1,τ τ > τ0
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This estimate holds if the coefficients are smooth, and the constants c, d are stable with

respect to smooth perturbations of the coefficients which are small in the C1
x norm. However,

τ0 is not stable under such perturbations.

Let X ⊂ C1
x be a Banach space of coefficients so that C∞ is dense in X and the estimate

above is stable with respect to small perturbations of the coefficients.

For the second RHS term we need to know that

XH−1 ⊂ H−1 (3.112)

For the first RHS term we use integration by parts, moving one derivative at a time alter-

natively from left to right and from right to left. The trouble is that the time derivative has

order 2, therefore we can move it only half at a time. Consequently, in order to bound the

first RHS term by the Hm−1
τ norm of v we need to know that

[X,Dx] : L2 → L2 [X,D
1/2
t ] : L2 → L2 (3.113)

Note that (3.123) follows from (3.124). The first part of (3.124) is equivalent to X ⊂ C1
x.

On the other hand, by Theorem 2.12 the second part of (3.124) holds if D
1/2
t X ⊂ BMO.

This can be better understood if we look at the inclusion

Ct1/2| log t|−1 ⊂ BMO1/2 ⊂ C1/2

Consequently, we obtain

Theorem 3.64 The anisotropic Carleman estimates hold if the coefficients of the principal

part of P are C1 in x and BMO1/2 in t.

3.8 Notes

3.8.1 Degenerate weight functions

. One can ask whether the Carleman estimates are still valid if the weight function has

gradient 0 at one point (see also 1.6.2). This question is largely irrelevant as far as unique

continuation problems are concerned; however, it presents a certain interest when one is

interested in having some nice global inequalities (as opposed to global inequalities obtained

by patching local estimates).
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Assuming that (1.28) holds one would like to have estimates of the form

τ |eτφu|2m−1,τ∇φ ≤ c|eτφP (x,D)u|2 τ > τ0 (3.114)

where we have done the appropriate modification in the weighted norm in the LHS term.

To keep things simple assume that ∇φ(x0) = 0 and the Hessian D2
φ(x0) is nondegenerate.

The inequality (3.114) would follow from the following analogue of (3.4):

B(v, v) = 2Im < P r
τ v, P

i
τv > +d|Pτv|2−1,τ |x−x0| ≥ c|v|2m−1,τ |x−x0| τ > τ0 (3.115)

This inequality is as usual stable with respect to small C1 perturbations of the coefficients,

therefore w.a.r.g. we can assume that P has smooth coefficients.

The principal symbol of FP is

b(x, ξ, τ) = {p̄(x, ξ − iτ∇xφ), p(x, ξ + iτ∇xφ)}/τi+ (ξ2 + τ 2x2)−1|pτ (x, ξ + iτ∇xφ)|

which is positive definite by (1.28), i.e.

b(x, ξ, τ) > c(ξ2 + τ 2x2)m−2

Now we would like to use Garding’s inequality to get (3.115). A bit of care, though, is

required in going from the symbol calculus to the estimates. Since we want to use symbols

in S((ξ2 + τ 2x2)m−2), Garding’s inequality gives

B(v, v) ≥ c|v|2m−1,τ |x−x0| − c1τ
m−1|v|2

which further gives

B(v, v) ≥ c|v|2m−1,τ |x−x0| − c1τ |v|2m−2,τ |x−x0| (3.116)

Hence, instead of (3.114) we only get the weaker estimate

τ |eτφu|2m−1,τ∇φ ≤ c(|eτφP (x,D)u|2 + τm−1|eτφu|2) τ > τ0 (3.117)

3.8.2 Products of operators

We discuss here Carleman estimates for operators P (x,D) whose principal symbol p(x, ξ)

admits a factorization

p(x, ξ) = p1(x, ξ)p2(x, ξ)
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Start with the relation

{pτ , pτ} = {p1
τ , p

1
τ}|p2

τ |2 + {p2
τ , p

2
τ}|p1

τ |2 on char Pτ

This implies that

Lemma 3.65 a) A function φ is strongly pseudoconvex with respect to P iff it is strongly

pseudoconvex with respect to P 1, P 2 and char P 1
τ , char P 2

τ are disjoint.

b) The same applies to strongly pseudoconvex surfaces.

The interesting question is what happens if a function φ is strongly pseudoconvex with

respect to both P 1 and P 2, but char P 1
τ , char P 2

τ are not disjoint. The answer is relatively

simple if

P (x,D) = P1(x,D)P2(x,D)

Then one can apply succesively the Carleman estimates for P1 and P2 to obtain

τ 2|eτφu|2m−2 ≤ c|eτφPu|2 (3.118)

This gets a little better if

char P 1
τ ∩ char P 2

τ ⊂ {τ > 0}

, when we get

|eτφu|2m−2 ≤ c|eτφPu|2 (3.119)

In the first case it is already clear from (3.118) that the subprincipal symbol of P should

play a role in general. We contend ourselves with the following observation:

Theorem 3.66 Assume that {p1, p2} = 0 on char P1 ∩ char P2 and that the subprincipal

symbol of P vanishes on the same set. Then (3.118) holds provided that φ is strongly pseu-

doconvex with respect to both P1 and P2.

In the second case the estimate is stable with respect to small perturbations of P of

order m − 1. Hence, it is natural to conjecture that the conclusion holds regardless of the

lower order terms. This leads to the natural question: can one modify the weight function φ

without changing its level sets, in such a way that the (best) constant c in (3.119) is made

arbitrarily large ?
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First, note that the constant c in (3.1) can be (almost) taken, near some (x, ξ, τ) ∈
char Pτ , to be

c =
{p̄(x0, ξ − iτ∇φ), p(x0, ξ + iτ∇φ)}(x0, ξ)

iτ |(ξ, τ∇φ)|2m−2

Can we improve it by substituting φ by g(φ) ? The new constant c we get at (ξ, τg′(φ)−1) is

c =
{p̄(x0, ξ − iτ∇φ), p(x0, ξ + iτ∇φ)}(x0, ξ)

iτ |(ξ, τ∇φ)|2m−2
+
{p(x0, ξ + iτ∇φ), φ}2g′′(φ)

|(ξ, τ∇φ)|2m−2g′(φ)

Hence, it is clear that that c can be improved iff {p(x0, ξ + iτ∇φ), φ} 6= 0. All we need to

do is to choose g′′

g′
to be sufficiently large. This can be achieved e.g. by taking g(x) = e�x

for sufficiently large �.

Consequently, we get

Theorem 3.67 Suppose that φ is strongly pseudoconvex with respect to both P 1 and P 2. As-

sume in addition that char P 1
τ ∩char P 2

τ ⊂ {τ > 0} and {p1
τ , φ}, {p2

τ , φ} do not simultaneously

vanish there. Then

� |eτψu|2m−1 ≤ c|eτψPu|2 (3.120)

where ψ = e�φ.
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Chapter 4

Examples

4.1 The wave equation

Consider a second order hyperbolic operator

P (x,D) =
n∑

i,j=1

∂ia
ij∂j + bj∂j + c

in a domain K ⊂ Rn, n ≥ 3, with smooth time-like boundary ∂K. Assume that P is

hyperbolic with respect to the level sets of one of the coordinates, say x0. We call this

coordinate time, and the others space coordinates. The principal symbol of the operator P

is the quadratic form

p(x, ξ) = aijξiξj

of signature (m− 1, 1).

4.1.1 An elementary proof of the Carleman estimates

The following result is a consequence of Theorem 3.1:

Theorem 4.1 Assume that P has C1 coefficients. Let φ be a strongly pseudoconvex function

with respect to P in K. Then

τ |eτφu|21,τ ≤ c|eτφP (x,D)u|2 τ > τ0 (4.1)

whenever u ∈ H1 is supported in K.

The aim of this section is to provide a simpler proof of it, more precisely, a proof which

does not use pseudodifferential operators.
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Proof : With the substitution v = eτφu (4.1) reduces as usual to

τ |v|21,τ ≤ c|Pτ (x,D)v|2 τ > τ0 (4.2)

Now decompose Pτ into a part with real principal symbol and one with purely imaginary

principal symbol,

Pτ (x,D, τ) = P r
τ (x, ∂, τ) + 2τP i

τ (x, ∂) +R(x, ∂, τ)

Here

P1(x, ∂, τ) = P (x, ∂) + τ 2p(x,∇φ) = ∂ia
ij∂j + τ 2φia

ijφj

with principal symbol

p1(x, ξ, τ) = p(x, ξ)− τ 2p(x,∇φ) = Re p(x, ξ + iτ∇φ)

P2(x,D) = φia
ij∂j

with principal symbol

p2(x, ξ) = iφia
ijξj = i(2τ)−1Im p(x, ξ + iτ∇φ)

The remainder R contains lower order terms and satisfies

|Rv| ≤ c|v|1,τ

For τ large enough it does not affect (4.1) therefore we can neglect it in the sequel.

The inequality (4.2) is a consequence of the following

Proposition 4.2 There exists a smooth function h such that for large enough τ ,

Re < Pτ (x, ∂, τ)v, (2P2(x, ∂, τ) + h(x))v >≥ |v|21,τ + τ |P2v|2) (4.3)

whenever u ∈ H2 is supported in K.

Proof : The inequality (4.3) reduces to

c|v|21,τ ≤ B(v, v) = d|P i
τv|2 + 2Re < P r

τ (x, ∂, τ)v, P2(x, ∂, τ)v >

+ Re < P r
τ (x, ∂, τ)v, h(x))v > (4.4)
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To prove this, we do a simple integration by parts. Neglecting the lower order terms (which

we only get when we move a derivative in P r
τ across h) we have

B(v, v) =< bij(x)∂iv, ∂jv > + < bi∂iv, τv > +b0 < τv, τv >

(we keep τ inside the inner products to emphasize that it plays the same role as a derivative)

The symbol of B is

b(x, ξ, τ) = bijξiξj + biξiτ + b0τ 2

and is given by

b(x, ξ, τ) = d|piτ |2 +
1

i
{prτ , p̃iτ}+ prτ (h(x) + h0(x))

where h0(x) is a C0 function defined by

h0 = P i
τ − (P i

τ )
∗

In order to get (4.4) it suffices to choose d, h so that the symbol b(x, ξ, τ) is a positive definite

quadratic form in ξ, τ .

The strong pseudoconvexity condition implies that

1

i
{p1, p2}(x, ξ, τ) > 0 whenever p1(x, ξ, τ) = τp2(x, ξ, τ) = 0, τ ≥ 0, (ξ, τ) 6= 0 (4.5)

The following algebraic Lemma shows the way we use this condition:

Lemma 4.3 Assume that (4.5) above holds. Then there exists d > 0 and a smooth function

h such that

0 <
1

i
{p1, p2}(x, ξ, τ) + d|p2|2(x, ξ, τ) + h(x)p1(x, ξ, τ) (4.6)

Proof : Note first that it suffices to prove (4.6) for fixed x; these local versions of (4.6)

can then be put together using a partition of unit.

According to (4.5), if c is large enough then we have

q(x, ξ, τ) =
1

i
{p1, p2}(x, ξ, τ) + c|p2|2(x, ξ, τ) > 0 whenever p1(x, ξ, τ) = 0, (ξ, τ) 6= 0

Look now at the zero set Zλ for

q(x, ξ, τ) + λp1(x, ξ, τ)
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If λ is small enough then Zl is contained in {p1 > 0}, while if λ is large enough then Zl is

contained in {p1 < 0}. Then there are two posibilities.

a) There exists some λ such that Zλ = ∅. Then the conclusion of the lemma follows.

b) There exists some λ such that Zλ intersects both {p1 < 0} and {p1 > 0}. Since

Zλ cannot intersect {p1 = 0}, it follows that it is projectively disconnected. But this is

impossible, for the zero set of a quadratic form in Rn is always projectively connected.

4.1.2 Unique continuation inside the domain

We start with Hormander’s theorem:

Theorem 4.4 Let

P (x,D) =
n∑

i,j=1

aij∂i∂j + bj∂j + c (4.7)

where aij are C1, bj are L∞ and c is Ln. Let Σ = {φ = 0} be an oriented C2 hypersurface,

and x0 ∈ Σ. Let u ∈ H1(K) solve P (x,D)u = 0 near x0. If there exists a neighbourhood V

of x0 such that u = 0 in V ∩ {φ > 0} then u vanishes in a neighbourhood of x0.

Another version of this is

Theorem 4.5 Let

P (x,D) =
n∑

i,j=1

∂ia
ij∂j + ∂jb

j + c (4.8)

where aij are C1, bj are L∞ and c is Ln. Let Σ = {φ = 0} be an oriented C2 hypersur-

face which is strongly pseudoconvex with respect to P , and x0 ∈ Σ. Let u ∈ L2(K) solve

P (x,D)u = 0 near x0. If there exists a neighbourhood V of x0 such that u = 0 in V ∩{φ > 0}
then u vanishes in a neighbourhood of x0.

This follows from the Carleman estimate

Theorem 4.6 Let P be as in the previous theorem. Then

τ |eτφu|2 ≤ c|eτφP (x,D)u|2−1,τ τ > τ0 (4.9)

whenever u ∈ L2 has compact support in K.
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Proof : The estimate is stable with respect to the lower order terms in P . Hence,

w.a.r.g. we can assume that P has no lower order terms.

Now the argument in the proof of Theorem 3.2.1 allows one to shift down the energy

level by one in (4.1) to get (4.2).

Yet another version of this result is

Theorem 4.7 Let

P (x,D) =
n∑

i,j=1

∂i∂ja
ij + ∂jb

j + c (4.10)

where aij are C1, bj are C1 and c is W 1,n. Let Σ = {φ = 0} be an oriented C2 hypersurface

which is strongly pseudoconvex with respect to P , and x0 ∈ Σ. Let u ∈ H−1(K) solve

P (x,D)u = 0 near x0. If there exists a neighbourhood V of x0 such that u = 0 in V ∩{φ > 0}
then u vanishes in a neighbourhood of x0.

In all the above results we have limited ourselves to the case when the coefficients of the

principal part of P are C1. If instead we assume that the coefficients are in the Ξs space for

some s > 1 then the range of the energy levels where the unique continuation result holds

increases accordingly (see also Theorem 3.2.1).

The second type of unique continuation results we include here are those which follow from

Theorem 3.32, i.e. when the coefficients of the principal part have some partial analiticity.

To simplify the exposition, assume that we have a time coordinate, called t, so that its level

sets t = const are space-like. We denote the corresponding Fourier variable. We choose to

write the operator P in the form (4.7). Corresponding results also hold if P is as in (4.8) or

(4.10).

The first case we consider is when the coefficients are time-independent. Then we have

Theorem 4.8 Assume that the coefficients of P are time independent and that aij are C1,

bj are L∞ and c is Ln−1. Let Σ = {φ = 0} be a noncharacteristic surface and x0 ∈ Σ. Let

u ∈ H1(K) solve P (x,D)u = 0 near x0. If there exists a neighbourhood V of x0 such that

u = 0 in V ∩ {φ > 0} then u vanishes in a neighbourhood of x0.

Theorem 3.44 implies that this holds if Σ is strongly pseudoconvex with respect to P in

the set s = 0. By theorem 1.8 this reduces also to the case τ = 0. But Pτ is elliptic in the

region τ = s = 0, q.e.d.
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A second interesting case is when the coefficients are analytic in x. Then the following

result holds:

Theorem 4.9 Assume that the coefficients aij, bj, c of P are analytic in x and C0, respec-

tively L2, L2 in t. Let Σ = {φ = 0} be a noncharacteristic time-like surface and x0 ∈ Σ. Let

u ∈ H1(K) solve P (x,D)u = 0 near x0. If there exists a neighbourhood V of x0 such that

u = 0 in V ∩ {φ > 0} then u vanishes in a neighbourhood of x0.

4.1.3 Continuation of regularity inside the domain

Again consider for example the second order hyperbolic operator in divergence form as in

(4.8). Then

Theorem 4.10 Assume that the coefficients aij are C1, bj are L∞ and c is Ln. Let Σ =

{φ = 0} be an oriented C2 hypersurface which is strongly pseudoconvex with respect to P ,

and x0 ∈ Σ. Let u ∈ L2(K) solve P (x,D)u =∈ L2 near x0. If there exists a neighbourhood

V of x0 such that u ∈ H1
loc(V ∩ {φ > 0}) then u is H1 in a neighbourhood of x0.

Next we show a sample of the results one can get if the coefficients have better regularity.

Theorem 4.11 Assume that the coefficients aij are Ξs. Let Σ = {φ = 0} be an oriented

C2 hypersurface which is strongly pseudoconvex with respect to P , and x0 ∈ Σ. Let u ∈
H−s(K) solve P (x,D)u =∈ Hs near x0. If there exists a neighbourhood V of x0 such that

u ∈ Hs+1

loc (V ∩ {φ > 0}) then u is Hs+1 in a neighbourhood of x0.

4.1.4 Carleman estimates near the boundary

Let ψ be a smooth function vanishing simply on ∂K which is negative inside K. Denote by

∂ν = p(∇ψ)−1/2 ψxia
ij∂j

the conormal derivative. The covector N = p(∇ψ)−1/2∇ψ lies in the conormal bundle of the

boundary.

If coordinates are chosen near the boundary in such a way that ∂K = {xn = 0} and the

principal symbol of P has the form

p(x, ξ) = ξ2
n − r(x, ξ′)
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then we can take ψ(x) = xn therefore ∂ν = ∂n.

The Cauchy data of a function u with respect to P on the boundary is (u|∂K , ∂νu|∂K).

Consequently, Theorem 3.32 gives

τ |eτφu|21,τ ≤ c(|eτφP (x,D)u|2 + τ |eτφu|2∂,1,τ + τ |eτφ∂νu|2∂,τ ) τ > τ0 (4.11)

What if we only have some partial information on the Cauchy data ? Not everything is

lost, provided that some Lopatinskii condition holds. To keep things simple, we just consider

problems with Dirichlet and Neuman boundary condition.

In the case of the Dirichlet boundary condition it turns out that the strong Lopatinskii

condition holds iff ∂φ
∂ν
> 0. Consequently, Theorem 3.22 gives

τ(|eτφu|21,τ + |eτφ∂νu|2∂,τ ) ≤ c(|eτφP (x,D)u|2 + τ |eτφu|2∂,1,τ ) τ > τ0 (4.12)

For the Neuman boundary condition, on the other hand, there is no hope for the strong

Lopatinkii condition to hold. It always fails when τ = 0, r(x, ξ′) = 0. However, the weak

Lopatinskii condition holds when ∂φ
∂ν

= 0. Hence, by Theorem 3.27 we get

τ |eτφu|21,τ ≤ c|eτφP (x,D)u|2 τ > τ0 (4.13)

whenever ∂φ
∂ν

= 0, ∂u
∂ν

= 0.

We leave to the reader to verify that the above claims about the Lopatinskii condition

are valid. Instead, we prove below the above estimates using the elementary proof of the

Carleman estimates for the wave equation, given in 4.1.1. In the process, we shall obtain a

slight improvement of these estimates.

In effect, the proof in 4.1.1 applies without any changes to all these estimates, except for

one (crucial) point, which is the integration by parts in the quadratic form B. Hence, what

we need to do is to carefully examine the boundary terms arising in this computation. It is

convenient to represent P as

P = ∂∗ν∂ν −R(x, ∂)

Then R is a tangential operator on the boundary. This leads to the decompositions:

P r
τ = ∂∗ν∂ν + τ 2(∂νφ)2 −Rr

τ

P i
τ = −φν∂ν −Ri

τ
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What boundary terms do we get when we reduce 2Re < P r
τ v, P

i
τv > to a first order quadratic

form, integrating by parts ? Since Rτ is tangential to the boundary, we get contributions only

from the terms involving conormal derivatives. If we take into account the simple formula

< ∂νu, v > + < u, ∂∗νv >=< u, v >∂

then we have

2Re < ∂∗ν∂νv,−φν∂νv >= − < φν∂νu, ∂νu >∂ + interior terms

2Re < ∂∗ν∂νv,−Ri
τv >= − < ∂νv,R

i
τv >∂ + interior terms

2Re < τ 2(∂νφ)2 −Rr
τv,−φν∂νv >= − < τ 2(∂νφ)2 −Rr

τv,−φνv >∂

In addition, when we move one derivative from P r
τ onto h we get the contribution

< ∂νv, hv >∂

Hence, integration by parts for the quadratic form B yields the boundary contribution

B∂(v, v) = − < φν∂νv, ∂νv >∂ − < ∂νv,R
i
τv >∂ − < τ 2(∂νφ)2−Rr

τv, φνv >∂ + < ∂νv, hv >∂

(4.14)

In general one can see that

B∂(v, v) > −c(|v|2∂,1,τ + |∂νv|2∂)

which implies (4.11). If ∂νφ < 0 then we get

B∂(v, v) > c|∂νv|2∂ − d|v|2∂,1,τ

which gives (4.12). Finally, if ∂νφ = 0 and ∂νv = 0 then

B∂ = 0

which leads to (4.13).

We can obtain a small improvement of (4.11) in the particular case when ∂νu = 0. This

implies that ∂νv = τ(∂νφ)v. Substituting this into B∂ we get

B∂(v, v) ≥ −cτ 2|v|2∂+ < Rv, φνv >∂
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Hence, if we use the Xs
θ spaces associated to the operator R we get

B∂(v, v) ≥ −c(τ 2|v|2∂ + |v|2
X

1/2

1/2

)

Consequently, the following variation of (4.11) holds:

τ |eτφu|21,τ ≤ c(|eτφP (x,D)u|2 + τ 3|eτφu|2∂ + τ |eτφu|2
X

1/2

1/2

) τ > τ0 (4.15)

if ∂νu = 0. While this has no consequences as far as unique continuation is concerned, it

is useful in problems involving regularity questions.

4.1.5 Unique continuation near the boundary

Neuman boundary condition From the Carleman estimate (4.13) it follows that UCP

holds when Σ is strongly pseudoconvex with respect to P and and conormal to ∂K. However,

it turns out that we have a bit more freedom:

Theorem 4.12 Let S = {φ = 0} be an oriented C2 hypersurface, and x0 ∈ S∩∂K. Assume

that
∂φ

∂ν
(x0) < 0 and that S ∩ ∂K is strongly pseudoconvex with respect to R at x0.

{
P (x,D)u = 0 in K
∂u
∂ν

= 0 on ∂K
(4.16)

If there exists a neighbourhood V of x0 such that u = 0 in V ∩ {φ > 0} then u vanishes in a

neighbourhood of x0.

Proof : The following Lemma achieves the reduction to the case when Σ is strongly

pseudoconvex with respect to P and and conormal to ∂K.

Lemma 4.13 Let Σ = {φ = 0} be an oriented surface and x0 ∈ S ∩ ∂K. Suppose that
∂φ

∂ν
(x0) < 0 and that Σ ∩ ∂K is strongly pseudoconvex with respect to R at x0.

Then there exists another function ψ such that

(i) ψ(x0) = φ(x0), φ ≥ ψ in K near x0

(ii)
∂φ

∂ν
= 0 near x0

(iii) the surface {ψ = 0} is strongly pseudoconvex with respect to P at x0.
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Proof :

Let z be a function vanishing on ∂K so that
∂z

∂ν
= 1 on ∂K.

Choose

ψ(x) = φ(x)− z ∂φ
∂µ

+ λz2

Clearly ψ ≤ φ near x0 and ψ(x0) = φ(x0). We claim that for large enough λ the pseudocon-

vexity condition is still fulfilled at x0.

We have

{p, {p, ψ}}(x0, ξ) = {p, {p, φ}}(x0, ξ)− {p, {p, z}}(x0, ξ)
∂φ

∂µ
− {p, z}{p, ∂φ

∂µ
}+ λ{p, z}2

Since λ can be chosen arbitrarily large, to get the pseudoconvexity condition for ψ it

suffices to require that φ satisfies

{p, {p, φ}}(x0, ξ)− {p, {p, z}}(x0, ξ)
∂φ

∂µ
> 0

whenever

p(x0, ξ) = {p, φ}(x, ξ) = {p, z}(x, ξ) = 0

But this is equivalent to saying that Σ ∩ ∂K is strongly pseudoconvex with respect to R at

x0. q.e.d.

The corresponding result in the case of the Dirichlet boundary condition is a bit stronger:

Theorem 4.14 Let S = {φ = 0} be an oriented C2 hypersurface, and x0 ∈ S∩∂K. Assume

that

(a)
∂φ

∂ν
(x0) < 0

(b) There exists some 0 < α < 1 so that

α{r, {r, φ}+ (1− α){p, {p, φ} > 0 when p = {p, φ} = {p, ψ} = 0 (4.17)

Let u ∈ H1 solve {
P (x,D)u = 0 in K
u = 0 on ∂K

(4.18)

If there exists a neighbourhood V of x0 such that u = 0 in V ∩ {φ > 0} then u vanishes in a

neighbourhood of x0.
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The result follows as in Theorem 4.12. The idea is that one tries to substitute the function

φ by the function

ψ(x) = φ(x)− αψ∂φ
∂µ

+ λz2

with 0 < α < 1 and λ arbitrarily large.

Remark 4.15 Either (i) S ∩ ∂K is strongly pseudoconvex with respect to R at x0 or (ii) S

is strongly pseudoconvex with respect to P at x0 along glancing rays.

Namely, this says that we have unique continuation across S for solutions to (4.16)

whenever the oriented ”angle” between S and ∂K is less than π/2 (with respect to the pseudo-

riemmanian metric generated by P ) and S ∩ ∂K is strongly pseudoconvex with respect to P̃ .

Another way one can think of the last condition is that φ is strongly pseudoconvex along

the gliding vector field on T ∗∂K associated to P . If
∂φ

∂ν
= 0 then this is the same with the

strong pseudoconvexity of φ with respect to P on bicharacteristics of P which are tangent to

the boundary.

However, if
∂φ

∂ν
< 0 then the interpretation of this condition depends on the convexity of

the domain K. Let γ ∈ T ∗∂K be a gliding point.

a) If ∂K is convex at γ, i.e. {p, {p, z}}(γ) > 0, then the condition (BSPC) is less

restrictive than the strong pseudoconvexity of S at γ. Furthermore, in this case condition

(BSPC) is clearly necessary since the singularities do propagate along gliding rays.

b) If ∂K is flat at γ, i.e. {p, {p, z}}(γ) = 0, then the condition (BSPC) is equivalent to

the strong pseudoconvexity of S at γ. Again, the condition (BSPC) is necessary.

c) If ∂K is concave at γ, i.e. {p, {p, z}}(γ) < 0, then the condition (BSPC) is more

restrictive than the strong pseudoconvexity of S at γ. However, in this case condition (BSPC)

should not be necessary at least for the regularity result since the C∞ singularities do not

propagate along gliding rays. Nevertheless, analytic singularities do propagate along gliding

rays, so (BSPC) might still be necessary for unique continuation.

4.1.6 Continuation of regularity near the boundary

The results in this section are based on the Carleman estimates which are similar to (4.11),

(4.12), (4.13), (4.15) but in addition have a cutoff function inserted as in Theorem 3.10.

An exercise we leave to the reader is to verify that these estimates can be obtained simply

by substituting v by φ2v in (4.3) (or rather its analogue for boundary value problems) and

performing a few computations.
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No boundary condition Here we use the estimates

τ |eτφφ2
+u|21,τ ≤ c(|eτφφ2P (x,D)u|2 + τ |eτφu|2∂,1,τ + τ |eτφ∂νu|2∂,τ + τ |eτφu|2) τ > τ0 (4.19)

respectively

τ |eτφφ2
+u|21,τ ≤ c(|eτφφ2P (x,D)u|2 + τ |eτφu|2

X
1/2

1/2

+ τ 3|eτφu|2∂,τ + τ |eτφu|2) τ > τ0 (4.20)

when ∂νu = 0.

Based on this, one can prove the following result on continuation of regularity:

Theorem 4.16 Let Σ = {φ = 0} be an oriented C2 hypersurface which is strongly pseudo-

convex with respect to P , and x0 ∈ Σ. a) Let u ∈ L2(K) such that near

(i) P (x,D)u =∈ L2 near x0.

(ii) u ∈ H1(∂K) near x0.

(iii) ∂νu ∈ L2(∂K) near x0.

If there exists a neighbourhood V of x0 such that u ∈ H1
loc(V ∩ {φ > 0}) then u is H1 in

a neighbourhood of x0.

b) The same conclusion holds if we substitute (i), (ii) by

(i)’ u ∈ X1/2
1/2 (∂K) near x0.

(ii)’ ∂νu = 0 near x0.

The following consequence of the above result turns out to be useful in applications:

Theorem 4.17 Let x0 ∈ ∂K so that ∂K is strongly pseudoconvex with respect to P at x0.

a) Let u ∈ L2(K) such that near

(i) P (x,D)u =∈ L2 near x0.

(ii) u ∈ H1(∂K) near x0.

(iii) ∂νu ∈ L2(∂K) near x0.

Then u is H1 in a neighbourhood of x0.

b) The same conclusion holds if we substitute (i), (ii) by

(i)’ u ∈ X1/2
1/2 (∂K) near x0.

(ii)’ ∂νu = 0 near x0.
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4.1.7 Dirichlet boundary condition

Suppose we know u on ∂K, but have no information on the conormal derivative ∂νu. The

Carleman estimate with cutoff is in this case

τ(|eτφφ2u|21,τ+|eτφφ2∂νu|2∂,τ ) ≤ c(|eτφφ2P (x,D)u|2+τ |eτφφ2u|2∂,1,τ+τ 2|eτφu|2) τ > τ0 (4.21)

provided that ∂φ
∂ν
> 0.

Consequently, we obtain

Theorem 4.18 Let S = {φ = 0} be an oriented C2 hypersurface, and x0 ∈ S∩∂K. Assume

that

(a)
∂φ

∂ν
(x0) < 0

(b) There exists some 0 < α < 1 so that

α{r, {r, φ}+ (1− α){p, {p, φ} > 0 when p = {p, φ} = {p, ψ} = 0 (4.22)

Let u ∈ L2 such that

(i) P (x,D)u =∈ L2 near x0.

(ii) u ∈ H1(∂K) near x0.

(iii) ∂νu ∈ L2(∂K) near x0.

If there exists a neighbourhood V of x0 such that u ∈ H1
loc(V ∩ {φ > 0}) then u is H1

and ∂νu is L2(∂K) in a neighbourhood of x0.

4.1.8 Neuman boundary condition

The Carleman estimate with cutoff is

τ |eτφφ2u|21,τ ≤ c(|eτφφ2P (x,D)u|2 + τ 2|eτφu|2) τ > τ0 (4.23)

whenever ∂φ
∂ν

= 0, ∂u
∂ν

= 0.

4.2 The Schroedinger equation

To keep things simple we consider the Schroedinger operator with the principal part in

divergence form and C1 coefficients in the principal part. Thus, let

P (x, ∂) = i∂t −
n∑

i,j=1

∂ia
ij∂j + bi∂i + c (4.24)
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4.2.1 Pseudoconvex surfaces

A surface Σ = {φ = 0} is called noncharacteristic iff φx 6= 0. A noncharacteristic surface

intersects the hyperplanes t = const. on smooth n−dimensional surfaces.

The strong pseudoconvexity condition (for noncharacteristic surfaces) is uncoupled on

the hyperplanes t = const. We have

p(t, x, s, ξ) = s+ a(t, x, ξ)

Hence

pτ (t, x, s, ξ) = s+ a(t, x, ξ + iτ∇φ)

and

prτ = s+ arτ = s+ a(t, x, ξ)− τ 2a(t, x,∇φ)

piτ = aiτ = 2τa(x, t)(ξ,∇φ)

Consequently,

{prτ , piτ} = {arτ , aiτ}

By Theorem 1.8, the strong pseudoconvexity condition for a noncharacteristic surface

reduces to the case τ = 0, in which case it reads

{a, {a, φ}} > 0 when s+ a = {a, φ} = 0

which can be rewritten as

{a, {a, φ}} > 0 when {a, φ} = 0 (4.25)

Similarly, the strong pseudoconvexity condition for a function φ reduces to

{a, {a, φ}} > 0, {{a, φ}, a(∇φ)} > 0 when {a, φ} = 0 (4.26)

4.2.2 The Carleman estimates

The simplest Carleman estimates for the Schroedinger equation have the form

Theorem 4.19 Let φ be a strongly pseudoconvex function with respect to P in K. Then

τ |eτφu|21,τ ≤ c|eτφP (x,D)u|2 τ > τ0 (4.27)

whenever u ∈ H1 is supported in K.
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Note that the |.|1,τ norm means one derivative in x, one ”derivative” in τ but only 1/2

derivative in t. While this result is a consequence of Theorem 3.1, we again take advantage

of the simple form of the operator to give a simpler proof. This time, however, since we do

not want to use microlocal analysis, we need to make the additional assumption that the

coefficients are C2.

With the substitution v = eτφu (4.27) to

τ |v|21,τ ≤ c|Pτ (x,D)v|2 τ > τ0 (4.28)

Neglecting the lower order terms we can decompose Pτ as usual into a part with real principal

symbol and one with purely imaginary principal symbol,

Pτ (x,D, τ) = P r
τ (x, ∂, τ) + 2τP i

τ (x, ∂)

Here

P r
τ (x, ∂, τ) = i∂t − A(t, x, ∂x)− τ 2a(t, x,∇φ) = i∂t − ∂iaij∂j − τ 2φia

ijφj

with principal symbol

prτ (x, ξ, τ) = s+ a(t, x, ξ)− τ 2a(t, x,∇xφ) = s+ Re a(x, ξ + iτ∇φ)

P i
τ (x,D) = φia

ij∂j + ∂ia
ijφj

with principal symbol

piτ (x, ξ) = iφia
ijξj = i(2τ)−1Im a(x, ξ + iτ∇φ)

The inequality (4.27) is a consequence of the following

Proposition 4.20 For large enough τ ,

Re < Pτ (x, ∂, τ)v, 2P2(x, ∂, τ)v >≥ |(τ, ∂x)v|2 + τ |P2v|2) (4.29)

whenever u ∈ H2 is supported in K.

Proof : The inequality (4.29) reduces to

c|(τ, ∂x)v|2 ≤ B(v, v) = d|P i
τv|2 + 2Re < P r

τ (x, ∂, τ)v, P2(x, ∂, τ)v > (4.30)
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To prove this, we do a simple integration by parts. Modulo lower order terms we get

B(v, v) =< bij(x)∂iv, ∂jv > + < bi∂iv, τv > +b0 < τv, τv >

The symbol of B is

b(x, ξ, τ) = bijξiξj + biξiτ + b0τ 2

and is given by

b(x, ξ, τ) = d|aiτ |2 +
1

i
{arτ , aiτ}

In order to get (4.30) it suffices to choose d so that the symbol b(x, ξ, τ) is a positive definite

quadratic form in ξ, τ . The strong pseudoconvexity condition for φ (4.26) insures that this

can be done.

The estimate (4.19), however, does not take advantage of the anisotropic structure of

the operator P . An additional anisotropic feature is that the weight function can be chosen

to be a cutoff function in time. Consequently, the corresponding Carleman estimates are

localized in time.

To give an example, let φ(x) be a negative weight function which is strongly pseudoconvex

with respect to P at time t = 0. Then choose ε small and

g(t) =
1

1− t2ε−2

Then Theorem 3.56 implies that the following estimate holds

τ |eτφ(x)g(t)u|21,τ ≤ c|eτφ(x)g(t)P (x,D)u|2 τ > τ0 (4.31)

whenever u ∈ H1(K).

If φ above is allowed to be positive then the weight function could blow up. For instance,

the following estimate holds:

τ |e
τφ
|t| u|21,τ ≤ c|e

τφ
|t| P (x,D)u|2 τ > τ0 (4.32)

The important feature of this estimate is that it holds for all u ∈ H1 with compact

support in K for which the RHS is finite. This in turns implies that the LHS is finite and

in particular that u vanishes when t = 0, φ > 0.

Introducing a cutoff function in this estimate, as in Theorem 3.57, yields
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τ |φ2eτφ(x)g(t)u|21,τ ≤ c(|φ2eτφ(x)g(t)P (x,D)u|2 + τ 2|eτφ(x)g(t)u|2 τ > τ0 (4.33)

Assume now that K is a domain with boundary. For simplicity take K to be a cilynder

K = Ω× [−ε, ε] with boundary ∂K = ×[−ε, ε].
Then the following estimates hold for solutions to boundary value problems:

a) No boundary conditions, no restriction on φ:

τ |eτφ(x)g(t)u|21,τ ≤ c(|eτφ(x)g(t)P (x,D)u|2 + τ |eτφ(x)g(t)u|2∂,1,τ + τ |eτφ(x)g(t)∂νu|2∂) τ > τ0 (4.34)

b) No boundary conditions, ∂νφ < 0:

τ |eτφ(x)g(t)u|21,τ + τ |eτφ(x)g(t)∂νu|2∂ ≤ c(|eτφ(x)g(t)P (x,D)u|2 + τ |eτφ(x)g(t)u|2∂,1,τ ) τ > τ0 (4.35)

c) Neuman boundary condition ∂νu = 0, no restriction on φ:

τ |eτφ(x)g(t)u|21,τ ≤ c(|eτφ(x)g(t)P (x,D)u|2+τ |eτφ(x)g(t)u|2
X

1/2

1/2

+τ 3|eτφ(x)g(t)u|2∂,1,τ ) τ > τ0 (4.36)

d) Neuman boundary condition ∂νu = 0, ∂νφ < 0:

τ |eτφ(x)g(t)u|21,τ ≤ c|eτφ(x)g(t)P (x,D)u|2 (4.37)

e) All these estimates remain valid if one inserts the cutoff function as in (4.31).

4.2.3 Unique continuation

The classical form of the unique continuation result is:

Theorem 4.21 a) Assume that Σ ⊂ K is strongly pseudoconvex with respect to P . Then

UCP holds for H1 solutions u to P (x,D)u = 0.

b) Assume in addition that bi ∈ W 1,n. Then UCP holds for L2 solutions u to P (x,D)u =

0.

The anisotropic version of the unique continuation result is localized at time t = 0:
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Theorem 4.22 a) Assume that Σ ⊂ K ∩ {t = 0} is strongly pseudoconvex with respect to

P . Then AUCP holds for H1 solutions u to P (x,D)u = 0.

b) Assume in addition that bi ∈ W 1,n. Then AUCP holds for L2 solutions u to P (x,D)u =

0.

If the coefficients have some partial analyticity then the results are better. The following

example is perhaps the most important:

Theorem 4.23 Assume that the coefficients of P are time-independent. Let Σ ⊂ K∩{t = 0}
be noncharacteristic.

a)Then UCP holds for H1 solutions u to P (x,D)u = 0.

b) Assume in addition that bi ∈ W 1,n. Then UCP holds for L2 solutions u to P (x,D)u =

0.

The above results lead one to the following

Conjecture 4.2.1 Assume that the coefficients of P are time-independent. Then a weak

anisotropic SUCP holds, i.e. if u solves Pu = 0 and vanishes of sufficiently high order at

some (x0, t0) then u = 0 at t = t0.

Clearly it is insufficient to assume only that u vanishes of infinite order at a point. For

instance if one considers the Cauchy problem for the Schroedinger equation with initial data

at t = 0 supported away from x = 0 and as smooth as possible then the corresponding

solutions could vanish near 0 of order e−|t|
−α

for any α < 1. One is thus led to a minimal

assumption that u vanishes at least like e1/(|t|+x2) at (0, 0) in order to hope to get SUCP.

Now look at boundary value problems. Suppose K = Ω × [−ε, ε]. Then ∂K = ×[−ε, ε].
The main result for the Neuman problem is

Theorem 4.24 Let Σ be an oriented noncharacteristic surface.

a) Assume that S ∩ ∂K is strongly pseudoconvex with respect to R (on ∂K) and that

∂νφ < 0. Then AUCP holds for H1 solutions u to P (x,D)u = 0, ∂νu = 0.

b) Assume in addition that bi ∈ W 1,n. Then AUCP holds for L2 solutions u to P (x,D)u =

0, ∂νu = 0.

For the Dirichlet problem we have
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Theorem 4.25 Let Σ be an oriented noncharacteristic surface.

a) Assume that S ∩ ∂K is strongly pseudoconvex with respect to R (on ∂K) and that

∂νφ < 0. Then AUCP holds for H1 solutions u to P (x,D)u = 0, ∂νu = 0.

b) Assume in addition that bi ∈ W 1,n. Then AUCP holds for L2 solutions u to P (x,D)u =

0, ∂νu = 0.

4.2.4 Continuation of regularity

The result inside the domain is

Theorem 4.26 Assume that the coefficients aij are C1, bj are L∞ ∩W 1,n and c is Ln. Let

Σ = {φ = 0} be an oriented C2 hypersurface which is strongly pseudoconvex with respect to

P , and x0 ∈ Σ. Let u ∈ L2(K) solve P (x,D)u =∈ L2 near x0. If there exists a neighbourhood

V of x0 such that u ∈ H1
loc(V ∩ {φ > 0}) then u is H1 in a neighbourhood of x0.

4.3 The plate equation

Consider the plate operator

P = ∂2
t − (

n∑
i,j=1

aij∂i∂j)
2 + l.o.t.

with C1 coefficients in a set K ⊂ Rn × R so that the boundary dk is not ”time-like”, i.e.

dt 6 ∈N(∂K). For most applications, the case when K is a cylinder K = Ω×R is sufficient.

4.3.1 Carleman estimates

The principal symbol of P is

p(t, x, s, ξ) = −s2 + l2(t, x, ξ))

We can factor it as

p(t, x, s, ξ) = −(s+ l(t, x, ξ))(s− l(t, x, ξ)) = −p1p2

The trouble is that for any function φ the symbols of the two conjugated operators

p1
τ = s+ l(t, x, ξ + iτ∇xφ), p2

τ = s− l(t, x, ξ + iτ∇xφ)
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can vanish simultaneously. The good news is that this can only happen when s = 0 and

τ > 0. Furthermore, in that region we have

{p1
τ , φ} 6= 0

Consequently, Theorem 3.67 implies the Carleman estimate

|eτφu|23,τ ≤ c|eτφPu|2 (4.38)

where the constant c can be made arbitrarily small by appropriately modifying φ.

The plate equation is also anisotropic, therefore we can use weight functions which are

cutoff in time:

|eτφ(x)g(t)u|23,τ ≤ c|eτφ(x)g(t)Pu|2 (4.39)

Since the corresponding estimates with cutoff function are used only to study regularity

questions, we neglect altogether what happens in the region τ > 0. When τ = 0 there are

no multiple characteristics, therefore we get

τ |φ2eτφu|23,τ ≤ c(|φ2eτφPu|2 + τ 3|u|22,τ ) (4.40)

Next we discuss the types of boundary condition which satisfy the strong Lopatinskii

condition.

A. ∂νφ ≥ 0. Then p0 could have degree 4 therefore in order for the strong Lopatinskii

condition to be fulfilled one needs to use all the Cauchy data on the boundary.

Things get a little better when we are only concerned with the regularity issue. Then

the strong Lopatinskii condition needs to be fulfilled only when τ = 0.

If τ = 0 then we have

τ1,2,3,4 = ±(i|ξ̃′|2 + |s|)1/2, ±(−|ξ̃′|2 + |s|)1/2, (4.41)

Hence

p0 =

{
(ξn − τ1)(|ξ̃|2 − |s|) if |s| ≥ |ξ̃′|2
(ξn − τ1)(ξn − τ3) if |s| < |ξ̃′|2

Consequently, at least three boundary conditions are necessary. A simple computation

shows that
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Theorem 4.27 any three of the four standard boundary conditions

B0,1,2,3u = u,
∂u

∂ν
, ∆u,

∂∆u

∂ν

will do. Other boundary conditions are left to the reader.

B. ∂νφ > 0.

Then p0 has degree at most 2.

On the boundary consider several types of boundary conditions.

a) B1 = I, B2 = ∂nu.

b) B1 = I, B2 = L

c) B1 = I, B2 = ∂νL

d) B1 = ∂ν , B2 = L

where L =
∑n
i,j=1 a

ij∂i∂j.

Then we have

Theorem 4.28 Consider the plate equation in K with boundary conditions as in (a),(b),(c)

or (d) on ∂K. Then the strong Lopatinskii condition with respect to dφ is fulfilled at some

x ∈ ∂K iff ∂νφ < 0.

Other types of boundary conditions are left for the interested reader.

Proof : Since we have only two boundary conditions, for the SLC to be fulfilled it

is necessary for p0 to have degree at most 2. Then the necessity of the condition ∂νφ < 0

follows as in the similar proof for the wave equation.

For the sufficiency, we proceed in a similar manner. We can find local coordinates near

the boundary so that ∂K = {xn = 0} and l(x, ξ) = ξ2
n + r(x, ξ′) where r is a second order

elliptic tangential symbol.

A. The case τ = 0. The symbol of P in the new coordinates is

p(x, ξ) = s2 − (ξ2
n + r)2

where s is the time dual variable.

Since p0 has degree at most 2, it divides a polynomial of the form

p1(x, ξ) = (ξn − α)(ξn − β)

121



where α, β are the two roots of p(x, ξ), as a polynomial in ξn, with positive imaginary part

if |s| < r, and one real and one imaginary root of p otherwise. To set the notations, assume

that α is a root for ξ2
n + |s|+ r(x, ξ′) and β for ξ2

n − |s|+ r(x, ξ′).

It suffices to prove that b1, b2 are complete modulo p1. This is straightforward in case

(a). In case (b) this is equivalent to α + β 6= 0 which is clear since α + β has positive

imaginary part. In case (c), the same condition leads to r − αβ + (α + β)2 6= 0. But

r = r/2 + r/2 = −(α2 + |s|)/2 − (β2 − |s|)/2 therefore this is is equivalent to (α + β)2 6= 0

which is clear from case (b). Finally, in case (d) we are led again to the condition (α+β)2 6= 0.

The same arguments apply in the case τ > 0, q.e.d.

C. The weak Lopatinskii condition. As usual, if ∂νφ = 0 then some weak Lopatinskii

condition could hold. As it turns out, this happens for instance for the boundary condition

(B0, B2).

If we restrict ourselves to τ = 0 then we also get the boundary condition (B0, B1).

4.3.2 Unique continuation and continuation of regularity

Same results as usual.

4.4 Parabolic equations

4.5 Coupled hyperbolic equations

Let P1, P2 be two second order hyperbolic operators, and Q1, Q2 be first order operators. We

now want to investigate the unique continuation problem for the weakly coupled system{
P1(x,D)u1 = Q1u2

P2(x,D)u2 = Q2u1
(4.42)

Start with the Carleman estimates for the corresponding inhomogeneous system{
P1(x,D)u1 = Q1u2 + f1

P2(x,D)u2 = Q2u1 + f2
(4.43)

Suppose φ is a strongly pseudoconvex function with respect to both P 1 and P 2. Then the

Carleman estimates applied to each of the equations yield

τ |eτφu1|21,τ ≤ c(|eτφf1|2 + |u2|21,τ )
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τ |eτφu2|21,τ ≤ c(|eτφf2|2 + |u1|21,τ )

Summing up these relations yields, for sufficiently large τ ,

τ |eτφu1|21,τ + τ |eτφu2|21,τ ≤ c(|eτφf1|2 + |eτφf2|2)

This leads to the following unique continuation result:

Theorem 4.29 Let Σ be an oriented surface which is strongly pseudoconvex with respect to

both P1 and P2. Then UCP holds for H1 solutions u to (4.42).

The corresponding result on continuation of regularity holds as well:

Theorem 4.30 Let Σ = {φ = 0} be an oriented surface which is strongly pseudoconvex with

respect to both P1 and P2. Let x0 ∈ Σ. Suppose u ∈ L2 solves (4.43), with f ∈ L2.

If u is H1 in {φ > 0} near x0 then u is H1 near x0.

Next, consider the case when the coefficients of P 1, P 2, Q1, Q2 are time independent.

Suppose Σ is noncharacteristic with respect to both P 1 and P 2. Then we can represent it

as Σ = {φ = 0} where φ is strongly pseudoconvex with respect to both P 1 and P 2 in the set

{s = 0} (here s is the time Fourier variable). Consequently, we can apply Theorem 3.32 to

each of the equations to get

τ |Qφ
θ (D, x)u1|21,τ ≤ c(|Qφ

θ (D, x)f1|20 + |Qφ
θ (D, x)u2|21,τ + |eτ(φ−δ)u|21,τ (4.44)

τ |Qφ
θ (D, x)u2|21,τ ≤ c(|Qφ

θ (D, x)f2|20 + |Qφ
θ (D, x)u1|21,τ + |eτ(φ−δ)u2|21,τ (4.45)

Summing them we get, for sufficiently large τ

τ |Qφ
θ (D, x)u|21,τ ≤ c(|Qφ

θ (D, x)f |20 + |eτ(φ−δ)u|21,τ ) (4.46)

This estimate leads to the following unique continuation result:

Theorem 4.31 Assume that the coefficients of P 1, P 2, Q1, Q2 are time independent. Let Σ

be an oriented surface which is noncharacteristic with respect to both P1 and P2. Then UCP

holds for H1 solutions u to (4.42).
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4.6 Maxwell’s equations

We consider here Maxwell’s equations in an isotropic but possibly inhomogeneous medium,


ε∂E
∂t

= curl H
µ∂H
∂t

= curl E
÷εE = 0
÷µH = 0

(4.47)

Here ε(x), µ(x) are the permittivity, respectively the magnetic permeabillity of the medium.

Consider also the corresponding inhomogeneous equations


ε∂E
∂t

= curl H + f
µ∂H
∂t

= curl E + g
÷εE = f1

÷µH = g1

(4.48)

Since the coefficients are inherently time independent, we are particularly interested in

Holmgreen type unique continuation results.

First uncouple the equations for E and H. For E we have

εEtt = curl µ−1curl E + ft + curl µ−1g

÷εE = f1

which further gives

εµEθ = ∆E −∇(lnµ)× curl E +∇(∇(ln ε) · E)µft + µcurl µ−1g +∇ε−1g1

and a similar equation for H.

But this is a system of weakly coupled hyperbolic equations, therefore we can argue as

in the previous section, namely use Carleman estimates on each component and then sum

them up.

Thus, if φ is a function which is strongly pseudoconvex with respect to the operator

P (x,D) = εµ∂2
t −∆

then the following estimate holds:

τ(|eτφE|21,τ + |eτφE|21,τ ) ≤ c(|eτφf |21,τ + |eτφg|21,τ + |eτφf1|21,τ + |eτφg1|21,τ ) (4.49)
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The similar estimate one energy level lower is perhaps simpler:

τ(|eτφE|2 + |eτφE|2) ≤ c(|eτφf |2 + |eτφg|2 + |eτφf1|2 + |eτφg1|2) (4.50)

Consequently, we obtain the following unique continuation result:

Theorem 4.32 Let Σ be an oriented surface which is strongly pseudoconvex with respect to

P . Then UCP holds for L2 solutions u to (4.47).

The corresponding result on continuation of regularity follows from the analogue Carle-

man estimates with cutoff:

Theorem 4.33 Let Σ = {φ = 0} be an oriented surface which is strongly pseudoconvex with

respect to P . Let x0 ∈ Σ. Suppose u ∈ L2 solves (4.43), with f, g, f1, g1 ∈ H1.

If u is H1 in {φ > 0} near x0 then u is H1 near x0.

Let now φ be a strongly pseudoconvex with respect to both P 1 and P 2 in the set {s = 0}
(here s is the time Fourier variable). Since the coefficients are time independents, we can

apply Theorem 3.32 to each of the equations and then sum them up to get

τ(|Qφ
θE|2 + |Qφ

θE|2) ≤ c(|Qφ
θf |2 + |Qφ

θg|2 + |Qφ
θf1|2 + |Qφ

θg1|2) + (|eτ(φ−δ)E|2 + |eτ(φ−δ)E|2)

(4.51)

This estimate leads to the following unique continuation result:

Theorem 4.34 Let Σ be a noncharacteristic surface. Then UCP holds for L2 solutions u

to (4.42).
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